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Abstract: Aircraft four dimensional (4D, including longitude, latitude, altitude and time) trajectory
prediction is a key technology for existing automation systems and the basis for future trajectory-
based operations. This paper firstly summarizes the background and significance of the trajectory
prediction problems and then introduces the definition and basic process of trajectory prediction,
including four modules: preparation, prediction, update, and output. In addition, the trajectory
prediction methods are summarized into three types: the state estimation model, the Kinetic model,
and the machine learning model, and in-depth analysis of various models is carried out. Further,
the relevant databases required for the study are introduced, including the aircraft performance
database, aircraft monitoring database, and meteorological database. Finally, challenges and future
development directions of the current trajectory prediction problem are summarized.

Keywords: aircraft trajectory prediction; 4D trajectory; civil aviation; review; machine learning

1. Introduction

With the rapid economic development, the demand for air transport continues to
grow rapidly, and the contradiction between aviation demand and airspace capacity has
become increasingly prominent. It is predicted that in the next 20 years, the annual growth
rate of global air transportation will be about 4.4%, and the volume of air traffic in China
will increase by 3.5 times [1], which brings major challenges to the development of the
civil aviation industry. At present, the operation mode of the fixed airspace sector and
the route has problems such as structural solidification, cascading failures, and limited
capacity, which not only restrict the space for air communication optimization but also
cannot support future trajectory-based and performance-based airspace operation modes.

In order to continue to meet the different expectations of various stakeholders in terms
of the comprehensive performance of operational efficiency, flight safety, cost-effectiveness,
and environmental impact, many countries and organizations have initiated various types
of air traffic system upgrade projects to cope with the ever-growing demand for air traffic,
complex air traffic systems, and diverse operating environments [2]. Whether it is the
current sector-based operation mode or the future trajectory-based operation mode, the
prediction of the future trajectory of the aircraft is the key to the efficient operation of these
two modes. At the same time, accurate trajectory prediction is the basis for decision-making
systems such as arrival and departure sequencing, conflict detection, airspace situational
awareness, and flight flow management, which can greatly reduce the uncertainty of an
aircraft’s future flight and improve the predictability of air traffic [3,4].

In view of the important status of trajectory prediction, accurate trajectory prediction is
a relatively systematic and relatively difficult task, and the influence of various deterministic
and uncertain factors needs to be considered at the same time. With the rapid development
of machine learning and data mining technology in recent years, many new data-driven
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trajectory prediction methods have emerged, updating traditional dynamics and other
methods. Therefore, it is necessary to comprehensively sort out and summarize the current
research status of trajectory prediction to lay the foundation for relevant researchers to
carry out the following trajectory prediction research. The purpose of this article is to
review the classic method of trajectory prediction and sort out its latest developments
and applications in the field of air traffic, allowing relevant researchers to have an overall
grasp of the development of trajectory prediction and providing a new direction for future
research on trajectory prediction.

The organization of the paper is as follows. Section 2 introduces the trajectory predic-
tion problem and related definitions. Section 3 elaborates on the entire process of trajectory
prediction in detail. Section 4 begins to comprehensively sort out and summarize the
methods of trajectory prediction. Section 5 introduces several evaluation indexes of the
track prediction effect. Section 6 introduces the available databases for trajectory prediction,
providing data sources for relevant researchers to carry out research. Finally, Section 7
looks forward to the challenges faced by trajectory prediction and new directions that need
further research in the future.

2. Problem Description and Definition

The Federal Aviation Administration (FAA)/Eurocontrol Action Plan 16 (AP16) de-
fines trajectory as a four-dimensional (latitude, longitude, altitude, and time) description of
an aircraft flight path [5,6]. The International Civil Aviation Organization (ICAO) extended
the definition to the ground operation and expressed the trajectory as the description of
aircraft motion in the air and on the ground, including position, time, speed, acceleration,
and other attributes [7].

Due to airspace congestion, weather, temporary military activities, airspace restrictions,
etc., the actual flight process of aircraft sometimes does not follow the route planned in
advance, as shown in Figure 1. This reduces the predictability of air traffic, increases the
difficulty of air traffic management, and seriously hinders the efficient operation of the
air traffic management system. Therefore, it is necessary to predict the four-dimensional
trajectory of the aircraft.

The trajectory prediction is the process of estimating the future states of the aircraft
based on the current aircraft state, estimation of the pilot and controller intent, expected
environmental conditions, and computer models of aircraft performance and procedures [6].
According to whether the aircraft takes off, it can be divided into strategic prediction and
tactical prediction. Strategic forecasting mainly predicts the possible future flight trajectories
of the aircraft based on the aircraft’s flight plan, weather forecast information, aircraft
performance, historical flight patterns, and other information. The tactical prediction adds
more dynamic information, such as the aircraft’s own flight status information, airspace
congestion, and so on.

In terms of the time scale, the trajectory prediction can be divided into two categories [8,9]:
(1) Short-term prediction: short-term prediction in a few minutes or less. Since the forecast
interval is small, there is no need to know long-term intentions and weather, but during
the duration of the forecast interval, additional assumptions (such as fixed aircraft control
and constant turn rate) are required. Since these assumptions are indeed valid in a smaller
propagation interval, the prediction accuracy increases as the size of the prediction interval
decreases. Short-term prediction allows the immediate risk of conflict to be detected,
thus providing the possibility to resolve the real conflict. At the same time, a good TP
can promote the generation of good alternative trajectories, compatible with existing
constraints. (2) Medium- and long-term forecasts: long-term forecasts of ten minutes
or more. Due to the large prediction interval, it is necessary to use information such
as long-term intentions, environmental data, aircraft performance data, and navigation
data. However, the uncertainty of this information will cause the prediction accuracy to
decrease as the prediction time interval increases. Mid-to-long-term forecasting is helpful
for effective planning and management and the regular assessment of airspace operation
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status and is mainly used for airspace flow assessment and the formulation of the flight
plan of the aircraft operation center (or flight operation center).

According to the form of the prediction result, the trajectory prediction can be divided
into two other categories [10]: (1) Deterministic prediction: This is composed of the nominal
method and the worst-case method and generally directly outputs the predicted four-
dimensional trajectory information [11]. The nominal method cannot perfectly describe the
uncertainty of the aircraft’s future behavior. Therefore, as the forecasting time increases,
its accuracy may decrease. The worst-case method usually assumes that an airplane will
perform any one of a set of maneuvers and considers the worst-case aircraft trajectory
prediction. This method is conservative. (2) Probabilistic prediction: This describes the
potential changes of the aircraft’s future trajectory through modeling uncertainty, using
the probability density function to describe the aircraft trajectory, which can provide more
accurate long-term predictions than deterministic methods.
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3. Trajectory Prediction Process

Trajectory prediction is usually performed by trajectory predictors (TPs). Because
different DST and automation systems have very different requirements for TPs in terms of
accuracy, uncertainty, response time, and input data, the structure, process, function, and
performance of TPs depend entirely on the application of trajectory prediction [12]. This
will lead to the coexistence of multiple completely different TPs in the ATM system, which
brings potential problems to the interoperability of different automation systems in the air
and on the ground. For the purpose of ATM interoperability, AP16 proposed a general TP
model [5].

Figure 2 shows the general trajectory prediction process introduced in AP16, which
includes four modules: preparation, prediction, update, and output. Here it is further
broken down into the specific steps described in the FAA’s previous research management
plan on general trajectory modeling [5]. The input data of the preparation process include
flight plans, airline operating procedures, air traffic control (ATC) restrictions on weather,
and aircraft performance, etc. The process will integrate these data to establish a flight
script (Flight Script, FS) to describe the predicted flight segment and construct a behavioral
model. A behavior model is an ordered list of maneuvers that the aircraft plans to execute
(also known as flight intent), describing how to operate the aircraft to meet trajectory
constraints and user preferences in a clear way [13]. The prediction process is the core
process of TP. It uses a set of methods and algorithms implemented by the trajectory engine
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(TE) to obtain a calculated trajectory (CT) by combining behavior models, meteorological
data, and aircraft performance data. The update process updates the flight script according
to the constantly changing information, which can be performed through a regular update
or monitoring of the consistency between the prediction and the true value, which may
lead to the generation of a new flight script or the modification of information and trigger a
new preparation process. The output process exports the output data of the TP to the client
application, including the predicted trajectory and error and warning messages that notify
the client of the availability and/or quality of the output data.
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4. Prediction Methods

This paper divides the trajectory prediction methods into state estimation methods,
kinetic methods, and machine learning methods.

The state estimation model only establishes the motion equation based on the aircraft’s
position, speed, acceleration, and other attributes, so as to realize the propagation of the
estimate. The model is relatively simple, but because it cannot accurately capture the
aircraft’s maneuvering uncertainty for a long time, it will cause large errors. Therefore, it
can only work in a short time. Although flight intention information has been incorporated
into the prediction model in order to improve the prediction accuracy, the inference of the
intention is only relatively accurate in the short term.

Although the kinetic model is analyzed from the perspective of aircraft forces, in
order to simplify the model, most of it is realized under some ideal assumptions, with
little consideration of actual constraints and human behavior [14–19]; in addition, due to
the consideration of aircraft performance, aircraft status, environmental conditions, and
aircraft intentions, the model requires a large number of parameters, some of which are
commercially sensitive and not easy to obtain, and the other part uses predefined settings
or estimates in the existing database. Information is often not accurate enough. Thereby,
the research that is being conducted by the projects PJ31 DIGITS and PJ38 ADSCENSIO
in SESAR is committed to improving this situation. Meanwhile, the PCP Project on Initial
Trajectory Sharing is also ongoing, and there is still a long way to go if they are promoted
globally, so once the data resources are limited or not fully supported, the prediction
accuracy of the model will be greatly reduced or even not applicable. The uncertainty of
these input data sources will obviously bring greater uncertainty to the trajectory prediction.
These errors include modeling errors, initial conditions errors, aircraft-specific errors,
environmental information errors, and intention errors.



Aerospace 2022, 9, 91 5 of 19

Machine learning models use machine learning and data mining algorithms to learn
historical flight trajectories and meteorological data to predict flight trajectories. They are
constructed under weak or even no assumptions. The machine learning model does not
require explicit modeling of aircraft performance, procedures, and airspace, that is, it does
not need to have a deep understanding of the relationship between the force and motion of
the aircraft and only needs to learn the laws from massive data. Therefore, the machine
learning model is actually a kind of data engineering in nature, and the larger the amount
of data, the better the effect. Due to a large amount of flight trajectory data available, it
makes it possible to mine complex trajectory patterns and extract important features, which
provides data and a preliminary basis for trajectory prediction.

4.1. State Estimation Model

In practical applications, we can regard the operating process of a physical system as
a state transition process. The trajectory prediction estimates the position, speed, and other
states generated during the flight of the aircraft, and the state estimation model uses the
state space theory to mathematically model the physical system. Any nonlinear system that
can be described by a state-space model can use it to model the physical system. It is widely
used in the field of target tracking and has become a class of methods for studying track
prediction problems. The state estimation model needs to construct the state transition
matrix in the state equation through the equation of motion and study the relationship
between position, historical position, speed, acceleration, angle, and other states at each
time point in the future. According to different assumptions about whether the aircraft has
a single flight mode or multiple modes in the prediction process, this type of method is
divided into single model estimation and multi-model estimation. Table 1 summarizes the
various methods of the state estimation model introduced in this section.

4.1.1. Single Model Estimation

In order to simplify the model, the multi-mode nature of aircraft motion is ignored,
and the state estimation is performed under the assumption of a single mode. The most
classic method in single model estimation is the Kalman Filter (KF) algorithm [20,21]. KF
estimates the state of the system at the next moment according to the state equation and
observation equation of the system [9].{

X(t + 1) = Φ(t)X(t) + ζX(t)
Z(t) = H(t)X(t) + ζZ(t)

(1)

where X(t) is the state of the aircraft at time t (including position, velocity, acceleration,
angular velocity, etc.), and it is also the input of the model, that is, the state at time t
is known, and the state X(t + 1) at time t + 1 is predicted, which is the output of the
model; Φ(t) represents the state transition matrix; ζX(t) is the zero-mean Gaussian white
noise sequence representing process noise, and its covariance matrix is Q(t); Z(t) is the
observation vector, representing the observation value of the aircraft at moment t (the
information to be predicted, such as position and time, etc.); H(t) is the observation matrix
that links the state with the observation value; ζZ(t) represents the observation noise vector
generated during the movement, and is also assumed to be zero-mean Gaussian white
noise, and its covariance matrix is R(t). When the kinematic equations are used to construct
Φ(t− 1) and H(t), the state equations and observation equations are obtained accordingly.

Based on the state equation and observation equation discussed above, the KF algo-
rithm is used to calculate the unbiased minimum variance estimate of the state. In addition
to state estimation, the filter also generates a covariance matrix of state estimation errors.
KF is divided into two steps: observation update and process update. Observation update
improves state estimation based on new observations, as shown in Formulas (2)–(3).

X̃(t) = X̂(t) + K(t)[Z(t)− H(t)X̂(t)] (2)
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P̃(t) = [I − K(t)H(t)]P(t) (3)

Among them, I represents the identity matrix, X̃(t) represents the improvement of
state estimation, P̃(t) represents the improvement of error covariance, and K(t) represents
the Kalman gain matrix. The calculation method is as follows:

K(t) = P(t)HT(t)[H(t)P(t)HT(t) + R(t)]
−1

(4)

The process update propagates the state estimation and error covariance according to
the state equation until the observation value at the next moment is obtained.

Before using KF for state estimation, the state vector X̂(t) and its error covariance
matrix P(t) must be initialized. In addition, the process noise covariance matrix Q(t) and
the observation noise covariance matrix R(t) must also be selected. The choice of Q(t) and
R(t) determines the required balance between smoothness and fast response.

At present, the KF algorithm [9,22], particle filter algorithm [23], hidden Markov
model (HMM) [24–27], and their various improved algorithms [28] are all applied in the
trajectory prediction problem. Chatterji [9] used KF for short-term trajectory prediction,
using the current ground speed and trajectory angle estimation and kinematic equations
to propagate the current position estimate forward to obtain the position estimate at the
future time. As the intention of the aircraft is assumed to be fixed in the short term, when
the aircraft deviates significantly from the assumed intention, the prediction accuracy will
be affected. In addition to using the KF algorithm, Lymperopoulos et al. [23] proved the
inefficiency of several sequential Monte Carlo algorithms in the high-dimensional state
estimation problem involving multiple aircraft and thus proposed a new particle filter
algorithm. Another state estimation method commonly used is HMM. Ayhan et al. [26]
applied HMM to predict trajectories considering environmental uncertainty and learned
the correlation between historical trajectories and relevant weather parameters.

4.1.2. Multi-Model Estimation

Although a single model has been widely used and has achieved certain effects,
a single model cannot well estimate the hybrid system with different modes, and the
aircraft trajectory prediction problem can be regarded as a stochastic linear hybrid system
(stochastic linear hybrid system, SLHS) estimation problem, which needs to be solved by a
multi-model method. When using SLHS to simulate aircraft motion, it is divided into many
flight modes, such as constant speed, coordinated turning, constant descent, etc. In each
flight mode, simpler dynamic equations can be used to describe the aircraft motion model.
For different flight modes, a multi-model estimation can achieve superior performance
by using different state estimators that match the aircraft motion model. However, the
multi-model algorithm is an important method to solve the SLHS estimation problem, and
its computational cost increases exponentially with time. Therefore, sub-optimal algorithms
such as the generalized pseudo-Bayes algorithm and interacting multiple model (IMM)
are proposed. The IMM algorithm has excellent performance and low computational cost
and has been successfully applied to track prediction. Song et al. [3] used IMM for state
and model estimation and updated the flight mode transition probability matrix by using a
data mining algorithm to extract a typical trajectory library as intent information to achieve
state update.

The multi-model algorithm models the flight mode transition as a Markov process
with a constant mode transition probability matrix, independent of continuous state vari-
ables [29]. However, in order to ensure flight safety and facilitate air traffic management,
aircraft generally follow a flight plan composed of a fixed route structure, so the behavior
of the aircraft is composed of discrete transitions between many flight modes (discrete
states) and continuous motion corresponding to specific flight modes (continuous states).
Therefore, based on the information provided by the archived flight plan, many documents
model the transition probability of flight mode as dependent on the continuous state of
the aircraft (such as position, speed, etc.) [30–33]. Seah et al. [31] considered that the flight
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mode transition probability depends on the continuous state of the aircraft and no longer
modeled the mode transition as a Markov process and proposed a multi-model Kalman
filter algorithm based on the continuous state correlation mode transition matrix to solve
the aircraft tracking problem.

In addition, the standard IMM algorithm assumes that the residual error is zero mean
and calculates the probability of mode transition through the likelihood function. Due to
the incompleteness of the pattern set in the IMM algorithm, this assumption is usually
invalid [34]. Therefore, many researchers have proposed improved multi-model estimation
methods for this [35–38], among which Yepes et al. [36] proposed an intention-based
trajectory prediction algorithm, inferring the intention of the aircraft that is most likely
to represent the actual situation, and calculating the nominal trajectory prediction based
on the intention information based on the state estimation and flight mode estimation
provided by the residual mean IMM algorithm.

Table 1. Overview of state estimation model methods.

Single model estimation
KF: [9,20,22]

Particle filter algorithm: [23]
HMM: [24–27]

Multi-model estimation
Multi-model KF: [31–33]

IMM: [3,29,39]
Improved IMM: [35–38]

4.2. Kinetic Model

The kinetic-based trajectory prediction model mainly studies the relationship between
the force acting on the aircraft and the aircraft movement and also involves the force and
movement of the aircraft. The dynamic model is expressed as a set of differential equations,
given the current state of the aircraft (such as mass, thrust, drag, position, speed, angle of
inclination), meteorological conditions (such as wind speed and direction), and aircraft
intentions (such as target speed or climb rate), through the integral–differential equation in
a time interval to predict the continuous points of the future aircraft trajectory [40]. There-
fore, this method integrates aircraft intent, performance parameters, and meteorological
environment data for calculation.

Here, we first introduce the point mass model (PMM) commonly used in kinetic
models [12,41], as shown in Figure 3. The model describes the relationships between the
force acting on the aircraft (including the gravity mg, engine thrust T, aerodynamic lift L,
and drag D) and the state of the aircraft (including horizontal position (x, y), altitude h, true
airspeed VTAS, path angle γ, heading angle ψ and bank angle ϕ). Some simplified assump-
tions are made from the perspective of ATM, assuming that the thrust and drag vectors are
collinear with the airspeed vectors, and the lift is perpendicular to these vectors (that is
α = β = 0), ignoring fast dynamics, and treating γ, T and ϕ as inputs. Therefore, the PMM
of aircraft movement is shown in Formulas (5)–(10); η is the thrust ratio fuel consumption
parameter, and w1 and w2 are the easterly and northerly wind velocity components.

.
x = VTAS sin(ψ) cos(γ) + w1 (5)

.
y = VTAS cos(ψ) cos(γ) + w2 (6)

.
h = VTAS sin(γ) (7)

.
VTAS = (T − D)/m− g sin(γ) (8)

.
ψ = g tan ϕ/VTAS (9)

.
m = −ηT (10)

Predicting the trajectory requires a model of the aerodynamic drag of any airframe
flying in the air at a given speed. In addition, the maximum climb thrust is also required,
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which depends on the engine that the aircraft is equipped with. If the initial state of the
aircraft (mass, position, speed, etc.) is not known in advance and the pilot’s intentions of
how to operate the aircraft in the future (the law of thrust, the law of speed, or the rate
of climb) are not known in advance, predictions cannot be made. When the aircraft is
operating at a given calibrated airspeed or Mach number, the calculation VTAS requires
knowledge of the atmospheric conditions (air temperature and pressure). Finally, there
is a need to predict the trajectory on the ground, not only through the air, but also the
magnitude and direction of the wind.
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PMM (sometimes called the total energy model) is currently the most widely used.
PMM first defines a non-inertial reference coordinate system that is easy to coordinate with
the aircraft force and determines the aircraft acceleration in the coordinate system and then
uses Newton’s second law (the power of the force acting on the aircraft is equal to the
rate of increase of potential energy and kinetic energy) to derive the dynamic equations,
finally combining the kinematic and dynamic equations to derive the EOM composed
of a set of differential equations, such as the full six-degrees-of-freedom EOM. Through
some simplified assumptions, the motion of the aircraft can be reduced to fewer degrees
of freedom [42]. PMM can be used for aircraft motion modeling in a fast simulation
environment [12,43,44]. Fukuda et al. [44] used the total energy model to model the motion
of the aircraft and equated the work rate of the force acting on the aircraft with the rate of
increase in potential energy and kinetic energy.

Since the motion of the aircraft is an SLHS with different flight modes, it is more
reasonable to establish corresponding motion equations based on different flight modes.
Therefore, many scholars use PMM to make predictions under SLHS [14,45,46]. Lymper-
opoulos et al. [14] used the point mass model to model the aircraft under the stochastic
hybrid system, combining the continuous state from the physical movement of the air-
craft and the discrete state from the flight plan and the flight management system (FMS).
Lee et al. [46] proposed an aircraft tracking and estimated time of arrival prediction algo-
rithm based on a stochastic hybrid system model, deduced a nonlinear dynamics model of
the continuous motion of the aircraft in each flight mode, and used the continuous state
transition probability to model the discrete transition between flight modes.

Unified and comprehensive intention information is necessary for trajectory predic-
tion. At present, related researchers have proposed the expansion and improvement
of flight scripts and are committed to providing a formal aircraft intention description
language [15,16,18,47–49]. Aircraft intentions consist of a set of structured instructions that
are used by the trajectory calculation infrastructure to provide a clear trajectory, which can
be considered an abstraction of the way the pilot behaves and/or FMS command aircraft
behavior. The determination of the intent needs to be combined with the flight intent (such
as following the instructions of standard terminal arrival procedures or standard departure
procedures), the operating preferences of the airline, and the actual pilot’s decision-making
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process [47]. Therefore, the parameters required by aircraft intentions mainly come from
the airline operating data and navigation data [44]. Airline operating data include the
preferred altitude, speed, and mass during the climb, cruise, and descent phases. The
navigation database provides relevant information such as airports, runways, and way-
point locations. Félix et al. [47] provided a computerized method for expressing aircraft
intentions using formal language, which combined the intention information with standard
operating procedures, airline’s operating preferences, and actual pilot’s decision-making
process and integrated the initial state, aircraft intention description, aircraft performance
model, and environment model to design a trajectory prediction engine.

Aircraft performance parameters provide the values of aircraft performance required
by the dynamics model. These values depend on the type of aircraft whose trajectory is
being calculated, the current state of motion of the aircraft (position, speed, mass, etc.),
and current atmospheric conditions. In addition, it may also depend on the aircraft’s
intent. Therefore, performance parameters mainly come from flight performance data,
monitoring data, aircraft intent, and environmental status information. In view of the
difficulty of obtaining performance parameters, related research has appeared [50–55].
The base of aircraft data (BADA) is an aircraft performance database based on the kinetic
approach to aircraft performance modeling that has been developed and maintained by the
Eurocontrol Experimental Centre (EEC). The information provided in BADA is designed
for use in trajectory simulation and prediction in ATM research as well as for modeling
and strategic planning in-ground ATM operations. Alligier [53] improved the trajectory
prediction accuracy by learning some of the unknown point-mass model parameters
from past observations; the performances of the proposed method are compared with
the results of standard model-based methods relying on the Eurocontrol Base of Aircraft
Data (BADA). Thipphavong et al. [50] proposed a universal real-time adaptive weighting
algorithm to improve the accuracy of climb trajectory prediction. The weight of the aircraft
in the model is dynamically adjusted through the available radar trajectory and weather
data, without any additional data from the aviation operation center or the aircraft data.
Baklacioglu et al. [51] used genetic algorithms (GAs) to derive a new aviation propulsion
model (APM) from the flight manual data of transport aircraft for accurate trajectory
prediction. This new genetic algorithm-based APM has made some improvements to
existing models. The use of gas improved the accuracy of propulsion and aerodynamic
modeling. Sun [54] used various data mining methods, as well as a maximum likelihood
estimation approach, to generate parametric models for these performance parameters. All
parametric models combined can be used to describe a complete flight. Sun [55] combined
the fuel flow model, the total energy model, and the reference model to independently
calculate different initial aircraft masses and then used a Bayesian approach to generate
a maximum a posteriori estimate of the initial aircraft mass. Alligier [56] improved the
trajectory prediction accuracy by predicting some of the unknown point-mass model
parameters using a stochastic gradient-boosting tree algorithm.

4.3. Machine Learning Model

Except for some irregularities, each execution of the flight in the historical data usually
follows the same planned route and flies over the same waypoint sequence, which proves
that the historical trajectories have certain regularity, providing the feasibility for using
machine learning to solve the problem of track prediction [27]. This type of method mines
the law of aircraft trajectory changes over time from a large amount of data and uses the law
to predict the position trajectory. On the one hand, it mainly relies on the underlying laws
of aircraft operation and excavates representative trajectory patterns. On the other hand,
it is based on the reconstruction of input and output space [12]. Here, it is divided into
regression models, neural networks, and other methods. Table 2 summarizes the methods
commonly used by scholars in the past when using machine learning models.
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4.3.1. Regression Model

Here, we first introduce the basic model in the regression model—multiple linear
regression, which is generally defined as:

y = β0 + β1x1 + · · ·+ βmxm + ε (11)

y is the dependent variable; it refers to the predicted value of the track, such as
the three-dimensional position and time information of the track; xi is the independent
variable whose optional features include the historical position, time, speed, heading, the
rate of decline, and other information of the aircraft, i = 1, · · · , m, β j is the parameter,
j = 0, · · · , m, ε is the error assuming that the mean is zero.

The linear least squares estimator is defined as:

ŷ = β̂0 + β̂1x1 + · · ·+ β̂mxm (12)

ŷ is the estimated value of y, β̂ j is the estimated value of β j,j = 0, · · · , m; in the linear
least-squares method, the parameter β̂ j is obtained by minimizing the residual sum of
squares, that is, when n sets of observations {yi, xi1, · · · , xim} are given, i = 1, · · · , n, The
function that needs to be minimized to obtain the estimated value β̂ j is:

J(β0, β1, · · · , βm) =
n

∑
i=1

(yi −
m

∑
j=1

β jxij)
2 (13)

At present, the commonly used regression methods in trajectory prediction include
locally weighted linear regression, locally weighted polynomial regression, and so on.
For example, Lee et al. [57] took the aircraft type, aircraft ground speed, altitude, and
meteorological data as the input of the model and used the stepwise regression method to
systematically determine the inputs and functions of the inputs that are included in the
prediction model based on the explanatory power when predicting the arrival time of the
aircraft. Hamed et al. [41] used a standard point-mass model and statistical regression
method to predict the altitude of climbing aircraft. In addition to the standard linear
regression model, two common non-linear regression methods, neural networks, and Loess
were used, with principal component analysis to reduce the dimensionality as the input
data of the regression methods. Tastambekov et al. [58] considered data preprocessing,
localizing, and solving linear regression using wavelet decomposition and then established
a local linear regression model for trajectory prediction based on historical radar trajectory
data, without using any physical or aviation parameters. Kanneganti et al. [59] used
a relatively simple linear prediction model to predict the future position of the aircraft
ten minutes in advance by using the aircraft heading and horizontal speed information.
Hong et al. [60] combined two machine learning algorithms, a clustering algorithm and
regression model. First, the historical trajectory data were clustered to find the main pattern
of the trajectory, and then a multi-linear regression model of flight time was constructed for
each pattern. A new method was based on the mode information of the previous aircraft
to determine the trajectory mode used by the target aircraft in the future, and then the
regression prediction model was used under this mode to make predictions.

4.3.2. Neural Network

Since a neural network can approximate arbitrary continuous mapping very well, it is
a good improvement method compared with general linear regression. Only the standard
network structure is introduced here. The standard structure consists of an input layer, a
hidden layer with an activation function, and an output layer. When the input is a sample
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{xi}N
i=1 containing N features (time series containing information such as position and

heading), the network output is:

y =
M

∑
j=1

aj f j(
N

∑
i=1

wjixi + bi) + cj (14)

wji and bi are the bias and weight of the hidden layer, aj and cj are the bias and weight
of the output layer. The neuron activation functions of the same layer are usually the same.
Common activation functions include sigmoid, tanh, and ReLU functions. The network
obtains the parameter set θ by minimizing the prediction error of the data set. Here, the
mean square error is selected, that is, when a sample {yk, x1k, · · · , xNk} is given, the loss
function to be minimized is shown in Equation (16), which refers to the error between the
predicted value and the actual value of the track:

θ = argmin
wji ,bi ,aj ,cj

K

∑
k=1

(yk −
M

∑
j=1

(aj f j(
N

∑
i=1

wjixi + bi) + cj))

2

(15)

The most widely used algorithm for solving the optimal parameters is the gradient de-
scent method, which is effectively calculated mainly through the gradient backpropagation
of the loss function. This method usually requires many iterations to reach the optimal value.
Its common improved algorithms include the Adam algorithm and RMSprop algorithm.

At present, more and more researchers use neural networks to deal with track predic-
tion problems [8,40,61–67]. Commonly used methods include BP neural networks, long
short-term memory neural networks (LSTMs), and depth neural networks (DNNs). Neural
networks usually take aircraft position and related information as input features and output
the probability distribution of the three-dimensional position, estimated flight time, or
trajectory at multiple points in the future. Fablec et al. [61] used artificial neural networks
to solve the problem of vertical plane trajectory prediction in the two cases of trajectory
prediction considering real points during aircraft flight and trajectory generation before air-
craft take-off. Hang et al. [40] proposed to establish a hybrid model of DNN and LSTM and
used DNN single-step prediction for the correction of LSTM multi-step prediction. Aiming
at the problem of weather-related aircraft trajectory prediction, Pang et al. [68] proposed a
new conditional generation confrontation network method and used convolutional layers
to extract weather features. Pang et al. [69] used a Bayesian neural network for probabilistic
trajectory prediction, implemented by using Dropout as Bayesian approximate variational
inference in conventional neural networks, and finally output the predicted trajectory with
a confidence interval. Wu et al. [70] first used agglomerative hierarchical clustering and a
K-means clustering algorithm to cluster the total flight time of the tracks to obtain a central
value of flight time fluctuations and then normalized the total flight time of all tracks. The
trajectory was then treated as a multivariate time series, and a BP neural network prediction
model was trained.

The long short-term memory (LSTM) network can effectively capture the long-term
correlation of the sequence and has been successfully applied to various time series predic-
tion tasks in recent years, so the most commonly used neural network in track prediction
is the LSTM network. Shi et al. [62] proposed a trajectory prediction model based on
the LSTM network, which takes into account the correlation of the adjacent states of the
trajectory sequence, which helps to improve the prediction accuracy. Xu et al. [63] proposed
a multi-machine trajectory cooperative prediction model based on social long short-term
memory (S-LSTM) network. The model builds an LSTM network and a pooling layer for
each plane to integrate the hidden states of related planes to effectively capture the interac-
tions between them. Zeng et al. [64] described the 4D trajectory prediction problem as a
sequence-to-sequence learning problem and proposed a sequence-to-sequence deep long
short-term memory network (SS-DLSTM) for trajectory prediction, which can capture tra-
jectories efficiently with long- and short-time dependencies and repeatability. Ma et al. [71]
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used the LSTM method to exploit the correlation and dependence between the aircraft
gliding motion position sequences. Combined with the change in the ground plane motion
state, an attenuation memory window is introduced to improve the hidden layer structure
and further improve the prediction accuracy of the LSTM model. Zhao et al. [72] proposed
a deep long short-term memory (D-LSTM) neural network for aircraft trajectory prediction,
which integrated the multi-dimensional features of aircraft trajectories into the LSTM to
improve the prediction accuracy of aircraft in complex flight environments.

4.3.3. Other Methods

In addition to the two commonly used methods of regression model and neural
network, other machine learning methods have also appeared [73–79], such as genetic
algorithm (GA), ant colony algorithm, and support vector machine (SVM), etc. Here, this is
regarded as a separate category.

In addition, current trajectory prediction also uses clustering algorithms [80–83], such
as K-means, density-based clustering, etc., and usually designs appropriate trajectory
similarity metrics to improve the clustering effect. Tang et al. [80] proposed an adaptive
clustering method that combines the time deviation edit distance trajectory similarity mea-
surement index with the K-means algorithm to improve the accuracy of the nominal flight
profile. To improve the accuracy of prediction tasks, the combination of clustering and
machine learning prediction methods can significantly improve the prediction accuracy
of large-scale clusterable data sets. Therefore, the application of machine learning and
clustering to track prediction is a valuable and meaningful research topic [84,85]. For ex-
ample Barratt et al. [82] studied a probabilistic trajectory generation model in the terminal
airspace, first using K-means to cluster the trajectory, and then constructing a Gaussian mix-
ture model from the clustering to achieve accurate trajectory inference. Gallego et al. [84].
analyzed the influence of various operational factors on the vertical profile of the flight
trajectory. Firstly, these factors are identified a priori by using a multi-level linear model,
and then the influence of these factors on the vertical profile of the flight trajectory is
analyzed using two trajectory predictors, the point mass model and the artificial neural
network. Le et al. [83] proposed a sector-based short-term trajectory prediction method,
which divided multiple trajectory clusters according to the spatial behavior of the historical
trajectory in the sector, and used the random forest algorithm to train the corresponding
prediction model. Wang et al. [8] used density-based spatial clustering of applications with
noise (DBSCAN) method to cluster trajectories into partitions and noises and then used a
three-layer neural network to train a prediction model for each type of trajectory.

Table 2. Overview of machine learning model methods.

Regression model
Linear regression: [41,59,60]

Stepwise regression: [57]
Nonlinear regression: [41,58]

Neural network model

Feedforward neural networks: [61,70,75,84]
Elman neural network: [78]

LSTM: [62–65,67,71,72]
DNN + LSTM: [40]
CNN + LSTM: [66]

GRU: [79]
Bayesian neural network: [40,69]

Generative adversarial network: [68]

Other methods
A gaussian mixture model with clustering: [82]

Random forest with clustering: [83]
Neural Networks with clustering: [8]

Nonparametric interval prediction: [73]
Genetic programming: [76]
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5. Evaluation Index

The Euclidean error (EE), the along-track error (ATE), the cross-track error (CTE),
and the altitude error (AE) are four widely used metrics to evaluate the performance of
prediction methods [18,64]. Let (yt

1, yt
2, yt

3) and (yt
1, yt

2, yt
3) be the actual 3D position and the

estimated 3D position at the timestamp t.
The EE measures the difference between the actual and predicted aircraft positions in

3D space:

EE =
1
T

T

∑
t=1

√
(yt

1 − yt
1)

2
+ (yt

2 − yt
2)

2
+ (yt

3 − yt
3)

2 (16)

where T is the length of look-ahead time;
The ATE measures the horizontal error along-track:

ATE =
1
T

T

∑
t=1

[
(yt

1 − yt
1) sin(θi

t) + (yt
2 − yt

2) cos(θi
t)
]

(17)

where θt denotes the course from north at timestamp t;
The CTE measures the horizontal error perpendicular to the nominal track:

CTE =
1
T

T

∑
t=1

[
(yt

1 − yt
1) cos(θt)− (yt

2 − yt
2) sin(θt)

]
(18)

The AE is the difference in the vertical positions between the actual and predicted
trajectories.

AE =
1
T

√√√√ T

∑
t=1

(yt
3 − yt

3)
2 (19)

6. Open Database

To provide a comprehensive reference for researchers in related fields, this article
introduces the optional databases in trajectory prediction research, which mainly include
aircraft performance data, aircraft monitoring data, and meteorological data.

6.1. Aircraft Performance Data

Aircraft performance data include the flight envelope (maximum speed, minimum
speed, etc.) of each aircraft model, aerodynamics (wing area and drag coefficient), engine
thrust and fuel consumption, and other parameters [44]. Currently, available performance
databases mainly include the Base of Aircraft Data (BADA), Aircraft Noise and Performance
(ANP), etc., of the European Control Center.

6.1.1. BADA

BADA is an aircraft performance model developed and maintained by Eurocontrol
in cooperation with aircraft manufacturers and operating airlines [52,86]. It is based on
the kinetic method for aircraft performance modeling, which can accurately predict the
trajectory of the aircraft and related fuel consumption. BADA not only provides a model
description of the theoretical basis for calculating aircraft performance parameters but also
includes a data set of aircraft-specific coefficients required to calculate aircraft trajectories.
The BADA 3 series is today’s industry standard for aircraft performance modeling in the
nominal part of the flight envelope and provides nearly 100% coverage of aircraft types
operating in Europe. The latest BADA 4 series has improved the accuracy of aircraft
performance parameters throughout the flight range, covering 70% of the aircraft types
in Europe. According to the best aircraft performance reference data available, BADA
can truly reproduce the geometry, kinematics, and dynamics aspects of aircraft behavior
throughout the entire operational flight envelope and all flight phases. Aircraft performance
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models are designed to simulate and predict aircraft trajectories, helping ATM research
and operations.

6.1.2. ANP

The ANP database is jointly maintained by the US Department of Transportation,
the European Control Center, and the European Aviation Safety Agency. It provides the
noise and performance characteristics of more than 150 civil aircraft types and is used to
calculate noise contours around civil airports. Aircraft manufacturers provide ANP data
sets for specific airframe engine types in accordance with the specifications established by
the International Civil Aviation Organization and European institutions. The European
Aviation Safety Agency is responsible for collecting, verifying, and publishing aircraft ANP
data within the scope of Regulation (EU) 598/2014.

6.2. Aircraft Surveillance Data

The monitoring data include the current position and speed of the aircraft and provide
the real-time status of the aircraft. These data are mainly used to monitor and update the
trajectory, such as automatic dependent surveillance broad (ADS-B) data and secondary
radar surveillance data.

6.2.1. Flightradar24

Flightradar24 is a global flight tracking service that can display real-time air traffic
flow from all over the world. It combines data from multiple data sources, including
ADS-B, multi-point positioning, and radar data, where ADS-B is the main technology used
to receive flight information. Flightradar24 has more than 20,000 ADS-B receiver networks
worldwide, which receive flight information from aircraft with ADS-B transponders and
send it to the server. Flightradar24 tracks more than 180,000 flights from more than 1200
airlines, traveling to and from more than 4000 airports worldwide in real-time.

6.2.2. FlightAware

FlightAware is a digital aviation technology company that operates the world’s largest
flight tracking and data platform. Relying on global connectivity with various aviation sec-
tors, FlightAware provides global flight tracking solutions, forecasting technology, analysis,
and decision-making tools for more than 10,000 aircraft operators and service providers
and more than 13,000,000 passengers. FlightAware integrates data from thousands of
sources around the world to provide the most accurate and comprehensive flight tracking,
including the air traffic control system, ADS-B ground station network, data link reception
data of major providers, airline flight information, etc.

6.2.3. VariFlight Global Flight Tracking Radar

VariFlight Global Flight Real-time Tracking Radar provides users with real-time track-
ing of aircraft, aircraft flight trajectory playback, flight trajectory data download, flight
status, application for ADS-B equipment, and aircraft picture display information services.

6.2.4. The OpenSky Network

The main purpose of the OpenSky network is to improve the safety, reliability, and
efficiency of air space use by opening access to real-world air traffic control data to the public.
The OpenSky network consists of multiple sensors connected to the Internet by volunteers,
industry supporters, and academic/government organizations. It archives all the collected
raw data in a large historical database. The database mainly provides data support for
researchers from different fields to analyze and improve air traffic control technologies
and processes. The OpenSky Network collects raw air traffic control communication, can
monitor ADS-B data and S-mode radar data, and recently began to collect flare data. The
data attributes it collects include the date, time, horizontal position, altitude, speed, and
heading of the aircraft. The takeoff and arrival of the aircraft can be inferred from the
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existing information. The database has the most comprehensive data in the United States
and Europe, but unfortunately, it does not have any data before 2013.

6.3. Meteorological Data

Meteorological data provide information related to environmental conditions, such
as temperature, wind direction and speed, air pressure, and changes in gravity and mag-
netic force. Currently, commonly used weather databases include EUROCONTROL for
Medium-Range Weather Forecasts (ECMWF), North American Mesoscale Forecast System
(NAM), and so on. When environmental information is not available, estimated values are
sometimes used instead.

6.3.1. The China Meteorological Data Network

The China Meteorological Data Network is an upgraded system of the meteorological
science data-sharing network, an important part of the national science and technology
basic condition platform, the main portal application system of the meteorological cloud,
and the unified shared service platform of the China Meteorological Administration that
opens authoritative meteorological data resources to domestic and global users and is
the data support platform for opening up our country’s meteorological service market,
promoting the sharing and efficient application of meteorological information resources,
and building a new type of meteorological service system. This networks relies on the
Comprehensive Meteorological Information Sharing Platform of the China Meteorological
Administration to unify the data environment and provide public welfare, equality, and
inclusive meteorological big data services to the society and the public. The service methods
include Web online services, meteorological data API interface services, and mobile APPs.

6.3.2. ECMWF

ECMWF is an independent intergovernmental organization that re-analyzes meteoro-
logical data, providing medium-range, monthly, and seasonal weather forecasts, and it is
committed to scientific and technological research on the development of numerical models
and data assimilation systems, providing Copernicus atmospheric monitoring and climate
change services on behalf of the European Community. The data provided are mainly in
GRIB and NC formats.

6.3.3. National Environmental Information Center

The National Center for Environmental Information (NCEI) provides national and
global weather, water, climate, and space weather guidance, forecasts, warnings, and
analysis to partners and external user communities. NCEI is one of the most important
environmental data archives in the world, having more than 37 petabytes of environmental
data. It also includes weather forecast models such as NAM and Global Forecast System
for generating weather forecasts.

6.3.4. Relay of Aircraft Meteorological Data

Aircraft Meteorological Data Relay (AMDAR) is a component system of the World Me-
teorological Organization’s integrated global observation system, which provides aircraft-
based observations for the World Meteorological Observation Program. The AMDAR
system mainly uses existing aircraft onboard sensors, computers, and communication sys-
tems to collect, process, and format meteorological data and transmit them to the ground
station via satellite or radio links. Once the data reach the ground, they are relayed to the
National Meteorological and Hydrological Department, processed, quality controlled, and
transmitted on the World Meteorological Organization information system. The AMDAR
observing system takes more than 700,000 high-quality observations of air temperature,
wind speed, and wind direction every day while providing the required position and time
information, and more and more humidity and turbulence measurements. The collected
data can be used in a variety of meteorological applications, including public weather
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forecasts, climate monitoring, and forecasting, weather disaster warning systems, and,
importantly, weather monitoring and forecasting to support the aviation industry.

6.3.5. WorldClim

WorldClim is a database of global weather and climate data with high spatial resolution,
which has 19 types of global bioclimatic data sets and monthly basic climate data sets.

7. Challenges and Future Research

This article introduces the problem of trajectory prediction from the perspective of
trajectory prediction process, prediction model, prediction application, and open databases
and summarizes the challenges and directions for further research:

(1) The performance of the trajectory prediction model is closely related to the accuracy
of information such as aircraft performance parameters, aircraft intent, and meteoro-
logical conditions. These input parameters are more or less in error, and small errors
in some parameters can lead to catastrophic prediction results. In order to make more
accurate predictions, it is possible to strengthen the real-time sharing and transmission
of data such as uncertainty, which is a hotspot of current research; in addition, a more
robust prediction model can be established through a method research, which is the
focus of future research.

(2) In recent years, ensemble learning is a type of machine learning method that uses
multiple models or learners for modeling and uses certain rules to integrate the
learning results, so as to obtain a machine learning method that is better than a single
model or learner. The existing prediction models have their own advantages and
disadvantages, and the application scenarios are different. Therefore, integrating
different models to build a track prediction fusion model will improve the accuracy
and stability of the model.

(3) In general, air traffic congestion on an aircraft’s planned route affects the flight path.
At the same time, aircraft passing through the same route or waypoint will also affect
each other. How to fully consider the overall traffic congestion and the interaction
between aircraft when building a prediction model will help improve the accuracy of
track prediction.

(4) Probabilistic trajectory prediction is often more practical than deterministic trajectory
prediction. The performance of many air traffic intelligent decision-making systems
depends on the accuracy of trajectory prediction. However, trajectory prediction
is often affected by a variety of factors, resulting in errors in the prediction results
of deterministic models. Therefore, in some application scenarios, it is often more
reasonable to predict the spatiotemporal distribution of the track.

(5) Most of the research and development of decision support tools are mainly focused
on the terminal airspace. The effective operation of these automated decision support
systems depends on the results of aircraft trajectory prediction with high reliability
and accuracy. However, the complex structure of the airport terminal airspace, the
high density of flight flow, and the frequent changes of aircraft flight attitudes bring
challenges to the high-precision and reliable prediction of flight paths.
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