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Abstract: Due to sensor characteristics, geographical environment, electromagnetic interference,
electromagnetic silence, information countermeasures, and other reasons, the phenomenon of track
breakages occur in the process of aircraft track data processing. It leads to the change in target
label attributes. In order to make the track segment association effect better, we studied several
existing time series prediction methods, and proposed a track segment association method based
on bidirectional Holt-Winters prediction and fuzzy analysis. This algorithm bidirectionally predicts
and extrapolates track segments by the Holt-Winters method, and then uses the fuzzy track segment
association algorithm to perform segment association and secondary association. The simulation
results of this method show that the track segment association method based on Holt-Winters
prediction and fuzzy analysis can effectively solve the track association problem where the target
label attributes change before and after track breakage, demonstrating better association ability and
robustness. Compared with the fuzzy association method without adding track prediction, our
method generally improves the association accuracy by 35%.

Keywords: track association; track breakage; holt-winters; fuzzy association; bidirectional track
prediction

1. Introduction

The aircraft tracks generally have the characteristics of high density, high velocity, low
relative speed between targets and poor separability. Affected by sensor characteristics,
geographical environment, electromagnetic interference, electromagnetic silence, informa-
tion confrontation, and other uncertain factors, the track data will be interrupted, leading
to the change in target label attributes, and severely undermining information fusion.
Track breakage leads the computer to re-batch and re-track the targets, thus increasing the
tracking burden of devices, and reducing the efficiency of tracking measurement. Solving
the problem of track segment association before and after track breakage of the same target
can not only improve the continuity and stability of target tracking, but also provide strong
support for follow-up tracking, strikes, and other related tasks.

The track segment association problems can be divided into the track association
problems based on discrete points and continuous time tracks according to whether it is
continuous. The problem based on discrete points is to regard the track as discrete track
points and judge whether the track is correlated through two segments of track points.
The continuous track association models the trajectory of the target movement through an
engineering-friendly, time trajectory function (T-FoT), and then the smoothing and tracking
problem becomes the estimation/fitting T-FoT problem [1–5].

In 1971, R. A. Singer and others proposed and developed the nearest neighbor
method [6], which is a tracking method with fixed memory and can work in a multi-
echo environment. It is mainly suitable for high signal-to-noise ratio and small target
density. condition. In 1972, Y. Bar-Shalom proposed the probabilistic data association
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method (PDA) [7]. The advantage of this algorithm is that the probability of mistracking
and losing the target is small and the calculation amount is small when tracking a single
target in a clutter environment. In order to adapt to the dense multi-target tracking environ-
ment, Y. Bar-Shalom proposed a joint probabilistic data association algorithm (JPDA) [8] on
the basis of PDA. This method defines joint events and introduces the concept of “cluster”,
by calculating the joint probability of joint events, the edge probability of the association
between the echo and the target is calculated. In 1974, R. A. Singer and R. G. Sea et al.
developed a class of “full-neighbor” filters [9] that not only consider all candidate callbacks,
but also the tracking history. After that, D. B. Reid proposed a statistical decision-based
multiple hypothesis method (MHT) [10] for data association based on the “full-neighbor”
filter and Y. Bar-Shalom’s clustering matrix concept. The algorithm mainly includes the
generation of aggregation, the generation of “hypothesis”, the calculation of “hypothesis”
probability, and the process of hypothesis reduction. The advantage of the algorithm is that
the effect is better, and the disadvantage is that it relies too much on the prior knowledge of
the target and clutter. After the development of the MHT algorithm, the trajectory-oriented
MHT algorithm emerged. The trajectory is initialized, updated, and the score is calculated
before it is stored in the hypothesis. The process of calculating the score includes comparing
the probability of the correct target trajectory and the probability of the wrong target set.
The score function [11,12] used to calculate the score can score the trajectory points, and
then judge whether it is a reasonable trajectory according to the score. Impossible trajecto-
ries are removed before trajectories are combined into hypotheses. In 2001, D. Schultz et al.
proposed a data association algorithm based on particle filtering and joint probabilistic data
association [13]. Particle filtering is based on a large number of measurements, through
the evolution and propagation of a set of weighted particles to recursively approximate
the posterior probability density function of the state, so as to obtain other statistics about
the state. This method has broad development space in the field of data association based
on nonlinear models. In addition, Y. Bar-Shalom and J. K. Tugnait et al. [14] proposed
a multi-maneuvering target tracking algorithm combining IMM and JPDA. At the same
time, Y. Bar-Shalom and X. R. Li, etc. [14], proposed a multi-maneuvering target tracking
algorithm combining IMM and MHT.

The abovementioned traditional algorithms have the characteristics of a large amount
of calculations and high requirements for the prior information of target maneuvering, so
they are not suitable for long-term tracking environments with concentrated targets and
have poor robustness. As the tracking environment becomes more and more complex, the
algorithm will inevitably move in the direction of a suitable calculation amount and less
requirement for target prior information. In recent years, a large number of scholars have
introduced intelligent algorithms such as neural networks and fuzzy theory into existing
association algorithms to make up for the shortcomings of high requirements for target
prior information.

The track segment association method based on Holt-Winters prediction and fuzzy
analysis can better solve these problems. First of all, thanks to the first prediction and then
the association in the algorithm, it can bring a better association effect than the traditional
method. Secondly, due to the low complexity of the algorithm, the algorithm executes faster
than the neural network. The final algorithm basically requires no prior information. The
experimental results show that the algorithm proposed in this paper can achieve long-term
high-precision correlation.

In general, to solve the problem of track data discontinuity in track data processing
with changed track label attributes after breakage and for long breakage periods, we pro-
pose a TSA method based on Holt-Winters prediction and fuzzy analysis that can effectively
associate track segments before and after track breakage. In this method, eigenvectors are
input into the Holt-Winters model to complete the prediction and bidirectionally extrapola-
tion of track data, and then the fuzzy track association algorithm is employed to perform
track segment association and secondary association.
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2. Materials and Methods

The core idea of the algorithm in this paper is to transform the TSA problem into a
problem of first performing track prediction and then performing track segment association
by using methods based on the fuzzy factors on direction, acceleration, and unified velocity,
making association strategies and automatically adjusting the association threshold of the
membership function. In the present work, the first part introduces relevant theories of the
Holt-Winters method, the second part explains the fuzzy track association algorithm, and
the last part presents the structure and process of this new algorithm.

2.1. Holt-Winters Method

This part introduces the Holt-Winters method, serving as a basis for further track
prediction and track association.

The Holt-Winters method [15–20] is a time series analysis and prediction method. It
is suitable for the non-stationary series with linear trends and periodic fluctuations. The
exponential moving average (EMA) method is used to make the model parameters adapt
to the changes in the non-stationary series and to make short-term forecasts for future
trends. The Holt-Winters method, adding the Winters period term (also called season term)
based on the Holt model, is applicable to deal with the fluctuation of fixed periods or cycles
in time series such as monthly data (period 12), quarterly data (period 4), and weekly
data (period 7). Adding multiple Winters terms can also help deal with the coexistence of
multiple cycles.

The Holt-Winters method, suitable for non-stationary series with linear trends and
fixed cycles, contains additive and multiplicative models. In the additive model, or additive
seasonality model, it is assumed that the trend component ut and the seasonal component
st of the time series xt have an additive relationship, namely, xt = ut + st in the ideal case,
where ut increases (or decreases) linearly with time, and st is the seasonal component of
period T. In practice, due to the non-stationarity of the time series xt, the linear increasing
rate of the trend component ut and the seasonal component st are relatively fixed in the
short term, but can change gradually over the long run. In addition, xt may contain the
irregular noise component. Therefore, we need to employ the EMA method to continuously
calibrate the ut and st components in the model according to the actual observations xt.
The formulas are as follows:

ut = α× (Xt − St − T) + (1− α)× (ut−1 + vt−1)
vt = β× (ut − ut−1) + (1− β)× vt−1
st = γ× (xt − ut) + (1− γ)× st−T

(1)

in the above three equations, there are three smoothing parameters α, β and γ, all between
0 and 1. They are the balanced weight between the prediction results and the actual
extrapolation results. vt represents the linear increasing rate of the trend component ut.
The larger the parameters α, β and γ are, the stronger the non-stationarity of the time series
xt is, and the shorter the predictable time of the model is, so it is necessary to adjust the
components of the model more quickly. On the contrary, if smaller parameters α, β and γ
can be used to match the historical data, the consistency between the model and data is
better and the predictable time will be longer.

As the historical data are used up and the model enters the prediction stage from the
training stage, let α = β = γ = 0, there is no more data to modify the model, the prediction
result of xt can be calculated with the formula xt = ut + st in the ideal situation. In order
to determine the reasonable parameters α, β and γ and the predictable time, we can try to
use cross validation to deal with it. The historical data are divided into two sections. The
first section is used to train the model. After the first section of date is used up, the model
will enter the prediction stage, and then the prediction results will be compared with the
second section of historical data.

For the multiplicative model, or the multiplicative seasonality model, it is assumed that
the trend component ut and the seasonal component st have a multiplicative relationship,
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namely, xt = ut × st in the ideal situation. The training method for this model is similar to
that for the additive model. The formulas are as follows:

ut = α× (xt/st−T) + (1− α)× (ut−1 + vt−1)
vt = β× (ut − ut−1) + (1− β)× vt−1
st = γ× (xt/ut) + (1− γ)× st−T

(2)

when carrying out prediction, let α = β = γ = 0, and calculate the prediction result
according to xt = ut × st. As a nonlinear model, the multiplicative model can deal with the
change in the amplitude of seasonal fluctuation with the trend component, so it depends
more on a good initial value than the additive model. Generally, the data within the
first cycle T of xt is are intercepted and become the initial waveform of s1, s2, . . . , st after
detrending and denoising. The additive model is a linear model and can be written in
the form of matrix in the training and prediction stages for the convenience of analyzing
its numerical stability. However, both models require a fixed period l in the periodic
component st.

2.2. Fuzzy Track Association Algorithm

In order to calculate the similarity of two tracks, the corresponding sets of fuzzy
factors, fuzzy factor weights, and membership functions need to be determined. Let
U = {u1, u2, · · · , uk, · · · , un} be the fuzzy factor set, where uk is the k-th fuzzy factor that
affects the decision. Fuzzy factors fall into three categories. The first is one-dimensional
information, which mainly refers to the Euclidean distance based on target positions, speeds,
headings, and heading change rates. The second is two-dimensional information, which is
mainly about the Euclidean distance based on target positions, velocities, and accelerations
along the x-axis and y-axis of the target, and the Euclidean distance based on the headings
and the heading change rates. The third is three-dimensional information, including the
Euclidean distance based on target positions, velocities, accelerations, direction cosine
angles, and cosine angle change rates of the target along the x, y, and z axes. According to
practical experience, the position factor of the target is the primary factor in determining
whether the trajectory is relevant, whether it is speed or heading will eventually lead to the
change in the target position; the secondary factors that determine whether the trajectory is
relevant are the speed and heading factors, because they change rapidly, so not suitable as a
determinant for judging whether trajectories are relevant. In practical calculation, the most
important factor is the target location factor in the fuzzy factor set, so the weight of this
factor should be set to the maximum. The influence of the speed factor is relatively small,
and it is given the second largest weight. The heading factor has the least influence, so its
weight is set to be very small or zero. According to the above principles, we have the fuzzy
factor weight set A = (a1, a2, · · · , ak, · · · , an), where ak represents the weight corresponding
to the k-th factor uk, and generally ∑n

k=1 ak = 1. Considering the characteristics of the sensor,
there is a1 ≥ a2 ≥ a3 ≥ · · · ≥ an. To get the uk(k = 1,2, . . . ,n), it is necessary to establish the
set of fuzzy factors between tracks according to the state estimation vectors X̂i(t/t) and
X̂j(t/t) and it is assumed that X̂(t/t) =

[
x̂(t), ŷ(t), ẑ(t),

.̂
x(t),

.̂
y(t),

.̂
z(t),

.̂.
x(t),

.̂.
y(t),

.̂.
z(t)

]
.

Therefore, the initial values of fuzzy factors and weight vectors can be determined
for state estimation according to three different situations. The membership function is
the core of fuzzy theory that solves the problem of track association. According to the
characteristics of fuzzy factors in track association, available membership functions include
normal distribution, Cauchy distribution, centralized distribution gamma distribution, etc.
After determining the fuzzy factor set, fuzzy factor weight set, and deviation spread, the
normal membership function is used to calculate the association degree of the two targets
as follows:

fij(t) =
n

∑
k=1

ak(t)µk; i ∈ U1, j ∈ U2 (3)
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where fij represents the association degree of the two targets i and j at the t-th moment,
which is the sum of the products of the k membership degrees µ1, µ2, µ3 and the corre-
sponding weights a1, a2, a3 at the t-th moment. For n tracks and m tracks of target 1 and
target 2, a fuzzy association matrix at the t-th moment can be constructed:

F(t) =


f11(t) f12(t) · · · f1m(t)
f21(t) f22(t) · · · f2m(t)
· · · · · · · · · · · ·

fn1(t) fn2(t) · · · fnm(t)

 (4)

where the largest element fij(t) is found in F(t). For a certain threshold ε, if fij(t) > ε, then
i and j targets are associated, otherwise they are not.

2.3. Fuzzy Track Segment Association Algorithm

To deal with the change in the target label attributes after track breakage, we first
comprehensively consider the velocity, azimuth, acceleration, breakage period, and other
factors of the high-velocity and highly maneuvering targets and perform multi-level associ-
ation. Then, we take the threshold as a function of the breakage period l, and combine it
with the breakage period factor to judge the association, so as to solve the problem that
the deviation increases with the extension of the breakage period. When determining the
fuzzy factor set, it is necessary to calculate the corresponding Euclidean distance between
target positions, velocities, courses, and course change rates. For air targets under different
conditions, we should consider velocity factors, direction factors, acceleration, and other
fuzzy factors comprehensively, which are expressed as:

u1(t) =
[(

x̂i(t)− x̂j(t)
)

2 +
(
ŷi(t)− ŷj(t)

)
2 +

(
ẑi(t)− ẑj(t)

)
2

]0.5

u2(t) =
[( .̂

xi(t)−
.̂
xj(t)

)
2
+
( .̂

yi(t)−
.̂
yj(t)

)
2
+
( .̂

zi(t)−
.̂
zj(t)

)
2

]0.5

u3(t) =
[( .̂.

xi(t)−
.̂.
xj(t)

)
2
+
( .̂.

yi(t)−
.̂.
yj(t)

)
2
+
( .̂.

zi(t)−
.̂.
zj(t)

)
2

]0.5

(5)

where u1, u2 and u3 represent the fuzzy factors on position, velocity, and acceleration,
respectively. For air targets, considering the relationship between velocity and direction,
we directly subtract the velocities on each axis, and then combine the velocity and direc-
tion to form a fuzzy factor. In this paper, the normal membership function is used for
track association:

µk(uk) = exp
[
−τk

(
u2

k/σ2
k

)]
(6)

where uk is the k-th fuzzy factor in the fuzzy factor set, σk is the spread of the k-th fuzzy
factor, and τk is the adjustment degree. When there is system deviation, it will greatly
influence the fuzzy factors on position, velocity, and acceleration. In the fuzzy factor set,
the spread of the position, velocity, and acceleration factors should be adjusted accordingly.
The membership function is expressed as:

µ1(u1) = exp
[
−τ1

(
u2

1
σ2

x+σ2
y+σ2

z

)]
µ2(u2) = exp

[
−τ2

(
u2

2
σ2.

x
+σ2.

y
+σ2.

z

)]
µ3(u3) = exp

[
−τ3

(
u2

3
σ2..

x
+σ2..

y
+σ2..

z

)] (7)

where σx, σy and σz represent the spread of the fuzzy factor on position, namely, the position
error variance; σ .

x, σ .
y and σ.

z stand for the spread of the fuzzy factor on velocity, namely, the
velocity error variance; σ..

x, σ..
y and σ..

z indicate the spread of the fuzzy factor on acceleration,
i.e., acceleration error variance; and τk is the adjustment degree. The corresponding
elements in the error variance matrix obtained from the Holt-Winters method are taken
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as the spread of the corresponding membership function. The degree of association is
expressed as:

fij = a1µ1 + a2µ2 + a3µ3 (8)

In the above, the weights of the fuzzy factors are set according to the influence of
position, velocity, and acceleration fuzzy factors on target association a1 = 0.55, a2 = 0.35,
a3 = 0.1. When the target is not highly maneuverable and the track breakage period is
short, the prediction result of the target calculated by the filter has little deviation from
the observation after the breakage, and the membership function used to calculate the
association degree fij yields better results. When the target is highly maneuverable and the
track breakage period is long, secondary track association is needed to avoid association
failure or wrong association. For targets with flexible trajectories, the deviation between
the predicted value of the target and the observed target will increase, the change in the
target’s speed and azimuth lead to a fairly large deviation of the actual target position, and
track breakage period increases the deviation. In the process of secondary track association,
the membership function µ2 of the second fuzzy factor should be adjusted to make it
relatively sensitive to the change in the breakage period l. The membership function u2 is
expressed as:

µ2(u2) = exp
[
−τ2

(
u2

2/
(

σ2
x + σ2

y + σ2
z + v(l)

))]
(9)

where v(l) is the influence factor of time in the second fuzzy factor, which is proportional
to the breakage period l, i.e., the longer the breakage period is, the greater the influence of
v(l) is. The association degree fij can to a certain extent solve the problems of association
failure and association error led by target maneuvering and a long breakage period. In the
case of a long breakage period, due to the limitation of threshold, the threshold needs to be
set according to the length of the breakage period. The threshold is expressed as:

ε = 1− f (l) (10)

where f (l) is proportional to the breakage period l, namely, a longer breakage period
indicates a smaller threshold ε. By reducing the threshold over time and updating µ2 in
Equation (7) to Equation (9), more consideration is given to the impact of speed on the
association, and then the value of Equation (8) is relatively increased to affect the association
matrix of Equation (4), so that the possible correct results in the association matrix are
greater than the association threshold to increase the association accuracy. In addition,
there is a maximum number of repeated associations to prevent the threshold from being
too low and causing false associations.

2.4. Holt-Winters Prediction and Fuzzy Analysis Model

The track model developed by this paper is shown in Figure 1. The algorithm consists
of the following parts: establishing the Holt-Winters prediction model, prediction track
data, and associating track segments.
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• Track segment judgment: real-time judgment of incoming track points, if the latest
track point is not received after the set time, it is considered that the current track is in
an interrupted state, and the procedure goes to the next step;

• Track segment data processing: convert the pre-interruption track data into the format
required by the program and use the processed pre-interruption track data to train
the Holt-Winters forward model while waiting for the recovery of the track point. If
the point data are considered to be in an interrupted state at the end of the track, the
program goes to the next step;

• Track segment data prediction: the processed track data before the interruption and the
track data after the interruption are processed and sent to the Holt-Winters model, and
the Holt-Winters method is used to predict from two directions. After the prediction
is completed, the program goes to the next step;

• Track segment association: a fuzzy track association algorithm is used to correlate
data before and after interruption. If the association fails and the number of repeated
associations does not exceed the preset maximum number of times, end the program.
If the association fails, perform the secondary association: first jump to step 3 to
update the prediction result and then replace the Equation (7) of the algorithm with
Equation (9) in the fourth step of the program, and then perform the fuzzy track. The
association algorithm is shown below.

3. Results
3.1. Data Set

In this paper, the Holt-Winters-AF model is verified and trained using the real aircraft
track data set. There are multiple sources of orbital data. Based on the OpenSky website,
this paper extracts flight data from around 8 am on 4 January 2021 (Beijing time) as the
data source. The data comes from the aircraft status information sent by the aircraft at
the current time. Each status information contains flight time, altitude, speed, heading,
longitude, latitude, and other information. Flights whose status information length exceeds
300 (about 50 min, the average interval between two information is about 10 s) are selected
for tracking. We ended up with 1259 flights.

3.2. Experimental Setup

The computer’s CPU is i7-7800x, and the GPU is TITAN XP. As TCN takes up more
resources, the cloud server with TESLA V100 GPU is used for training.

The experimental scenario of this algorithm is: when an aircraft such as an airplane
has a tracking interruption and then resumes the track, it is necessary to perform track
association. The algorithm first predicts the track, and then uses the fuzzy association
algorithm to correlate the data before and after the interruption.

3.3. Prediction Experiment

The parameters of each prediction experiment are designed as follows:

• LSTM [21,22]: The input step size is 3 and the output step size is 1; 32-layer network is
used; epoch: 256; batchsize: 300.

• TCN [23]: The input step is 10, the learning rate is 1 × 10−3; epoch: 300.
• ARIMA [24–28]: The parameters of p, d, and q are 1, 0, and 0, respectively; other

parameters: default.
• Prophet [29]: Parameters: default; the prediction frequency is 10 s.
• Holt-Winters: “Trend” is set to “add”. Except that, the three feature parameters x, and

vx are slightly different, the “damped trend” of other feature column parameters is set
to “true” and “seasonal” is set to “add”.

It is assumed that all flights resume at the same time after being interrupted at some
point (In the experiment, the signal was lost when the 200th flight data was received, and
the signal was restored when the 300th flight data was received. The original data are
the flight data with a length of more than 300 pieces and an average interval of 10 s. The
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first 200 pieces of data are artificially intercepted as the input of the prediction model, and
200–300 pieces of the original data are used as the true value for comparison). Since the
average transmission interval of each flight data is about 10 s, the duration of the track
break is about 16.7 min (100 data points). Each piece of flight data is processed into time
information, position information in three spatial directions, velocity information in three
spatial directions, and acceleration information in three spatial directions. All data have
been normalized.

Since all data are standardized, the errors in Table 1 are standardized predicted
minus standardized actual. The relative magnitudes of the error terms only represent the
prediction performance of each model.

Table 1. Error comparison of various prediction methods (breakage period lasts about 16.7 min).

Error
Method

LSTM TCN ARIMA Prophet Holt-Winters

x (m) 0.01031226 0.00847442 0.00343247 0.000282 0.00036811
y (m) 0.01457218 0.01379722 0.00490498 0.000393 0.00097181
z (m) 0.0500951 0.04427563 0.02846062 0.005334 0.0077661

vx (m/s) 0.00623551 0.0041277 0.00063828 0.00068 0.000844625
vy (m/s) 0.0060439 0.00399427 0.00035111 0.000383 0.001006425
vz (m/s) 0.00608286 0.00376995 0.00048802 0.000474 0.00061313
ax (m/s2) 0.00612628 0.0041475 0.00063779 0.000683 0.00148328
ay (m/s2) 0.00591117 0.00409016 0.00034982 0.000384 0.001005105
az (m/s2) 0.00600928 0.00384299 0.00048726 0.000473 0.000612425

Time (min) 120 480 15 15 10

The specific calculation formula of the error is as follows:

Error =
∣∣∣i− ĩ

∣∣∣, i ∈
{

x, y, z, vx, vy, vz, ax, ay, az
}

(11)

among them, i represents the 9 components (x, y, z, vx, vy, vz, ax, ay, az) of the input feature,
and ĩ represents the prediction result of the corresponding feature component of the model.

3.4. Track Association Experiment

In the track association experiment, three indicators including the number of flights,
the number of forecast points, and breakage period are employed to evaluate and demon-
strate the performance of the models. We use the fuzzy association method in Ref. [30] as
a baseline for comparison. The following are the settings of specific parameters for each
experiment. The association accuracy is the proportion of track where the association result
after the original track is interrupted and is the same as the real result.

In the experiment of the effect of different flight times on the association accuracy,
the first 100 data of the original data were used as the data before the interruption, the
100–200 data were used as the data at the time of interruption (about 16.7 min of interrup-
tion), and the 200th data were used after the interruption for the interrupted data. After
considering the running speed of the experiment and the performance of the model, we
chose to predict 50 data points (any number can be predicted). The parameters of the
prediction model are the same as those in the prediction experiments described above.

In the experiment of the effect of different prediction points on the association accuracy,
the first 100 data of the original data are used as the data before the interruption, the
100–200 data are used as the data at the time of interruption (interruption is about 16.7 min),
and the 200th data are used as the data after the interruption for the interrupted data. In
total, 50 flights are randomly selected. The parameters of the prediction model are the same
as those in the prediction experiments described above.

In the experiment of the effect of different fracture periods on the association accuracy,
50 data points (any number can be predicted) are selected and predicted after compre-
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hensively considering the running speed of the experiment and the performance of the
model, and 100 flights are randomly selected from the screened 1259 flights as the subject
of this experiment. The parameters of the prediction model are the same as in the previous
prediction experiments.

4. Discussion

It can be seen from Table 1 that the LSTM and TCN methods based on deep learning are
relatively complicated with the problems of long program running time and limited input
sequence length. Furthermore, their “receptive fields” are limited and cannot perceive
all the information. Therefore, methods based on deep learning are more suitable for
accurately predicting changes in short-term track. As the algorithm complexity of ARIMA,
Holt-Winters, and other machine learning methods is much lower than that of deep learning
methods, they have global “receptive field” and can better fit the track data and bring better
and faster results.

As can be seen from Figure 2a, after break-off at 100 data points (about 16.7 min), the
accuracy of simultaneously associating 10 flight tracks reaches up to 90%, and the accuracy
of simultaneously associating 100 flight tracks is also 60%. It is worth noting that due to
the huge amount of flight data, calculating all the data on the selected 1259 tracks is a huge
amount of workload. Therefore, to facilitate the comparative experiment, we randomly
select a certain number of routes for the experiment. Additionally, because the algorithm
has predicted 80 points, when the number of flights increases, the distance between flights
becomes very close, and the predicted track may deviate from the correct track and point
to other routes, resulting in decreased association accuracy.
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As can be seen from Figure 2b, when break-off occurs at 100 data points (about
16.7 min) and 100 flight tracks are associated at the same time, the association accuracy
increases significantly with the increase in forecast points. Therefore, prediction has played
a big role.

According to Figure 2c, when 100 flight tracks are associated and 50 points on each
track are predicted at the same time, the accuracy in the case of 500 s of breakage period
is as high as 90%. With the increase in the breakage period, uncertainty rises and the
association accuracy declines significantly. In addition, there are many hyperparameters in
the programs, whose determination is directly related to the accuracy of the programs, so
selecting proper hyperparameters may bring better results.

This paper presents a track segment association algorithm based on the Holt-Winters
method and fuzzy track association. The algorithm first uses the Holt-Winters method to
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extrapolate and extend the track segment data, and then employs the fuzzy association
algorithm to associate the track data. It makes full use of the track information to extrapolate
and extend the track data in the case of a small amount of track segment data and uses the
fuzzy track association algorithm to perform track association and secondary association.
The algorithm can realize real-time track association when the target label attributes change
before and after track breakage with good association ability and robustness.

Indeed, many points in this paper are yet to be improved. Firstly, as the programs
mentioned in the paper involve too many hyperparameters, they will bring many problems
to their application. This needs to be solved in the future. Secondly, the effect of the
secondary association mechanism is not marked, and the effect of multiple associations has
no obvious advantage over the effect of associating the first point after data recovery. The
subsequent association correction method based on multiple points after data recovery can
be further improved as well. Finally, for a fixed number of forecast points, a small number
of flights for the association will bring good results, and too many forecast points from a
large number of flights will often bring opposite effects. A prediction method for a better
and adaptive number of track points needs further study.

5. Conclusions

This paper presents a track segment association algorithm based on the Holt-Winters
bidirectional prediction and multiple fuzzy track association method. The algorithm
first uses the Holt-Winters method to extrapolate and extend the track segment data
in two directions, and then uses the fuzzy association algorithm to perform multiple
associations on the track data. The algorithm can realize rapid track association when the
target label attributes change before and after track breakage with good association ability
and robustness.

The main contributions of this paper are as follows. Firstly, analyze and test the
performance of existing mainstream prediction methods in track prediction. Secondly,
propose a two-way track prediction algorithm based on the Holt-Winters method, and a
multiple track segment association algorithm based on fuzzy track association method.
Then, combine the prediction algorithm and the association algorithm to obtain the final
track association algorithm.

Finally, some parts of this paper are expected to be improved. Firstly, as the programs
mentioned in the paper involve too many hyperparameters, they will bring many problems
to the application. This needs to be solved in the future. Secondly, for a fixed number of
forecast points, a small number of flights for the association will bring good results, while
too many forecast points from a large number of flights will often bring opposite effects.
All in all, a prediction method for a better and adaptive number of track points needs
further study.
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