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Abstract: The proliferation of reusable space vehicles has fundamentally changed how assets are
injected into the low earth orbit and beyond, increasing both the reliability and frequency of launches.
Consequently, it has led to the rapid development and adoption of new technologies in the aerospace
sector, including computer vision (CV), machine learning (ML)/artificial intelligence (AI), and
distributed networking. All these technologies are necessary to enable truly autonomous “Human-
out-of-the-loop” mission tasking for spaceborne applications as spacecrafts travel further into the
solar system and our missions become more ambitious. This paper proposes a novel approach
for space-based computer vision sensing and machine learning simulation and validation using
synthetically trained models to generate the large amounts of space-based imagery needed to train
computer vision models. We also introduce a method of image data augmentation known as domain
randomization to enhance machine learning performance in the dynamic domain of spaceborne
computer vision to tackle unique space-based challenges such as orientation and lighting variations.
These synthetically trained computer vision models then apply that capability for hardware-in-the-
loop testing and evaluation via free-flying robotic platforms, thus enabling sensor-based orbital
vehicle control, onboard decision making, and mobile manipulation similar to air-bearing table
methods. Given the current energy constraints of space vehicles using solar-based power plants,
cameras provide an energy-efficient means of situational awareness when compared to active sensing
instruments. When coupled with computationally efficient machine learning algorithms and methods,
it can enable space systems proficient in classifying, tracking, capturing, and ultimately manipulating
objects for orbital/planetary assembly and maintenance (tasks commonly referred to as In-Space
Assembly and On-Orbit Servicing). Given the inherent dangers of manned spaceflight/extravehicular
activities (EVAs) currently employed to perform spacecraft maintenance and the current limitation of
long-duration human spaceflight outside the low earth orbit, space robotics armed with generalized
sensing and control and machine learning architecture have a unique automation potential. However,
the tools and methodologies required for hardware-in-the-loop simulation, testing, and validation at
a large scale and at an affordable price point are in developmental stages. By leveraging a drone’s
free-flight maneuvering capability, theater projection technology, synthetically generated orbital and
celestial environments, and machine learning, this work strives to build a robust hardware-in-the-loop
testing suite. While the focus of the specific computer vision models in this paper is narrowed down
to solving visual sensing problems in orbit, this work can very well be extended to solve any problem
set that requires a robust onboard computer vision, robotic manipulation, and free-flight capabilities.

Keywords: spaceborne systems; computer vision; machine learning; validation; simulation; space-
craft; virtual reality (VR); in-space assembly; on-orbit servicing; mobile manipulators; domain
randomization; synthetic data; space-based additive manufacturing
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1. Introduction

Over the past 65 years, humanity has had a constant presence in space, 21 of which
have been a continuous human presence. The various orbital and deep space assets de-
ployed during this time have, on occasion, required maintenance. The ability to successfully
conduct space-based servicing has been a function of two constraints—cost and availability
of maintenance assets. Thus, on-orbit servicing was confined to the most expensive space
assets such as the International Space Station and Hubble Space Telescope. Over the last
decade, the aerospace industry has reduced the launch cost, thus facilitating access to space
significantly. This paper focuses on the latter of these constraints, which is space-based
maintenance capability. Spaceborne maintenance tasking has traditionally been completed
by astronauts performing Extravehicular Activities ((EVAs) more commonly known as
spacewalks) outside the spacecraft or station to carry out maintenance, assembly, or up-
grades of the existing infrastructure. Offloading these tasks to robotic platforms will be the
next milestone for true deep space exploration, especially as new missions venture further
away from the Earth. Deep space missions will also pose a constraint on the manned
crews to operate or survive in a hostile environment for longer period. However, methods
to test and validate autonomous space robotics systems is still a relatively new field of
study. Figure 1 illustrates the transition from past methods of orbital maintenance to future
robotic operations.

Figure 1. Manned crew performing maintenance operation on the Hubble Telescope (Left); SpiderFab
orbital assembly render concept [1] (Top Right); on-orbit serving render concept (Bottom Right).

The aerospace industry has developed clever ways to simulate the physical and visual
environments of space. Facilities such as the zero-gravity simulation of NASA’S Neutral
Buoyancy Lab [2], Zero Gravity Facility [3], spacecraft vacuum testing carried out at NASA’s
Thermal Vacuum Chambers [4], and several others summarized here [5] are world-class
facilities. Most of these house capabilities are unique to that institution or are found only
in a few other facilities around the world. The inability to easily recreate these facilities
presents the first challenge to researchers aiming to tackle large fundamental scientific
and engineering questions in the domain of space. Requesting lab time in these large
high-demand multi-million dollar facilities is either impossible or prohibitively difficult to
most organizations, including universities. Thus, several institutions have endeavored to
recreate some of these capabilities at a smaller and cost-effective scale [6–9] with impressive
results, all of which have been summarized in Figure 2.
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Figure 2. Stanford TRON testbed - Space Rendezvous Laboratory (SLAB) citeTRON (Top Left);
United States Naval Academy attitude initialization study [7] (Top Right); 2D air bearing autonomous
spacecraft testing of robotic operations in space [8] (Bottom Left); German Aerospace Center optical
navigation via moon crater detection [9] (Bottom Right).

These methods or facilities replicate dynamic or visual space domain parameters
at scales large enough to answer the posed questions but small enough to be operated
by teams of students with operating costs that are orders of magnitude less. This paper
narrows down the following four problem sets related to optical sensing, domain ran-
domization, and visual simulation for robotic manipulation to combine the capabilities
of maneuver testing with onboard computer vision: (1) demonstrate the feasibility of
simulated visual environments to supplement or completely replace real-world orbital or
deep space imagery for the purposes of training neural networks to perform automated
tasks; (2) evaluate the impact of domain randomized data sets on neural network per-
formance for space applications; (3) deploy such a system onboard a free-flying drone
platform performing onboard computer vision to provide real-time sensing for real-world
robotic manipulation; (4) lastly, deploy the previously mentioned integrated system within
a theater projection facility capable of projecting high fidelity environment to provide
hardware-in-the-loop visual simulation and flight testing to further expand Validation and
Verification (V&V) capabilities.

This project is divided into two major sections. The first section, detailed in Figure 3,
focuses on the development, testing, and evaluation of the computer vision neural network
architecture, synthetic imagery, and domain randomization methods when applied to
space-based applications.
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Figure 3. Synthetic creation, domain randomization, and evaluation or orbital environments for
space-based computer vision applications.

The second section, detailed in Figure 4, then employs the resulting neural network
models onboard free-flying platform to perform localization and object capture within a
projected simulation space, enabling hardware-in-the-loop testing. The authors are aware
of the differences in dynamics between atmospheric propeller powered drone systems and
floating orbital platforms. However, the current drone platform offers four uncoupled
and unrestricted degrees of freedom for motion simulation, which is one more than a
traditional air bearing table used in the past by organizations such as NASA for the
SPHERES program [10] or IEEE’s Formation Control Testbed (FCT) [8]. Future work will
incorporate full uncoupled 6DOF (six degree of freedom) motion via an omni-directional
drone with via a relative-motion PID (Proportional–Integral–Derivative) controller, detailed
in the future works section.
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Figure 4. Deployment of the previously mentioned synthetically trained computer vision model
onboard a free-flying drone, which is then deployed to a theater projection workspace for hardware-
in-the-loop development, testing, and evaluation of vision-based autonomous tasking.

2. Motivation

One of the most common automated/semi-automated orbital tasks within the aerospace
industry is position estimation for rendezvous and docking operations (RPOs) [11,12].
These docking procedures are most often performed with cooperative spacecraft methods.
These methods are by far the safest and most effective means of docking two or more
spacecrafts. However, given the current push to solve the growing space debris problem [13]
and future missions to damaged or non-functional spacecraft/stations, uncooperative RPO
is another key enabling technology. The uncooperative spacecraft problem set can also be
extended to In-Space Assembly operations. It is unlikely that every material necessary for
orbital construction, such as truss beams, panels, electrical harnesses, etc., will have their
own dedicated onboard cooperative ranging equipment, especially if those components are
built using the proposed methods of orbital- and planetary-based additive manufacturing.
Thus, identifying, classifying, and tracking objects of interest will need to be conducted
via onboard sensing of the manipulating spacecraft or robotic system in a delicate zero-G
pick-and-place operation.

Several computer vision and deep learning architectures have been recently applied
to space-based applications in an attempt to solve a number of tasks, including orbital
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determination [14], navigation [15,16], mission planning and optimization [17,18], and con-
trol [19,20]. However, past and current uncooperative autonomous and semi-autonomous
RPOs rely on time-consuming and ungeneralized hand-engineered features or prior knowl-
edge of the satellite/station orientation. We have demonstrated a highly generalized process
by leveraging new, efficient Convolution Neural Networks (CNNs), such as YOLOv5 [21],
coupled with domain randomization.

In order to apply machine learning and computer vision architectures, thousands
of images are needed to adequately train a model capable of reliably classifying any
given object of interest. Obtaining such data sets is usually easy to do for most Earth-
based computer vision problems. Obtaining usable image data from all possible angles
and orientations relative to any given camera frame within the space domain is either
prohibitively expensive or impossible in most use cases. In the case of In-space Assembly,
most, if not all, construction materials will only exist in a CAD model before fabrication
on orbit. If such materials are manufactured on Earth, orbital optical imagery cannot
be simulated on Earth without the use of special synthetically generated backgrounds
and lighting.

Perhaps the most pressing real-world example of this problem would be that of the
newly launched James Webb Telescope (JWST), synthetically rendered in Figure 5. Unlike
its predecessor, the Hubble Telescope, the James Webb’s parking orbit at L2 is substantially
further away than Hubble’s low earth orbit, thus making repair operations a far more
challenging task. In order to service the JWST and other deep space assets like it, the
autonomous and semi-autonomous capabilities described earlier will need to be solved.
JWST has just enough fuel reserve to maintain its orbit for 20 years. This constraint
establishes a real-world timeline to develop, test, and deploy these systems to save a
10 billion dollar asset and other deep space infrastructures.

Figure 5. Synthetic render of the James Webb Telescope (JWST) in Unreal Engine 5 using the same
synthetic generation methods described in this paper.

3. Research Questions

The objective of this paper is to better understand how we can leverage synthetic
world-building to train computer vision models and how augmentations to those data
affect performance in an effort to develop and ultimately deploy autonomous robotic
platforms for generalized assembly and maintenance tasks within the challenging dynamic
environment inherent to the space domain. This paper aims to construct the necessary
testbed needed to answer the questions posed below.

1. Can synthetic data be used for reliable real-world object tracking?
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2. Can domain randomization and data augmentation be used to increase cross-domain
computer vision performance?

3. Can synthetically trained computer vision models be used for Hardware-in-the-loop
testing, sensing, and localization for real-world applications?

4. State of the Art
4.1. Domain Randomization

Domain randomization [22] is built upon the theory that with enough variability in a
simulation, the real world will eventually appear to the model as just another variation.
This would enable the model to perform in a wide range of optical perturbations when
attempting to classify a given object. A simple and perhaps unintuitive concept dependent
on training a neural network on a wide variety of variations for a given object such as
lighting, color, texture patterns, position, and size, effectively minimizing the source vs.
target domain problem when attempting to port trained neural network models from one
domain to another is a process called “cross-domain”. The concept was pioneered to solve
disparities between the real world and physics simulations for robotic control applications
instead of relying on time-consuming traditional system identification methods. This con-
cept has since been adopted for computer vision applications in an effort to close the reality
gap between synthetic data and real-world object classification. Domain randomization
is used to improve the mean average precision of object detection algorithms, such as
YOLO [21], Faster RNN [23], and R-FCN [24], by evaluating combinations of synthetic
training data that yield the highest average precision when validated against the real-world
test images. This can be accomplished in two ways: (1) altering the source simulation
environment using animation and rasterization tools/software generally used for game
development to change parameters such as color, lighting, and object size, which produces
a vast range of variation but it is time-consuming and requires detailed knowledge of a
given software; (2) imagery from an environment, synthetic or real-world, can apply any
number of filters to change desired parameters. However, applying domain randomization
at the post-processing level limits the amount of control when changing environmental
parameters. This method is defined as an auxiliary domain [22]. Creating an auxiliary
domain is often easier to implement, but it often employs other machine learning architec-
tures to intelligently change images’ properties such as color and lighting automatically,
which is prone to some error. The number of parameters that can be changed in an already
rendered image is limited compared to pre-rendered images. Domain randomization can
be further expanded with the addition of “distractor objects”, which are defined as objects
of more random shapes, sizes, and colors designed to generate random information for the
feature map to extract, preventing the model from over-fitting.

4.2. Physical Simulation

Physical reality space simulation methods often require a physical object such as a
robot that can be used in lieu of the celestial body that is being simulated. These simulations
often go as far as using light fixtures and testbeds to recreate the lighting and degrees of
freedom that can only be found in space.

For example, Johns Hopkins University leverages physical simulations to visually
recreate night sky celestial bodies [25] using an all-black 4 ft diameter acrylic hemispherical
dome via 100 light-emitting diodes (LEDs), thus enabling the simulation and testing of
celestial navigation systems. Other organizations interested in physical free-floating 6DOF
motion simulations tackle this problem by using robotic apparatuses combined with an air-
bearing testbed. The formation control testbed developed by NASA was used to simulate
the relative motion of a spacecraft. This testbed, at the time of its development, was
comprised of three robots, each equipped with sensors, actuators, and processors to mimic
multi-spacecraft formation flying without the need to be in microgravity [8].
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4.3. Synthetic/Virtual Reality Space Simulation

Synthetic visual simulation can be just as advantageous as a physical simulation, as
previously mentioned. Organizations such as the United States Naval Academy have
conducted studies aimed at performing spacecraft attitude initialization by using Blender
(a game engine and rasterization software) to render a Dragon X model at varying angles
relative to a global light source to emulate the sun [7]. After systematically labeling the
resultant images defined by Euler angle rotations at intervals of 10 degrees relative to the
camera frame and using the AlexNet [26] CNN Framework, this methodology yielded a
spacecraft angle accuracy of 95%.

Similarly, Airbus’s SurRender [27] image-rendering software is specifically designed
to provide detailed realistic lighting for celestial surface imagery (e.g., Mars, asteroids,
and orbital debris) to test and improve vision-based navigation (VBN) algorithms. It
addresses some of the most problematic synthetic imagery challenges such as realistic light
propagation, secondary illumination, and subpixel limb by using ray tracing, a new lighting
technology recently made practical by newer and faster computing hardware. Having
gone through a formal qualification process with the European Space Agency (ESA), the
SuRender Software is perhaps the most robust purpose-built API aimed at countering the
lack of validation solutions for spaceborne systems. Our method to recreate a derivative of
these environments are detailed in the following section.

5. Materials and Methods
5.1. CNN Architecture Selection

Given the extremely rapid pace of machine learning algorithms, techniques, and
methodologies, we will focus on those most relevant for this application. A dizzying array
of convolution network architectures (CNNs) such as Faster R-CNN [28], RetinaNet [29],
and Cross Stage Partial ResNet (CSPR) [30], each altering various parameters such as the
size and number of neural network layers, nonlinear activation functions, pooling functions,
image input, and many more are in constant evolution to increase a model’s performance.
Additionally, the entire architecture can be changed, spawning subset architectures such as
generative adversarial networks (GANSs) [31], DropConnect networks [32], and Deconvo-
lutional networks [33]. The advantages and disadvantages of each can be narrowed down
based on the power, time, or performance constraints for a given problem set.

We ultimately selected the “You Only Look Once” (YOLO) [34] architecture and a
modified Pytorch framework (commonly known as YOLOv5). Today, the YOLO CNN
architecture is widely accepted as one of the premier image classification algorithms due
to its single-sweep approach of localizing and classifying objects. Whereas many modern
models require several GPUs and batch sizes for training, the YOLO architecture can be
trained and deployed on a single GPU, enabling us to deploy onboard edge compute
devices comparable to those found on a small satellite payload.

Figure 6 illustrates a simplified example of using synthetic imagery as input to a given
neural network for training in order to classify objects of interest, in this case, trusses, solar
panels, and spacecraft.

5.2. Synthetic Reality Creation and Collection

Environmental factors can significantly influence the training of CNNs for the classifi-
cation of images. It was therefore also imperative that the visual environmental conditions
were captured as much as possible when using synthetic data. To generate a robust de-
tection model that is capable of recognizing the relatively complex construction problem
set consisting of several geometrically similar objects such as truss sections in a complex
orbital regime, synthetic images were generated and stored. This was accomplished using a
hyper-realistic Earth/Moon System environment with ray tracing where dynamic lighting
was created at a resolution of 15,360 by 8640 pixels (16 K), as detailed in Figure 7. Factors
such as asset distancing, perspective projection, dynamic lighting, model detail, color
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accuracy, etc., were considered to ensure that the synthetic data was representative of the
desired environment.

Figure 6. Simplified neural network architecture diagram using synthetic images as input, resulting
in object classification.

Figure 7. Example of synthetic orbital images generated using Unreal Engine 4.

The world-building process will differ between particular environments, but the
overall development process is generally the same. Starting with a central landscape
asset such as planet Earth or textured Mars landscape to serve as a foundation for the
environment and world central point. Second, the lighting assets were created and placed
in order to see real-time lighting effects on other assets as they are placed into the synthetic
environment. Additional lighting parameters such as ray tracing or orbital glare effects
are also generated in this step. Once lighting is established, any desired effects such as
Earth albedo, cloud distortion, and sky box assets are added. Assets such as sun and moon
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models, star formations, or martian rock formations are either created or loaded from open
source repositories to complete the overall environment. After all environmental assets
are generated appropriately, objects of interest to the computer vision algorithm such as
truss sections, solar panels, and ISS models are loaded to complete the synthetic scene. This
completes the synthetic visual environment setup. The next step is to create the dynamic
conditions governing how objects move and interact with each other in the synthetic world.
These parameters include creating object motion via predefined animation sequences or
dependent upon other object or world states such as object relative location or collision
detection. Many of these parameters are controlled and modified via the unreal engine
blue printing system. Finally, after the world has been created, object motion defined,
and interaction parameters set, imagery is collected either through purpose built visual
camera sequences designed to create pre-rendered scenes or, in the case of the domain
randomization data sets, through direct game play interaction were a player is physically
manipulating assets in the game world.

5.3. Synthetic Domain Randomization

To test the effects of domain randomization on a neural network’s ability to classify
an object of interest, in this case, 3D printed truss sections for construction tasking, a
highly randomized zero-gravity environment was developed within the Unreal Engine.
All elements including the skybox, distractors, and objects of interest were programmed to
randomize color and lighting effects over a given time frame or the same defined world
state is met (illustrated in Figure 8). This method allowed us to generate thousands of
highly randomized images across several object angles relatively quickly and allows us
to perform domain randomization at the preprocessing level. Performing randomization
operations before image rendering obviously allows for greater control, as opposed to
applying filter effects on an image at the post-processing level, otherwise known as the
“photo-shop” method. All Unreal Engine levels mentioned above can be found at [35] for
open source use. Domain randomized synthetic environments are illustrated in Figure 8
and via video link (https://www.youtube.com/watch?v=bVemye0JU10&feature=youtu.be,
accessed on 20 April 2022).

Figure 8. Example domain randomization images generated using Unreal Engine 4 (Video Link).

Once all assets in the environment have been rendered and motion modeled, a built-in
camera tool captured the scene at 1080p. These media were then saved to a local hard drive
and then labeled. Once all images were labeled, they were then organized and uploaded to
a SQL Database for ease of use when training a CNN.

5.4. Porting CAD Models and Hardware into Synthetic Environments

To introduce CAD Models into the synthetic environment, 3D-printed STL files were
injected into the Unreal Engine upon converting them to OBX files. To accomplish this,
Blender was employed to convert the appropriate file types and adjust environment scaling.

https://www.youtube.com/watch?v=bVemye0JU10&feature=youtu.be
https://www.youtube.com/watch?v=bVemye0JU10&feature=youtu.be
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For example, most CAD files define the origin at (0,0) and build the object in quadrant one,
thus keeping all values positive and effectively placing the origin in the corner. Attempting
to accurately model dynamics creates a conflict due to UE4 (Unreal Engine 4) colocating
an object’s center of gravity with the origin point, resulting in off-center dynamics when
introducing object motion. To solve this, Blender is used to move object origin points to the
geometric center of objects and set units of measurement to meters before porting. This
workflow file conversion workflow is detailed in Figure 9.

Figure 9. Project work flow for CAD and STL Files.

5.5. Division of Data Sets

Once labeled, all images were compiled and organized through experiments. Synthetic
training images, real-world images, and synthetic testing images totaling over 15,000 unique
images were separated into four primary data sets, as illustrated in Figure 10. Synthetic data
sets serve as training data for the neural network, while real-world data sets are evaluated
against synthetically trained CNN models to determine the feasibility of artificially trained
neural networks for real-world inferencing applications. To further increase the amount
of training data, some synthetic images were duplicated and a rotational transformation
(90 degrees < θ < 180 degrees) was applied. This augmentation is acceptable and even
necessary for orbital applications due to the free flying orbital rotation dynamics in space,
while the “bottom” of an image is not always considered to be the “ground” as it is in
typical terrestrial imagery. All data sets were then compiled to a database where they could
be queried as needed by the CNN to run applicable experiments and evaluations.

Figure 10. Division of imagery data between real-world and synthetic sources.
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5.6. Evaluation Metric

Average precision (AP) is one of the industry standards for the evaluation of a single
class label in object classification and localization. Mean Average Precision (mAP) is the
standard for the evaluation of an entire network of n class labels. Both of these metrics
are functions of precision and recall (accuracy metrics that consider misclassification and
classification accuracy rates. Precision and recall are defined below in Equations (1) and (2),
respectively, where TP = True Positive, TN = True Negative, FP = False Positive, and
FN = False Negative. The F1 score in Equation (3) combines both precision and recall via
harmonic mean, later used in the results section.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 · Precision · Recall
Precision + Recall

(3)

Average Precision is a measure of the area under the Precision–Recall Curve (PR
Curve) [or p(r)] and is often defined as in Equation (4). The Mean Average Precision is
simply defined in Equation (5).

AP =
∫ 1

0
p(r)dr (4)

mAP =
1
N

N

∑
i=1

APi (5)

Note that the subscripts on Mean Average Precision scores (often 50 or 75) generally
denote the IoU threshold at which the score was taken. mAP(0.5) donates a 50% IoU, while
mAP(0.5:0.95) donates IoU thresholds, from 50% to 95%.

6. Flight Hardware

Flight computer hardware and communication protocol are built using the companion
computer infrastructure utilizing a commercial PID flight controller paired with a high-
performance edge computer capable of executing complex workloads, including path
planning, machine learning, and sensor integration. The first iteration of the SpaceDrones
architecture [36] leveraged an onboard computer selected due to its lightweight and low-
cost. At only 5 volts, the power requirements could be satisfied via GPO pins, simplifying
the drone’s power distribution system while preserving limited power resources provided
by an onboard battery. The hardware solution is cost-effective, costing under USD 100, and
sufficient for many drone use cases. However, the demanding computational requirements
of most neural networking applications are beyond the capabilities of nearly all such single
board computers. In the past, drone sensor data such as imagery and point clouds could
be sent “off drone” and interpolated using higher-end compute hardware not subject to
the weight and power constraints of drone hardware. Instructions interpolated by a neural
network architecture derived from drone sensor data could then be beamed back to the
drone for execution. This off-drone compute capability is useful for a wide range of use
cases but unrealistic for truly autonomous applications such as deep space exploration and
tasking and situations requiring fast reaction times.

The recent introduction of a new line of Nvidia single-board edge computers capable
of neural network tasking meets mass constraints for flight as a companion computer
within the SpaceDrones architecture with a supplementary power distribution system
capable of providing the required 19 volts of power required, as outlined in Figure 11.
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Figure 11. Pixhawk to Xavier NX GPIO Pin out.

7. SpaceDrones 2.0 Architecture

The SpaceDrones architecture is primarily built on top of the Robotic Operating
System (ROS) [37]. The ROS framework allows the controllers to send and receive sensor
data, neural network solutions, position data, and drone diagnostic data over a local area
network via the publishing/subscribe functions. This local and/or distributed networking
solution allows monitoring the neural network performance running onboard in real-
time and associated drone performance instead of relying on locally stored data. Drone
position data and any other object equipped with a tracker are interpolated by the Steam
VR system and then sent to the drone or any other ROS node via the local network. These
position data are then used by the onboard flight hardware to command or test vehicle
motion. The full system architecture is shown in [38], consisting of a ground station used
for command operations and downloading experimental data and the drone companion
computer system.

The SpaceDrones API is capable of integrating two-position tracking systems (Opti-
Track and Steam VR) for drone control, testing, and safety. Both systems utilize the
MAVROS Package library for companion computer control over an onboard PID flight
controller.

7.0.1. Lighthouse Tracking

The LIDAR lighthouse tracking suite is the solution utilized for this paper. Initially
designed for VR asset tracking, it is an “inside-out” tracking solution that uses a proprietary
tracking sensor with onboard IMU and photodiode tracking bay stations. This method
is more limited in its ability to track nonrigid objects when compared to “outside-in”
solutions, e.g., motion capture cameras such as Opti-Track. However, due to the rigid
materials required to support drone flight, this constraint is not a factor. This system has the
added benefit of being far cheaper to acquire and operate than turn-key camera positioning
systems, and it easier to deploy in the field due to fewer hardware requirements and the
tendency for sunlight in other IR-based camera tracking in outdoor environments. The
lighthouse tracking system consists of at least one base station and one tracker, expandable
to up to 16 base stations. The anchored base stations sweeps the room with laser pulses,
while the trackers can detect and decode the laser pulses to solve their position and
orientation relative to the base stations utilizing a model-based pose estimation method.
Each base station has a motor that reflects, disperse, and rotates a thin laser fan at a fixed
rate of 60 Hz. The laser signal was modulated so data can be transmitted from the base
stations to the trackers. The system proved capable of resolving the position and orientation
of the UAV at a rate of 120 Hz to sub-millimeter accuracy (as Figure 12 shows).
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Figure 12. SpaceDrones VR system tracking and control architecture

7.0.2. Target Localization

While YOLO can detect and output the 2D target position in the screen frame, any
robotic operations involving object manipulation will require a localized 3D position of the
target relative to either the camera body frame or local inertial frame. Here, we used an
additional all-in-one sensor that included an RGB camera, a solid-state LiDAR module, and
an onboard Inertial Measurement Unit (IMU). The RGB image stream can be fed directly
to the YOLO detection algorithm for object detection, while the depth image stream can
provide point cloud data for object localization shown in Figure 13.

The default Python script originally used to run the YOLO v5 neural network (de-
tect.py) flying onboard the drone was modified to publish string message streams to the
ROS network. The message stream contains basic detection results from each frame, which
includes the name of the object, the confidence, and the relative 3D location of the object
from the perspective of the camera. The LiDAR camera API has a built-in re-projection func-
tion that takes the 2D location of the object in the image provided by the YOLO detection
program, as well as the distance from the camera to the specific depth pixels corresponding
to the object location, and outputs the 3D location of the target voxel (volumetric pixel)
from the point cloud.

The string message can then be interpreted further based on the location of the camera
relative to the local inertial frame and completes the target localization process for each
object detected. Software dependencies and data interlinks for neural network inferring,
object localization, and capture are described in Figure 14.
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Figure 13. RGB Camera and LiDAR Point cloud senor data side-by-side.

Figure 14. Drone Localization and Capture Software Diagram.

Other than being geometrically similar and being difficult to distinguish, truss sections
presented another problem. Given the porous structure of truss segments, a LiDAR scan
can pass through the center point of a given voxel returned from a bounding box position,
resulting in a depth measurement that is past the object we are trying to capture. To solve
this problem, an internal box consisting of 70% of the original bounding box is scanned
with a LiDAR sensor. To reduce computational time, every other pixel is skipped. The
LiDAR return that is located closest to the center point of the original bounding box limits
is taken as the depth measurement, which is then used for capture operations. The sensor
integration order of operations is illustrated in Figure 15.
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Figure 15. Porous structure LiDAR point cloud problem and solution.

8. Drone Design
8.1. Drone Body

The SpaceDrones physical chassis has gone through many iterations of quad and hex
copters, including off-the-shelf (OTS) solutions; however, no OTS bodies provided the
internal volume needed to accommodate both the COTS controller and the new onboard
computer. This shortfall necessitated the development of the in-house solution illustrated
in Figure 16. The mass requirement for larger computers, two onboard sensors (cam-
era/LiDAR and VR tracker), as well as an under-slung robotic arm, required a six rotor
body to provide sufficient payload capacity.

8.2. Drone Power Distribution

The increased power consumption of the new onboard computer coupled with the
need to power six motors, the radio controller, and camera systems simultaneously pulled
more voltage than most off-the-shelf batteries could provide. Thus, two batteries connected
in series delivered a combined 18 volts to the drone for flight operations. Additionally, a
third independent 12-volt battery was added to power the under-slung robotic arm.

8.3. Drone Reference Frames
8.3.1. Drone Body Frames

The overall world reference frame is defined by the VR tracking system, and subse-
quent “world zero” can be defined to be anywhere by the user. Drone zero is defined by the
VR Tracker located on the top of the drone. All drone transforms are derived from this zero.
To locate objects in space relative to the drone frame, a known camera offset of 59.8 mm
in the Y direction, 117.58 mm in the Z direction, as well as a 20-degree rotation along the
X-axis defines the camera frame relative to the drone frame, as illustrated in Figure 17.
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Figure 16. Drone chassis and integrated systems render.

Figure 17. Drone world frame to camera frame offset.

The camera being used onboard the drone is an Intel RealSense L515 sensor, so all
rotations and translations relative to the camera will be referred to with “C” subscript. All
rotations and translations relative to the steam VR Tracker located atop the drone will be
denoted with the “T” subscript. The object of interest being localized is denoted as the
“Target”. All rotations are defined in Figures 18–20, where

subscript T = Tracker Frame, subscript C = Camera Frame, Target = Target Frame

R = roll, P = pitch, Y = yaw

S = Sine, C = Cosine

Figure 18 illustrates the frame transformation to obtain the position of the L515 camera
in the world inertial frame (Bottom), and the rotation matrix used from the steam tracker
body frame to the inertial world frame (top).
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Figure 18. Drone L515 Camera inertial frame position offset.

Figure 19 illustrates the rotation of the L515 camera with respect to the world inertial
frame.

Figure 19. Drone L515 camera inertial frame rotation offset.

Finally, Figure 20 illustrates the inertial frame of the object of interest or target detected
by the drone-mounted camera using the computer relative to the world frame (bottom), via
the rotation matrix from the camera to the inertial world frame (top). Effectively enabling
object tracking in 3D space.

Figure 20. Target inertial frame rotation with respect to the drone.

8.3.2. Robotic Arm Frames

The robotic arm mounted under the drone illustrated in Figure 21 is a 4DOF (four
degree of freedom) PincherX 100 model powered by four Dynamixel smart servos. This
robotic arm has a reach of 300 mm and a total rotating span of 600 mm, giving the robotic
arm a total workspace that covers 112 percent of the drone’s 533.4 mm wingspan. Drone
motion and the end effector position is governed by imagery and LiDAR sensor input
data that have been interpolated by the onboard neural network detailed in the Target
Localization section. Once an object of interest has been identified, its 3D location is used to
drive the applicable inverse kinematics (IK) required to execute a successful object capture.
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Figure 21. Drone Arm link measurements (mm).

8.3.3. Robotic Arm Airborne Inverse Kinematics

The robotic arm’s base frame is maneuvered into place for object capture by the drone.
The base frame of the arm is governed by the motion of the drone base frame, which in
turn is governed by the overall world frame tracked by the VR world space diagrammed in
Figure 22. Once an object is identified via computer vision, the drone controller maneuvers
to the object, placing the arm within reach of the robot arm’s workspace, any error between
the drone’s position and the object’s position will be corrected within the reach of the
robotic arm. Once in position, an inverse kinematic (IK) controller calculates the distance
between the object and the current end-effector position, then maneuvers the end effector
to execute capture.

The robotic arm is equipped with three revolute motor joints that drive the end effector
position and additional motor controlling gripper open and close functions. Desired robotic
arm motion is calculated using the Jacobian iterative inverse kinematics method defined in
Equations (6) through (10).

pi = the vector from the origin of the world coordinate system to the origin of the i-th
link coordinate system;

p = the vector from the origin to the end effector end; z = the i-th joint axis;
J = Jacobian Matrix;
∆p = End Effector Position;
θ = θ1, θ2, · · · , θn.

J(θ) =

 jP1 jPn

. . .
jo1 jon

 (6)

[
jPi
joi

]
=


[

zi−1
0

]
for a prismatic joint[

zi−1 × (p− pi−1)
zi−1

]
for a revolute joint

(7)

∆θ = θgoal − θcurrent (8)

∆p = Goal − pcurrent (9)
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Equation (10) defines the necessary joint angles needed to achieve a desired end
effector position ∆p for a given starting position.

∆θ = J(θcurrent )
−1 · ∆p (10)

The Jacobian matrix may not always be invertible, in which case calculating a pseudo
inverse via singular value decomposition is necessary.

Figure 22. Drone arm base frame relative to other world frames.

8.3.4. Drone Limitations

The complete integrated system is illustrated in Figure 23. The platform is stable even
when the robotic arm is at full extension due to the under-slung configuration. However,
the robotic arm does have a working payload limit of 50 g. This limitation can be increased
with more numerous or more powerful motors, but this will reduce the current-carrying
capacity of the overall drone of 1 kg and reduce the current battery flight time of about
3.5 min. When all three batteries are attached, the total drone weight is 3.4 kg. Naturally,
all these limitations will gradually reduce with larger drone platforms with eight or more
motors and ever-larger lifting surfaces.

Figure 23. Depiction of the integrated drone, camera, and robotic arm system.

8.4. Spaceborne Sensor Limitations

It should be noted that applying computer vision to space-based applications will
be incredibly useful, but such capabilities will be highly dependent on the sensors used
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when applied to a specific use case. For example, using RGB camera sensors for in-space
assembly tasks may not function during high saturation events such as those depicted
in Figure 24, resulting in sensor “washout”. This can be solved using dynamic sensors
capable of adjusting parameters such as aperture and shutter speeds or using sensors less
susceptible to such fluctuations.

Figure 24. RGB computer vision during sensor saturation events

9. CUBE Theater Complex

The Virginia Tech CUBE [39] enables nearly 360 surround projection of pre-rendered
or live synthetic environments on nine-foot high screens with very low shadow projection
distances at a resolution of 1920 × 1200 at 13,000 lumens, effectively allowing for optical
computer vision testing and development. Standing four stories high and consisting of
21,000 cubic meters of indoor space illustrated in Figure 25, this facility also allows large-
scale system testing. By projecting the desired synthetic environment, we were able to
repeatably and reliably test machine learning architectures in a physical space and then
use that computer vision sensor data to manipulate real-world hardware within the same
room—in our case, testing drone controls relative to an object of interest.

Figure 25. Physical-virtual hardware-in-the-loop simulation solution at Virginia Tech CUBE

A wide range of rapidly augmentable synthetic worlds were designed to mimic optical
sensor environments. We have endeavored to create a full end-to-end hardware-in-the-loop
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(HiL) testing facility for space application control, sensor, machine learning, and many
other applications using free-flying robotics systems, allowing us to close the feedback loop
between sensor perception, software interpolation, and hardware action and manipulation
(as Figure 26 shows).

Figure 26. Onboard drone computer vision testing inside a physical/virtual simulation projection at
Virginia Tech’s CUBE facility

10. Results
10.1. Synthetic Data vs. Real World Results

To answer Research Question #1, “Can synthetic data be used for reliable real-world
object tracking?”, synthetic ISS Imagery with associated truss sections was generated and
compiled from the unreal engine into a training data set used to train the neural network,
as described in the data set division section. The neural network will never see a real-world
image during the training phase, only during testing. Real-world objects of interest are
broken out into two different testing data sets. The first testing data set consists of imagery
collected from real-world 3D-printed trusses, the identical trusses synthetically rendered
and captured in the unreal engine. The second testing data set consists of solar panels
collected and compiled in an orbital environment from several open-source databases,
including NASA images and google images.

The ultimate goal of this method is to eliminate the need for real-world training
imagery, solely or mostly relying on synthetic images. Thus, to form the basis of control,
both synthetic imagery and real-world imagery data sets were evaluated against themselves
in order to find the mean average precision performance within their own perspective
domains.

Thus, evaluating a synthetic orbital environment data set against itself via the YOLO
v5 Neural Network architecture results in an mAP(0.5) of 0.94 and mAP(0.5:0.95) of 0.77,
respectively (Figure 27), which is extremely high performance. However, this performance
is to be expected as there is a certain level of neural network memorization or overfitting
that occurs when training within the confines of a very specific single-domain environment.
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Figure 27. Synthetic orbital data set self evaluation results showing relatively high mean average
precision (mAP) over 250 training epochs, establishing a baseline performance metric.

10.2. Real-World Data Base Tests

Evaluating the real-world truss data set against itself yielded an mAP(0.50) of 0.98
and mAP(0.5:0.95) of 0.90 (Figure 28), which is nearly perfect across all metrics, including
precision, recall, and confidence. Ideally, all of the future CNNs will achieve this level
of precision when evaluating the synthetic datasets and domain randomization methods
below.

Figure 28. Real-world truss data set self evaluation results showing relatively high mean average
precision (mAP) over 250 training epochs, establishing a baseline performance metric.

The resulting “F1” curve of the real-world a truss data set is displayed in Figure 29.
The depiction on the left side is derived by combining both precision/confidence and
recall/confidence curves into a single chart, as described in Equation (3). A greater area
under the curve demonstrates better neural network performance. The resulting confusion
matrix (shown on the right side) further breaks down the percentage of true positives (TPs),
false positives (FPs), true negatives (TNs), and false negatives (FNs) for each class/object
of interest. Numbers along the matrix diagonal indicate that an object is being identified
correctly. Numbers outside the diagonal indicate a misclassification and subsequent loss
in performance, either as another object or background. The bottom row represents back-
ground false negatives, while the last column represents background false positives. These
metrics aid both researchers and observers to see where the CNN model is performing well
and what areas are bringing down the overall network performance.
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Figure 29. Real-world truss data set self evaluation: F1 curve (left); confusion matrix (right).

Due to the relatively large amount of imagery publicly available of solar panel systems
currently deployed in orbit, real-world imagery was also evaluated against itself, yielding
similar results of mAP(0.50) of 0.96 and mAP(0.5:0.95) of 0.78. This provides us with a
real-world baseline when evaluating the use of synthetic imagery with real-world objects
already in orbit.

10.3. Synthetic Training vs. Real-World Results

With base case performance established within the synthetic and real-world domains,
the next step is to determine if imagery from a synthetic domain can be used to train a
network that can be applied to a real-world domain. Evaluating synthetically generated
imagery of truss sections against real-world truss sections resulted in mAP(0.5) of 0.51 and
mAP(0.5:0.95) of 0.38 (Figure 30). When compared to other results in computer science
literature [40,41], these performance metrics may be deemed usable for other computer
vision applications; however, given the high-risk operational environment, space agencies
such as NASA, ESA, and SpaceX will more than likely require more robust and accurate
models before entrusting major mission tasks to such an autonomous system. However,
model performance can be improved further using the methods below. In order to reach
an acceptable technology readiness level (TLR) and validation standards for the space
industry, it is safe to assume that computer vision performance metrics will need to achieve
higher precision. However, this is strictly an assumption. Given the relatively new nature
of these applications in the aerospace industry, standards have not yet been established
when compared to more mature technologies. This paper and others like it will start to
develop these standards.

The same experiment was conducted evaluating a neural network trained on synthetic
solar panels against real-world orbital solar panel imagery collected from open source
repositories such as Google images. The experiment was far more favorable, yielding
mAP(0.5) of 0.76 and mAP(0.5:0.95) of 0.69. Given the nonporous, uniform, and often
similar color texture inherent to solar panel design, neural network transfer between the
synthetic and real-world domains is much easier for this particular object of interest when
compared to porous structures such as trusses or other types of construction scaffolding
material. These results provide a real-world proof on concept for applying synthetically
trained computer vision models directly to space applications with relatively high results.

The metric of mean average precision can be a little misleading by itself because it does
not explain the capabilities of the model trained, only the confidence in a particular model
when attempting to identify classes within a given frame (in this case, truss sections and
solar panels). For example, mean average precision alone does not define if a model will
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perform well when alterations are made to the environment or object. These differences
in model capability are often eliminated by evaluating models on standardized data sets,
enabling a one-to-one comparison with other models. However, since standardized data
sets for this space problem do not exist, direct comparisons are not possible. For example,
non-standard objects of interest such as damaged, discolored, distorted, or an object not
meeting manufacturing standards a computer vision model is trained to recognize will
degrade any system’s ability to perform autonomous tasking. Introducing nonstandard
structures, such as Figure 31, are often segmented or misclassified by traditionally trained
computer vision models, especially if those models are transitioning across domains.
Leveraging the domain randomization methods detailed below will also enable models
that are more capable of correctly identifying these objects.

Figure 30. Mean average precision result when training with synthetic imagery and testing against
real-world imagery.

Figure 31. Non-standard trusses used to evaluate neural network performance before and after
introducing domain randomization: 2U Truss (Left); 3U Trusses (Middle and Right).

10.4. Domain Randomization Results

To make a more robust model to address some of the previously mentioned issues, we
introduced domain randomized data sets into the CNN training. Using pre-rendered syn-
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thetic worlds, we introduce distractors, such as non-uniform truss sections, backgrounds,
and lighting conditions, in a zero-gravity simulation environment at the preprocessing
level. Introducing these domain randomized data sets into the YOLO v5 neural network
architecture yielded an mAP(0.50) of 0.56 and an mAP(0.50:0.95) of 0.43, an increase of
5% for both perspective mAP metrics (Figures 32 and 33). This performance increase
shows that domain randomization can help bridge the reality gap when attempting to use
synthetic optical imagery for real-world computer vision applications.

Figure 32. Domain randomized synthetic data set self evaluation: F1 curve (left); confusion ma-
trix (right).

Figure 33. Mean average precision result when training with domain randomized synthetic imagery
and testing against real-world imagery.

Domain randomized computer vision models are far more generalizable and capable
of complex inferencing tasks, as shown in Figure 34, demonstrating reliable object detection
regardless of color, light saturation, foreground, or background. This ability will be essential
when a satellite or robotic platform repairing space infrastructure or exploring celestial
bodies encounters a situation that it has not encountered before but can generalize and
infer similar objects based on what it has been trained to see or do.



Aerospace 2022, 9, 254 27 of 37

Figure 34. Domain randomized vs. non-domain randomized results.

Finally, the foundation of this research assumes that a user has no imagery of the
environment for which they are trying to train a computer vision architecture. However, to
synthetically recreate an environment optically, at least some visual data must be gathered
to form a starting block for a synthetic generation. Thus, what if a user has limited data of a
particular environment? Can synthetic imagery fill in the gaps? To answer this question, we
supplemented the purely synthetic training data set with real-world imagery at a ratio of
10% and then evaluated that new merged data set while ensuring that no real-world images
were shared between the training and testing data sets. This small addition dramatically
increased performance to mAP(0.50) of 0.87 and an mAP(0.50:0.95) of 0.73 (Figure 35),
providing yet another data input solution to improve computer vision performance.

Figure 35. Mean average precision result when trained 90% domain randomized synthetic imagery
and 10% real-world imagery evaluated against a real-world data set.

10.5. Computer Vision Results Summery

With results within 11% mAP(0.50) of a traditionally trained neural network utilizing
100% real-world imagery and within 4% mAP(0.50:0.95) of the synthetic baseline, sum-
marized in Table 1, domain randomized synthetic visual data are a viable solution for
training a conventional neural network for real-world deployment if limited imagery data
are available. Figure 36 summarizes computer vision performance starting with the three
baseline performance metrics on the far left moving to the right, establishing cross-domain
performance metrics for both solar panels and trusses, applying domain randomization
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and then applying both domain randomization (DR) and a 10% real-world data set to the
training model.

Figure 36. Overall summery of all major neural network (YOLOv5) performance evaluations across
data sets. Synthetic imagery can achieve results within 11% mAP(0.50) of real-world base lines and
within 4% mAP(0.50:0.95) of baseline metrics.

Table 1. Overall summery of all major neural network (YOLOv5) performance evaluations across
data sets.

YOLO Neural Network Performance

Data Set (s) mAP50 mAP50:95

Overall Synthetic Base Case 94% 77%
Real world Truss Base Case 98% 90%
Real world Solar Panel Base Case 96% 78%
Synthetic vs. Real World (Solar Panel) 76% 69%
Synthetic vs. Real World (Trusses) 51% 38%
DR vs. Real World (Trusses) 56% 43%
90/10 Synthetic Real World split + DR 87% 73%

Other works [40,41] have also employed mixed real-world/synthetic, as well as strictly
synthetic, data sets to improve neural network performance by as much as 13% when
applying domain randomization to the self-driving car computer vision problem. However,
both of these studies had the advantage of evaluating against hundreds of thousands of
images within the COCO [42] and VKITTI [43] data sets. As of today, a purpose-built data
set of autonomous orbital tasking for computer vision training and testing does not exist
other than perhaps Stanford’s SPEED data set [44] used for Spacecraft Pose Estimation. This
paper provides an existing domain randomized orbital data set as well as the methodologies
to generate and test new data sets for future applications.

Additionally, identifying geometrically similar objects across different sizes of SKUs
(i.e., 1U, 2U, 3U trusses) is a significantly harder problem to solve when compared to
simply identifying cars on a road surface. It is likely that construction elements for orbital
assets and celestial habitats such as Mars will be made up of modular designs to simplify
the process; thus, a computer vision architecture will need to be able to routinely tell the
difference between similar parts during the assembly process.

10.6. Localization and Robotic Arm Capture Results

Our localization method was tested in flight by scanning volume in the lab and
returning the 3D localized positions of objects identified by the CNN. The results of this



Aerospace 2022, 9, 254 29 of 37

localization method are detailed in Figure 37. Identifying truss sections at 5 m results in
an average 3D position error of 0.17 m in the direction of drone movement and 0.76 m in
the perpendicular direction. Stationary error when both the camera/drone reference frame
and object of interest are stationary is reduced to 0.26 m in the perpendicular axis.

Figure 37. Five-meter LiDAR scan localization result when integrating computer vision bounding
box data with LiDAR point cloud data.

Finally, by integrating the domain randomized solutions, we applied synthetically
trained computer vision models for HIL application and testing. Using a sequence of
dynamic and precise steps, we ultimately leverage neural networking, synthetic space
domain environments, sensor integration, and robotics to lay the foundation for space-
based HIL testing in the simulation at a price point that can be mass-produced and widely
deployed. Using a synthetic environment of the user’s choice in the case of orbital truss
sections in and around an existing space station, a SpaceDrone was deployed to perform
autonomous pick-and-place operations solely using synthetically trained onboard RGB
and LiDAR sensor data to perform real-time neural network inferencing to identify objects
of interest. The capture sequence is initiated by maneuvering the drone to the proximity of
the object, where the robotic arm is released from the stow position and inverse kinematics
(IK) solutions drive the arm to the desired capture position at which point the end effector
gripper is closed, completing the capture sequence. The object capture sequence is sys-
tematically accomplished via the following four steps illustrated in Figure 38 and detailed
in Algorithm 1 below: (1) perform object classification and localization; (2) move closer
to the object and deploy robotic arm for capture; (3) stow captured object for transport;
(4) transport object to the desired location for release or placement. This capture sequence
is better illustrated in video format below. (Video Link)

https://www.youtube.com/watch?v=zgYkpO0Qs3s
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Figure 38. Chronological illustration of drone pick sequence (Video Link).

After the capture is complete, the object can be autonomously moved through space by
any number of path planning optimization algorithms or other parameters set by the user.

10.7. CUBE Computer Vision Results

All previous results and capabilities were integrated into a single hardware-in-the-loop
simulation for optical/visual machine learning decision making, validation, and testing
within the CUBE environment, as illustrated in Figure 26. The real-world mock-up models
and objects were placed in the center, and the synthetic environment projected on the
surrounding screens resulted in a unique optical visual simulation space. In regards to
neural network performance, this simulation space resulted in a performance drop in the
hybrid 90/10 CNN Model (synthetic/real-world) stack of only 4% and 5%, respectively,
yielding an mAP(0.50) of 0.83 and an mAP(0.50:0.95) of 0.68 (Table 2) at approximately
20 frames per second (FPS) in flight running on the Jetson Xavier board at a resolution
of 640 × 360. The loss in performance is due to the inherent curvature of the screens not
retaining true geometric proportions. However, training models within the CUBE that
are robust to this simulation anomaly should render this a non-issue. The drone camera
point of view (POV) during flight operations in the CUBE is shown in Figure 39. Drone
flight video with onboard computer vision can be found at the following link (SpaceDrones
CUBE Flight Video Link).

https://www.youtube.com/watch?v=zgYkpO0Qs3s
https://www.youtube.com/watch?v=t0HVlJzA8ms
https://www.youtube.com/watch?v=t0HVlJzA8ms
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Algorithm 1 Sensor detection and Robotic Arm capture.

Require: Input for desired object

Conduct CNN object search
if CNN con f idence > 0.60 then

(x,y) object location = bounding box center
(z) object location = LiDAR point cloud of bounding box center

end if

if drone location 6= Object location then
Maneuver drone to object of interest

end if

if drone location = Object location then
initiate robotic arm IK for object capture
if capture = True then

Stow captured object for transport
end if

end if

if capture = False then
Conduct CNN object search
re-initiate robotic arm IK for object capture

end if

Table 2. Table of CUBE computer vision results.

YOLO Neural Network Performance

Data Set (s) mAP50 mAP50:95

CUBE Computer Vision Results 83% 68%

Figure 39. Drone camera POV (point of view) running computer vision on objects of interest against
a synthetic orbital background (Video Link).

The SpaceDrones visual simulation is also capable of simulating other deep space
environments such as Mars to test vision-based autonomous habitat design, assembly, and
inspection. Synthetically generated environments projected in the Virginia Tech Cube are
illustrated in Figure 40. The bottom picture illustrates a real-world drone being mirrored as
a virtual reality drone within the Unreal Engine. Porting position data of real-world and
virtual objects to and from synthetic environments allow researchers to attempt testing on
relatively dangerous operations using real-world hardware without risking damage to a

https://www.youtube.com/watch?v=t0HVlJzA8ms
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vehicle when motion is projected in synthetic space. A video of this process is illustrated in
the following video link (SpaceDrones VR Projection video link).

Figure 40. Simulated Mars environment with virtual reality drone bodies performing autonomous
tasking (Top). Mars environment projection in the Virginia Tech Cube with real-world drone motioned
being mirrored to a virtual drone vehicle (Bottom), (Video Link).

11. Discussion

This research has demonstrated the ability to use infinitely adjustable synthetic world
creation tools to generate synthetic training data for a computer vision architecture. These
trained CV models were then deployed onboard mobile manipulation drone platforms
complete with sensor integration APIs for the purpose of autonomous tasking and object
capture using mostly COTS compute hardware. This free-flying drone capability was then
successfully deployed in a uniquely capable synthetic environment projected within a
real-world space using large-scale theater technologies, demonstrating a hardware-in-the-
loop testing methodology to evaluate onboard computer vision and drone control for a
wide range of environments, including dynamic orbital environments. Further domain
randomization of these synthetic worlds was used to bridge the reality gap between
synthetically trained computer vision models and real-world target domains that these
systems will ultimately be deployed to. To my knowledge, this is the first study to integrate
computer vision, domain randomization, environmental projection, and free-flying mobile
manipulation platforms into a complete end-to-end solution. At the time of this publication,
the current computer vision simulation capability meets the NASA Technology Readiness
Level 5 (TRL5) specifications, with the Virginia Tech Cube providing component validation
within a relevant environment. HIL simulation and testing to include both the drone

https://youtu.be/zMHQB64fEqk
https://youtu.be/zMHQB64fEqk
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platform and robotic arm are TLR4, capable of verification in a laboratory environment. For
spaceborne applications, a full 6DOF motion must be achieved before it can be considered a
“relevant environment”. The readiness level will only increase as the future work capabilities
detailed in the following section are implemented. As one can imagine, this capability is
not limited to space applications but to any project in need of real-time onboard detection
of large numbers of heterogeneous objects or in need of a flying sensor platform for system
testing and autonomous tasking.

12. Contributions

This body of work is unique and holistic in its design to test and ultimately implement
machine learning architectures into a complex space domain. The contributions of this
work are listed below:

1. The introduction of several thousand labeled synthetic and real-world orbital data
sets available here [45];

2. Ready made synthetic worlds and domain randomization tools for orbital/deep space
environments available here [35];

3. To our knowledge, it is the world’s first application of pre-processed domain random-
ized imagery for space-based machine learning tasks;

4. Real-time hardware-in-the-loop optical testing environment for computer vision
systems inside a projection space such as the Virginia Tech CUBE [39];

5. Real-time machine learning, computer vision, and robotics integration of all the
above-mentioned contributions on-board a flying drone testbed platform to further
implement and test such capabilities.

13. Conclusions

This capability requires a working knowledge of several different disciplines, in-
cluding software engineering, robotics, computer vision, machine learning, fabrication,
animation, theater projection, and visual design—all culminating in a successful deploy-
ment of automated robotic tasking and object capture/manipulation via onboard computer
vision and sensor localization. This dissertation has demonstrated the applicability of
Convolutional Neural Networks, synthetic data generation, and domain randomization to
detect various orbital objects of interest for In-Space Assembly (ISA) On-Orbit servicing
(OOS) operations in simulated environments, achieving a mean average precision within
11% of non-synthetically trained models for a rather difficult array of geometrically similar
objects. The simulated environment was then pulled out of a relatively small computer
screen and projected onto a large 21,000-cubic-meter space for large-scale visual simulation,
thus enabling researchers to interact with real-world hardware within a virtual environ-
ment. This solution has opened the door for hardware-in-the-loop computer vision testing
onboard a real-world free flying hardware in environments that are difficult to capture or
recreate or safely operating hardware in a controlled testing regime. This system will only
continue to improve as more capabilities (detailed below in the future work section) are
brought online. However, the problem of hardware-in-the-loop testing for any number
of parameters or environmental factors is not specific to the aerospace community. This
simulation solution can be applied to any number of research areas, including search and
rescue, defense, and general automation applications. A short video detailing this projects
methodologies in chronological order can be found at (SpaceDrones 2.0 Video Summary).

14. Future Work

This project was not developed in a vacuum, but it was designed to be integrated into a
larger space domain awareness simulation and testing suite. The system can achieve 4DOF
virtual simulation with a constant downward gravity vector, which effectively couples pitch
and roll motion with translation. In an effort to simulate uncoupled 6DOF motion, a sister
lab is developing an omni-directional drone platform [46,47] known as the “Omnicopter”,
as illustrated in Figure 41. This 6DOF platform emulating orbital motion will provide

https://www.youtube.com/watch?v=5hIhyf3piHk
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a highly capable HIL simulation platform. Additionally, we aim to simulate frictionless
motion similar to an air-bearing table via drone PID controllers. Such capabilities will
enable true 6DOF HIL testing for space application when paired with a facility, such as the
Virginia Tech CUBE.

Figure 41. Virginia Tech Omni-directional drone (Omnicopter).

Additionally, path planning is an essential part of autonomous tasks. Organizations
such as the University of Washington’s Autonomous Control Laboratory have achieved
high fidelity drone control and path planning architecture [48,49]. An example of such a
system is illustrated in Figure 42. Implementing these capabilities into the existing Space-
Drones architecture is currently in development and is a high priority for future operations.

Figure 42. Vehicle path planning by the University of Washington’s Autonomous Control Labora-
tory [48].

Lastly, this experiment was also expanded to a real-world small satellite, currently
in the process of being deployed by the Virginia Tech satellite team (See Figure 43). This
particular satellite has a spring-loaded boom that is designed to extend once it reaches
orbit. If this particular boom does not extend to its full length, it is classified as a failed
state. Determining whether or not the boom has failed and other satellite related failures
purely using Computer Vision is another experimental result that can be further expanded
upon in the future work.
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Figure 43. Full vs. half-boom extension using computer vision to determine deployment failures on
real-world spaceflight hardware.
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