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Abstract: Airport management plays a key role in the air traffic system. Introducing resources at the
right time can minimize the effects of disruptions, reduce delays, and save costs as well as optimize
the carbon footprint of the airport. Efficient decision-making is a challenge due to the uncertainty
of the upcoming events and the results of the applied countermeasures. So-called ‘what-if’ systems
are under research to support the decision-makers. These systems consist of a user interface, a
case management system, and a prediction engine. Within this paper, we evaluate different types
of prediction engines (flow, event, and motion models) that can be used for airport management
what-if systems by comparing them in terms of accuracy and calculation speed. Hence, two different
operational situations are examined to evaluate the performance of the prediction engines. The
comparison shows that accuracy and calculation speed are opposed. The flow model has the lowest
accuracy but the shortest calculation time and the motion model has the highest accuracy but the
longest calculation time. The event model lies between the other two models. The acceptable accuracy
of a prediction tool is strongly dependent on the respective airport, whereas the calculation time is
strongly dependent on the available decision time. Regarding airport management, this means that
the selection of a prediction engine has to be made in dependence of the airport and the decision
processes. The results show the advantages and disadvantages of each prediction engine and provide
a first quantification by which a selection for what-if systems can happen.

Keywords: fast-time simulation; airport management; what-if

1. Introduction

Airport management has to deal with a large variety of events. In most cases, these
events own a degree of uncertainty regarding their occurrence and impact in advance.
Weather situations in particular challenge the airport management by their degree of
uncertainty. For instance, whether a cold front system generates freezing fog or snow
depends on small changes in humidity and temperature [1]. Minor weather deteriorations
can have a negative impact, and they may lead to delays and flight cancellations [2]. To
maintain continuous airport operations in these circumstances, a joint approach evaluating
each possible development with all stakeholders is necessary, but time consuming.

A joint approach is necessary since each stakeholder plans separately without having
an overview of the consequences that each action has for other stakeholders and vice versa.
Total airport management addresses this problem, as it enables the development of joint
actions to react to future events that have negative impacts on the airport’s performance [3].
Within this process, what-if tools are possible instruments that facilitate decision-making [4].
What-if tools forecast the outcomes of events and chosen actions. As stakeholders will rely
on these forecasts to make their decisions, the determination of the outcomes has to be
very accurate on one side and easily comprehensible on the other [3]. Since the manual
calculation of potential scenarios is time consuming, stakeholders are not able to evaluate
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all scenarios. Fast-time simulation is a forecast tool that may be used to overcome this
problem because of its time advantage.

The use of simulation models represents an improvement compared with the status
quo. As a result, this leads to the research question of which simulation model is best
placed to act as a prediction engine for what-if systems. The present paper addresses this
challenge. Regarding the demand for a fast, accurate, and comprehensible forecast, an
appropriate model needs to be chosen. As such, we compare different models in predicting
the impacts of a snow situation at Oslo airport.

The remainder of this paper is structured as follows. The Section 2 gives a brief
overview of existing prediction models and how they can be categorized. The Section 3
examines the approach to the comparison of different prediction models. It comprises the
simulation scenario and setup, the definition of key performance indicators (KPIs), and the
validation method. The Section 4 presents the simulation results of each considered model.
In the Section 5, the results are discussed and an assessment of the prediction models is
performed. Our conclusions are drawn in the Section 6.

2. Existing Work

This section will provide an overview of existing prediction models for airport oper-
ations. In the Section 2.1, basic airport model categories are derived. For each category,
a representative is selected and described in the Section 2.2 of this section. Finally, the
Section 2.3 provides a summary of previous experiences with different kinds of airport
models in what-if applications.

2.1. Airport Model Categories

The research offers a broad range of airport models that have been designed to fast-
time simulate and predict various aspects of airport operations. A structured literature
analysis (conducted in September 2021) using Google Scholar, Crossref, Scopus, and Science
Direct with the key words “airport simulation model” revealed more than 1000 publications.
The results cover all kinds of airport models, from specific models for distinct aspects and
airports to comprehensive models for general research questions. It was assumed that
additional key words (e.g., “airport prediction model”, “airport resource model”, “air traffic
simulation”) would enlarge the resulting set.

In contrast to the large number of results for the common search of “airport simulation
model”, only a small number of results were retrieved once the what-if focus was added to
the search phrase (“what-if airport airside simulation model”). Initially, 330 results were
delivered by the search engines. A manual analysis of titles and abstracts was applied
to filter out, for instance, airport capacity studies, simulations that focused only on one
distinct airport resource (e.g., runways, ground handling), or studies that focused on
landside processes only. In the end, 29 publications dealing with what-if simulation models
for airports were identified as providing valid models. Upon analyzing these publications,
it became clear that none of them discuss the question of which simulation model is best
placed to act as a prediction engine for what-if systems.

As several general airport simulation models exist, but a comparison for what-if
systems has not been conducted, simulation models of different types were selected for
evaluation. Therefore, we categorized the simulation models. The categorization of simu-
lation models in general is a challenge due to the different characteristics of simulations
(e.g., level of detail, representation of time, simulation functionality) [5]. A categorization
regarding the representation and calculation of basic data as required for this study was
derived by a distinction between simulation time and object representation [6]. Simulation
time and objects can either be discrete or continuous. Table 1 shows the resulting simulation
categories that were derived by an application to the airport context. In this context, the
simulation objects are flights.
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Table 1. Types of airport simulation models (adapted from Fishwick [6]).

Flights (Simulation Objects)

Discrete Continuous

Time
discrete Flow model Event model

continuous State model Motion model

In general, the flow model represents the air traffic as streams or flows and discretizes
the flights as active (part of the stream) or not active (not part of the stream). Multiple flows
(e.g., arrival/departure flows) are necessary to model the airport. In comparison with the
flow model, a flight in the state model can have more states than active and not active (e.g.,
landing and in-block). Therefore, the simulation time can be continuous and state changes
throughout the time can be observed. The event model is capable of simulating flights
with all their continuous attributes (e.g., altitude, speed, etc.). Events, which happen at
discrete points in time, have an impact on these attributes (e.g., a blocked runway leads
to an aircraft taxi speed equal to zero). In contrast to the event model, the motion model
consists of multiple equations by which the movement of each flight can be calculated at
any given point in time.

2.2. Existing Airport Model Implementations

The above-defined categories were represented by one model implementation each.
To later discuss the differences between the simulation models, it was necessary that either
the documentation on the model algorithms or the source code be available for further
analysis. Moreover, the models needed to be adaptable in such a way that each model
would be capable of simulating the same set of traffic flows and occurring events.

As a flow model, a prototype from the German Aerospace Center (DLR) specifically
designed for demand–capacity balancing of total airport management (cf. [7]) was selected.
This prototype has not been published yet, and as such the general functionality will be
explained here. The prototype derives the demand for the arrival runway, the airport
stands, the ground handling, and the departure runway from the flight plans on an hourly
basis. The hourly capacity of each resource must be configured before running the model.
Out of a comparison between demand and capacity, the flow is calculated. If the demand
exceeds the capacity, the so-called ‘overdemand’ is delayed until the next hour.

A sufficient state model for what-if applications could not be retrieved. Although
multiple state models for flight description do exist (e.g., [8,9]), none have been adapted
for comparable operations with the other models or had sufficient documentation for the
comparison. As such, the state model was left for future work.

The event model was derived from the DLR’s airport management simulation platform
(cf. [10]). It was published as the “milestone simulation” and is described in [11]. This
simulation picks up the ‘milestone’ concept of airport collaborative decision-making. Each
flight is a series of processes where all processes end with a milestone. Once a flight requires
an airport resource (e.g., a runway, a stand, ground handling staff), it sends a request and
receives a clearance as soon as the resource is available. Milestones, requests, and clearances
are designed as events that happen at a certain point in time. The simulation calculates the
events, stores them in an event queue, and jumps from one event to the next event.

As a representative for the motion model, the fast-time simulator “Air Traffic Opti-
mizer” (AirTOP) was chosen in this study. AirTOP was developed by Airtopsoft and allows
for the assessment of air traffic operations at the airport, inside the terminal maneuvering
area (TMA), or within the en route segment. Thus, it is called a gate-to-gate simulation.
AirTOP uses a rule-based approach to set up the simulation, including separation standards,
rules for conflict resolution, and runway dependencies. The modeling of multiple agents
and their tasks, for example radar and airport controllers, is a significant element of AirTOP
because the agents pass on the instructions to the aircraft to comply with the prescribed
rules [12]. In regard to the focus on airport operations in this study, the fast-time simulation
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tool enables a detailed modeling of the ground layout and the ground operations. This
includes taxiways, aircraft stands plus their allocation, runway entries and exits [12], and
de-icing procedures. As a result, the movements on the apron are simulated and the aircraft
take other moving aircraft into account due to the rule-based modeling. This simulation of
ground operations allows for, e.g., the estimation of taxiing durations and the evaluation
of resulting ground delays. A useful feature is the integrated reporting function in Air-
TOP [12] because it allows us to comprehend the simulation result, which is one of the key
elements of a what-if tool. As an example, reports are available regarding various delays,
runway throughput, used aircraft stands, and burned fuel. In conclusion, any property of
any object can be reported, which enables the user to obtain the desired information.

2.3. Former Approaches

This subsection provides a description of existing research works regarding the usage
of airport simulation for what-if purposes.

Timar et al. [13] developed a prototype what-if tool in regard to the prediction of traffic
performance at airports. The aim of this tool is to minimize the effects of demand peaks
that lead to imbalances at the airport if they exceed the airport’s capacity. The tool utilizes
flight plan information, an airport and airspace model, and flow management regulations
as input data. In terms of the forecast tool, the used motion model is based on a node–link
graph displaying the airport layout, where the nodes represent aircraft stands, runways,
and airside fixes and the links map the taxiways and airside routes by connecting the nodes.
Furthermore, the nodes have a service time and therefore only allow for the passing of a
specified number of movements. Besides the motion model, the prototype what-if tool
consists of a departure management emulation to test various flow management actions for
the departing traffic. The different departure management actions can then be compared
because the fast-time simulation forecasts the traffic with and without the chosen actions.
Finally, the results are evaluated by means of KPIs [13].

Another approach was given by Zografos et al. [14] with the decision support tool
“Supporting Platform for Airport Decision Making and Efficiency Analysis Decision Sup-
port System” (SPADE DSS). The system enables the evaluation of effects on the airport’s
performance that occur due to adjustments carried out by the user. These adjustments
are divided into three categories: infrastructural changes (e.g., an additional runway);
operational changes (e.g., new flight procedures); and traffic changes, such as flight diver-
sions. In general, the approach is applied with use cases, which are pre-defined simulation
configurations. SPADE DSS relies on fast-time simulation as part of its control component.
Depending on the use case, different tools are selected that are based on microscopic or
macroscopic models. These tools are used for the execution of the use cases and to evaluate
the airport’s performance, e.g., airport capacity, level of service, and delays. The design of
this what-if tool supports the decision-making on a strategical or tactical level.

Günther et al. [15] discussed the idea of coupling a pre-tactical planning system
with a fast-time simulation to support the DLR’s concept of “Performance-Based Airport
Management (PBAM)”, providing certain KPIs as drivers for airport steering and control.
For this purpose, a predefined data set, including target times at the runway (planned by
the pre-tactical planning tool “Total Operations Planner”), estimated times, and actual times
(derived from an AirTOP simulation), was exchanged. The implementation was realized
by running cycles of the following steps: the fast-time simulation stops the simulation at a
defined time; the planning tool receives estimated and actual times plus flight diversions at
the time the simulation freezes to update its own airport operations plan data; the planning
tool calculates times for a defined forecast time horizon; and the fast-time simulation
sets time constraints depending on this plan and resumes the simulation. The results
showed that both systems were able to properly handle the data computed by the other
tool. Furthermore, appropriate KPIs in terms of delay could be determined.
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3. Method

In this section, the approach to the comparison of the airport simulation models
is described. The focus is on the simulation setup and process, the parameters to be
researched, and the validation method for the different forecasts. As an initial step, the
general validation design is outlined, followed by the traffic scenario selection and the
transfer to the individual simulation setups. This section is concluded by a selection of
comparison parameters.

3.1. Validation Design

The general research question of which airport simulation model is most suitable for
a what-if tool was answered by a comparison among flow, event, and motion models. A
comparison of simulation models can be performed regarding multiple aspects. In the
case of a what-if tool, two general factors are of major importance. On the one hand, the
prediction must be precise enough to ensure effective actions (e.g., flight cancellations, calls
for additional staff) from the airport management. On the other hand, the prediction must
be available in a short amount of time to allow for the conduction of multiple scenarios
and enable a structured decision-making process among the stakeholders.

The comparison in terms of precision and calculation speed was performed as an
experiment with four conditions. Each of the three simulation models was validated within
one condition. Additionally, a baseline was necessary as a fourth condition to evaluate the
precision of the models. The baseline contained the actual flight times while the simulation
models were challenged by operational flight plan data.

As a what-if tool has the potential to provide support in a broad range of operational
situations, a large set of possible operational scenarios must be considered within a compar-
ison. This study concentrated on one nominal scenario without weather limitations and on
a second non-nominal scenario where weather is a major restriction to flight operations. In
evaluating these two situations, an insight into the performance of the simulation models
will be provided. An overview of the validation design is provided in Figure 1.
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Figure 1. Validation design.

Each simulation model can be viewed as part of a so-called ‘input–output transforma-
tion’. A general representation of such a transformation can be seen in Figure 2. As its name
implies, input data are added to a system where the data will be processed. Afterwards,
the system returns the data as a transformed output [16].
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Figure 2. Input–output transformation (based on [16]).

The aim of our approach is to validate whether the models represent the real system
properly, especially in terms of predicting the outcomes of chosen actions, which means
the future behavior. Therefore, a comparison with historical data (actual flight times) is
necessary. We are aware that our approach has a limitation because the actual processes
and actions inside the system, e.g., stakeholder decisions, are unknown to us. Therefore,
we had to deduce possible actions that were applied in reality.

3.2. Scenario Selection and Analysis

The comparison was based on the airport data from Oslo Gardermoen as shown
in Figure 3. Oslo operates with two independent runways. The terminal is located be-
tween these runways. Oslo has been subject to multiple airport management simulations
conducted by the German Aerospace Center [17,18]. Therefore, knowledge about the oper-
ational procedures is available. Moreover, Oslo will also be subject to a human-in-the-loop
simulation that assesses the benefits of what-if from a user perspective [3]. Using the same
data set as in this human-in-the-loop simulation enables a comparison between the user
demand and the potential raised within this study in future work.
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Figure 3. Oslo Gardermoen airport (with north located to the left) [19].

In addition to the airport selection, traffic and weather conditions need to be defined.
As stated above, one nominal case and one non-nominal case were evaluated. Judging
the precision and calculation speed under these conditions requires real-world complexity
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within the data. Therefore, two days of operation at Oslo airport were chosen. The flight
plan data and the weather data of these days served as the input for the simulation models.
The actual flight times provided the baseline results to be compared with the results of each
simulation model.

3.2.1. Nominal Scenario

As a nominal day of operation, 15 July 2020 was chosen. The flight plan includes
339 flights and was provided by EUROCONTROL’s Demand Data Repository (DDR2),
which has been used as a source for various studies (e.g., [20–22]). DDR2 provides SO6
files that are distinguished in two models: M1, which contains trajectories computed by
the last filed flight plan, and M3, which is a modified M1 model updated with radar
information [23]. M3 is regarded by the network manager systems as flown trajectories.

The Meteorological Aviation Routine Weather Report (METAR) [24] describes the
weather on 15 July 2020 as stable with air pressures between 1012 hPA and 1009 hPA,
temperatures in the range from 12 ◦C to 19 ◦C, and temporary showers in the evening. No
special weather events (e.g., fog or thunderstorms) were reported. Icing conditions were
not present due to the temperature. Therefore, it was concluded that flight operations were
not affected by the weather.

An analysis of the trajectory data reveals runway 01L as the active runway throughout
the entire day. Although Oslo airport owns two runways (01L and 01R) [25], only runway
01L was utilized due to the impact of COVID-19 on the global air traffic and the resulting
low traffic volume [26].

3.2.2. Non-Nominal Scenario

For the non-nominal scenario, 20 October 2020 was chosen. The flight plan data were
provided by DDR2 and, besides a similar traffic volume (338 flights), it was taken into
consideration that the utilized runway direction (01L) is identical to the nominal scenario.
This ensured comparability between the two scenarios.

According to METAR data, the temperatures were in the range from 0 ◦C to 2 ◦C and
rain showers with a temporary transition to snowfall occurred the entire day. A phase
of significant snowfall was reported from 01:00 a.m. to 11:00 a.m. UTC. These weather
conditions are a common challenge for Oslo airport in the winter season [1].

Based on the weather conditions and the traffic data, operational limitations can be
derived. Snowfall affects the runway system by covering the surface and reducing friction.
Therefore, snow removal is an important action to take to ensure safe runway operations.
We analyzed the timestamps of the runway movements to find gaps greater than 15 min
between two consecutive movements that could indicate a temporary runway closure for
snow removal during the period of snowfall (cf., Figure 4).

Additionally, the real flown trajectories (arrival and departure flights) of the respective
days were considered in order to precisely determine the timestamps since the gaps between
two movements are not the sole indicator of snow removal. Gaps greater than 15 min were
excluded if they occurred during periods of low traffic demand, e.g., from 00:00 a.m. to
05:00 a.m. UTC. Afterwards, four striking timestamps were apparent on 20 October 2020,
namely at 05:40 a.m., 07:10 a.m., 08:30 a.m., and 10:25 a.m. UTC, where each gap was about
20 min between two movements. In our view, it can be concluded that these four gaps
resulted from the removal of snow from the runway because of their consistent interval (in
each case, 90 min) and the nearly identical duration of the gap. Furthermore, the trajectories
(cf., Figure 5a) revealed that arrival flights were subject to delaying maneuvers by the air
traffic control. Aircraft flew holding patterns at each of the four timestamps and were
affected by path-stretching on the point merge leg. This suggests that the runway was
closed, and the aircraft were delayed for this reason. Figure 4 shows that there are two
gaps that are longer and one gap that is slightly shorter than 15 min between 08:00 a.m.
and 09:00 a.m. UTC on 15 July 2020. These gaps are not as consistent and do not have
an identical duration like the ones on 20 October 2020. Beyond that, Figure 5b shows
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the real flown trajectories of arrival flights on 15 July 2020, and it points out that arrival
flights were not subject to delaying maneuvers such as holding patterns or path-stretching.
Therefore, we can assume that these gaps occurred due to a period of low traffic demand.
As a conclusion of our conducted data analysis, we determined a duration of 20 min for
the snow removal action.
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Besides snow removal, winter conditions can limit airport operations by additional
de-icing of the aircraft. De-icing is necessary because the aircraft surface has to be clean
of any contamination, such as ice, slush, or snow, in order to ensure controllability and
unimpaired aerodynamic performance [27]. This is the case when significant snowfall
occurs as happened between 01:00 a.m. and 11:00 a.m. UTC on 20 October 2020. According
to International Civil Aviation Organization (ICAO) Doc 9640, ice or frost can form on the
aircraft surface even at temperatures above the freezing point (e.g., after 11:00 a.m.) [28].
The effects on each individual flight could not be derived from the provided data. Therefore,
it was assumed that a so-called ‘one-step’ de-icing procedure [28] for all departing aircraft
from 01:00 a.m. to 11:00 a.m. was applied. The duration of this one-step de-icing procedure
can be determined from the required quantity of de-icing fluid per aircraft type and the
fluid application rate of the de-icing vehicle. Table 2 lists the recommended amounts of
de-icing fluid per aircraft type in liters [29].
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Table 2. Aircraft-type-specific amount of de-icing fluid (data from [29]).

Airbus
A300

Airbus
310

Airbus
A320

Airbus
A330/340

Airbus
A380

Boeing
736/7/8

Boeing
747-8

Boeing
777ER

363 l 370 l 230 l 580 l 1130 l 230 l 875 l 705 l

An example of a typical de-icing vehicle is the Vestergaard “Elephant BETA-15”. It is
capable of de-icing aircraft up to an Airbus A380. The fluid application rate ranges from
20 L/min to 240 L/min [30]. This results in two duration values, which is why the mean
of both values was taken as the standard duration for the fluid application. Because of
an information shortage regarding the technical functionality of the de-icing vehicle, we
took the mean of the minimum and maximum duration values instead of calculating a
duration on the basis of the average fluid application rate. Table 3 shows the results of
this calculation. The duration resulting from using the maximum fluid application rate is
labeled as “Min”, whereas the duration resulting from using the minimum fluid application
rate is labeled as “Max”.

Table 3. Aircraft-type-specific duration for fluid application (in minutes).

Airbus
A300

Airbus
310

Airbus
A320

Airbus
A330/340

Airbus
A380

Boeing
736/7/8

Boeing
747-8

Boeing
777ER

Code letter D D C E F C F E

Min 1.5 1.5 1 2.4 4.7 1 3.6 2.9

Max 18.2 18.5 11.5 29 56.5 11.5 43.8 35.3

Mean 9.85 10 6.25 15.7 30.6 6.25 23.7 19.1

To include these values in the simulation models, a generalization was made. The
aircraft-type-specific durations for fluid application were merged into their respective
aircraft size category according to the code letter of the ICAO aerodrome reference code
(A to F). If there were discrepancies between the aircraft types of the same code letter, the
greater value was used. In addition, the duration for aircraft of code letters A and B had to
be assumed because of a lack of data. The aircraft size category-specific durations for fluid
application, which were considered in the simulation model, are presented in Table 4.

Table 4. Aircraft size category-specific duration for fluid application (in minutes).

A B C D E F

5 5.5 6.25 10 19.1 30.6

3.3. Simulation Configuration
3.3.1. Flow Model

The DLR flow model requires the capacity to be expressed as the number of maximum
flights per hour an airport resource is able to handle (e.g., 30 flights per hour for the
arrival runway). The capacity was derived from the Aeronautical Information Publication
(AIP) [25] and the information published by Oslo airport within EUROCONTROL’s airport
corner [26]. Besides capacity, the demand, which means the number of arriving and
departing flights per hour, is mandatory as an input for the flow model. The number of
flights was derived from an analysis of the flight plan data. Figure 6 shows an extract and
visualization of the input data.
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The flow model provides primarily the traffic flow as an output. The traffic flow is
the number of flights on an hourly basis that is handled by a resource. Moreover, the flow
model calculates the number of delayed flights.

3.3.2. Event Model

The DLR milestone simulation, as the representative for event models, requires a
minimum data set of the flight identifier, origin, destination, scheduled in-block times, and
scheduled off-block times for each flight. Therefore, the provided flight plan data were used.
Additionally, an assignment to the used runways, handling teams, and stand is necessary.
The runway assignment was retrieved from the real flight trajectories as these provide the
runway in use. The handling teams were assigned based on a simple scheduling algorithm
because operational data were not available. The stand assignment was derived from the
automatic assignment done by the motion model (cf., Section 3.3.3) to ensure comparability
among the models.

Additionally, the milestone simulation requires process durations (e.g., for the final
approach, taxi process, and ground handling). These data were taken from the previous
Oslo project [17], where an operational analysis was conducted. Figure 7 shows an overview
of the derived values.

The milestone simulation provides the actual times as defined within the Airport
Collaborative Decision-Making (ACDM) Manual [9] as a result. Based on a comparison
of scheduled and actual times, flight plan deviations can be calculated and the number of
delayed flights can be derived.
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3.3.3. Motion Model

In terms of AirTOP, the simulation setup consists of the ground layout of Oslo airport
and the related TMA. Both parts are modeled pursuant to the Norwegian AIP [25]. The
ground layout comprises the runway system, taxiways, aircraft parking stands, and de-
icing platforms. Regarding the TMA, the setup includes the flight procedures for departures
and arrivals in detail until the first en route waypoint (departures) or from the last en route
waypoint (arrivals). Additionally, the flights fly directly to their destination from the first en
route waypoint (origin, Oslo) or fly directly from their origin to the last en route waypoint
(destination, Oslo). Furthermore, speed and altitude restrictions can be applied and a wake
turbulence separation can be set up [12]. AirTOP takes into account operational limitations
such as snow removal and de-icing, which are described in Section 3.2.2. The traffic
data for the flight plan were obtained through the DDR2 provided by EUROCONTROL
(cf., Section 3.2.1). In each case, the created flight plans cover the aircraft movements of the
entire selected day at Oslo airport. Additionally, the flight plans are linked, which means
that a turnaround is considered.

Regarding the flight rules, the specifications of ICAO Doc 4444 [31] were respected in
order to establish sufficient separation between the aircraft. If there were specific regulations
concerning Oslo Airport, the Norwegian AIP was considered. The aircraft performance
model is based on information from EUROCONTROL’s base of aircraft data (version 3) [32],
which means that the aircraft’s motion could be simulated.

3.4. Evaluation Criteria

The simulation models were compared regarding accuracy and calculation speed
(cf., Section 3.1). A high degree of accuracy allows the operators within airport management
to improve their decisions as they have a better awareness of the future situation. A high
calculation speed enables the conduction of a large set of scenarios as well as a fast transition
from a situation assessment to a decision and the performance of an action [33]. For both
dimensions, appropriate comparison indicators, so-called KPIs, need to be defined.

Accuracy has to be considered in detail. Airport management is an opportunity to
react to crises and disruptions in operations. If flights become delayed, appropriate actions
need to be considered. Therefore, it is necessary to understand where potential bottlenecks
will occur and how many flights will be delayed. As such, the accuracy of the simulation
model can be quantified by measuring the number of delayed flights. A flight is considered
to be delayed when it is more than 15 min behind its schedule [34]. The closer the number
of delayed flights calculated by the model is to the real number of delayed flights, the more
accurate the model.
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The number of delayed flights was calculated for each resource (arrival runway, stands,
ground handling, and departure runway) so that the bottleneck could be located. The
resources were subdivided into related phases (landing, in-block, takeoff, and off-block).
KPI 1 is therefore the number of delayed flights per phase. It should be noted that negative
delays (flights that arrive before their scheduled time) were ignored within this indicator.
The number of delayed flights is sufficient to assess the impact of a certain event.

Nevertheless, from a decision-making point of view, different solutions need to be
compared. In this case, the delayed flights might be misleading as the number of flights
does not provide information on the level of delay. As a consequence, the average deviation
per flight in comparison to the real average deviation per flight was used to additionally
assess the models’ accuracy. The deviation of a flight was defined as the difference between
the actual time and the scheduled flight plan time within the landing, in-block, takeoff, and
off-block phases. KPI 2 is therefore the average deviation per flight considering each phase.

The calculation time, as the third indicator, is a broadly used concept, but requires a
detailed definition to provide valid conclusions. In airport management, time is a critical
resource due to the large set of data elements, possible actions, and participating parties
within the decision-making process [35]. Calculating the impact of a certain action manually
is in principle possible as only basic knowledge of mathematics is necessary. The impact of
a runway closure for instance can be calculated by shifting the first impacted flight by the
duration of the closure and deriving the times for all following flights out of the maximum
of the earliest runway time and the separation to the preceding flight. As a large number
of flights and the effects on the resources (e.g., the stand usage, turnaround, and aircraft
rotation) need to be considered, a manual calculation is not performable within a reasonable
amount of time [17]. This is even more the case if multiple cases need to be evaluated. As
such, the calculation time should be reduced by the what-if tool to a minimum so that
operators have more time to make their decisions. The calculation time was measured as
the time from the start of the simulation until the end of the simulation, which corresponds
to the computation time. Additional time to present and understand the provided data
was not considered within the indicator as this is a graphical design issue and outside the
scope of this study. KPI 3 is therefore the average calculation time, which was derived after
50 replications.

It was assumed that models that simulate the airport in more detail (continuous rather
than discrete models) gain a higher accuracy but require more calculation time.

4. Results

In this section, the results of each model’s simulations are presented, focusing on the
three KPIs that were specified in Section 3.4. Since we simulated two real days of operation
(cf., Section 3.1), real data exists and can be used for comparison. Unfortunately, no real
data were available for the in-block phase because the trajectory contained in the SO6 files
ends at the aerodrome reference point.

4.1. KPI 1—Number of Delayed Flights

The analysis of the nominal scenario provided the following numbers of delayed
flights. In reality, two arrivals and one departure were delayed within the corresponding
phases. The flow model showed no delayed flights in any phase, whereas the event model
and the motion model calculated in each case more than five delayed flights for the off-block
and takeoff phases. Table 5 lists the complete values regarding the number of delayed
flights per phase for the nominal scenario.



Aerospace 2022, 9, 389 13 of 20

Table 5. KPI 1: Number of delayed flights per phase (nominal scenario).

Real Data Flow Model Event Model Motion Model

Landing 2 0 2 0

In-Block not determinable 0 2 0

Off-Block 1 0 7 6

Takeoff 1 0 7 6

In comparison to the real data, it can be seen that the off-block and takeoff phases
have more delayed flights than the landing and in-block phases within the event model
and the motion model. The real data show a different effect. Here, the off-block and
takeoff phases have fewer delayed flights. If we look at the three different simulation
models, we see that the motion model has fewer delayed flights than the event model
within each phase but more delayed flights than the flow model in the case of the off-block
and takeoff phases. The simulation results’ discrepancy from the real data is 0% (event
model) and −1.19% (flow model/motion model) for the in-block and landing phases and
−0.58% (flow model), 3.51% (event model), and 2.92% (motion model) for the off-block
and takeoff phases regarding the number of delayed flights per phase in the nominal
scenario. In summary, the maximum discrepancy of the flow model occurs within the
landing and in-block phases with −1.19%, whereas the event and the motion models show
the highest discrepancy compared with the real data within the off-block and takeoff phases
(3.51% and 2.92%, respectively).

The analysis of the non-nominal scenario provided the following numbers of delayed
flights. In reality, 37 flights within the landing phase, 44 flights within the off-block phase,
and 48 flights within the takeoff phase were delayed. The flow model showed no delayed
flights within the landing and off-block phases, just two delayed flights within the in-block
phase, and 56 delayed flights within the takeoff phase. The event and the motion models
calculated more than eight delayed flights for each phase. Table 6 lists the complete values
regarding the number of delayed flights per phase for the non-nominal scenario.

Table 6. KPI 1: Number of delayed flights per phase (non-nominal scenario).

Real Data Flow Model Event Model Motion Model

Landing 37 0 18 16

In-Block not determinable 2 18 14

Off-Block 44 0 9 13

Takeoff 48 56 26 38

It is evident that more flights were delayed in the non-nominal scenario than in the
nominal scenario due to the influence of snowy weather. It can be observed that the
simulation models have fewer delayed flights per phase than the real data except for one
value. The exception is in the case of the takeoff phase, where only the flow model calculated
more delayed flights. There is not an obvious trend apparent among the prediction tools
as to which model reproduces the real data most precisely. Within the landing phase, the
flow model shows a discrepancy compared with the real data of −22.2%, the event model
shows a discrepancy of −11.4%, and the motion model shows a discrepancy of −12.6%. In
the case of the in-block phase, a comparison to the real data was not possible, but here the
flow model shows the fewest delayed flights and the event model the most. Regarding the
off-block phase, the flow model has a discrepancy compared with the real data of −25.7%,
the event model has a discrepancy of −20.5%, and the motion model has a discrepancy of
−18.1%. Lastly, within the takeoff phase, the flow model has more delayed flights than
the real data with a discrepancy of 4.68%, whereas the event model deviates by −12.9%
and the motion model by −5.85% from the real data. Taken together, regarding KPI 1, the
maximum discrepancy of each simulation model compared with the real data occurs within
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the off-block phase. The flow model shows a discrepancy of −25.7%, the event model
shows a discrepancy of −20.5%, and the motion model shows a discrepancy of −18.1%.

4.2. KPI 2—Average Deviation per Flight

Turning to KPI 2, the results regarding the nominal scenario show the following
average deviation per flight and phase. Unfortunately, the flow model provides no results
for KPI 2 because of its reduced complexity regarding the calculation. As mentioned in
Sections 2.2 and 3.3.1, the flow model shows capacity constraints when comparing flow
values with capacity values for different phases. Specific delays for each flight are not
within the scope of the calculation. In reality, each phase shows a negative average deviation
per flight with the largest deviation in the case of the landing phase. Consequently, each
simulation model has a larger average deviation per flight than the real data for each phase.
Figure 8 shows the results regarding the average deviation per flight and phase for the
nominal scenario.
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If we compare the two simulation models, we can see that the event model only has a
positive deviation in each phase, whereas the motion model shows a negative deviation
within the in-block phase. The largest discrepancy between the simulation models and
the real data was determined for the landing phase with a difference of 11 min (event
model) and 10.8 min (motion model). The discrepancy between the simulation models and
the real data was much lower for the off-block and takeoff phases. Within the off-block
phase, the difference was approximately 2.1 min for the event model and 1.4 min for the
motion model. In the case of the takeoff phase, the event model deviates from the real data
by approximately 2.6 min and the motion model deviates from the real data by 1.4 min.
Regarding the nominal scenario, the motion model is the prediction tool that is closest
to the real data in each phase. The event model always has a larger deviation than the
motion model.

Looking at the non-nominal scenario, the results of KPI 2 show a major difference to
the nominal scenario because the event model and the motion model have a smaller average
deviation per flight than the real data for each phase. The largest discrepancy between the
real data and the simulation models occurs within the off-block phase. Figure 9 shows the
results regarding the average deviation per flight and phase for the non-nominal scenario.
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The event model and the motion model show similar trends of deviation values though
the deviation is the opposite within the in-block phase. The difference to the real data
within the landing phase is approximately 1.8 min for the event model and 1.6 min for the
motion model. The largest difference between the real data and the simulation models is
present within the off-block phase. Here, the event model deviates from the real data by
approximately 7.1 min and the motion model deviates by 6.1 min. The takeoff phase shows
the smallest discrepancy between the real data and the simulation models. The discrepancy
is approximately 0.4 min for the event model and 0.02 min for the motion model. If we
compare the simulation models, we see that the event model and the motion model have
the largest difference to one another within the in-block phase (3.5 min). The diagram in
Figure 9 shows that the results of the motion model are closest to the real data. This is
consistent with the nominal scenario, where the motion model also delivered the results
that are closest to the real data. Therefore, we can conclude that the motion model has the
smallest discrepancy compared with the real data in the case of KPI 2.

4.3. KPI 3—Calculation Time

Turning now to KPI 3, the results regarding the average calculation time of each
simulation model are presented in Figure 10. As mentioned in Section 3.4, the average
calculation time was determined after 50 replications and comprises only the duration
from the start of the simulation to the end of the simulation. It can be seen that there is a
difference between the three prediction tools. Regarding the nominal scenario, the flow
model has the shortest average calculation time (0.01 s), the event model has an average
calculation time (1.18 s), and the motion model has the longest average calculation time
(81.36 s). In relative terms, the flow model takes 0.012% of the motion model’s calculation
time to compute the results and the event model’s calculation time is 1.45% of the motion
model’s calculation time.
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In the case of the non-nominal scenario, the flow model underlines the findings of
the nominal scenario with an average calculation time of 0.01 s. Again, this is the shortest
average calculation time among the simulation models. The event model takes 1.19 s of
computation to calculate its results, whereas the motion model has once again the longest
average calculation time (92.46 s). In relative terms, the flow model takes 0.011% of the
motion model’s calculation time to compute the results and the event model’s calculation
time is 1.29% of the motion model’s calculation time. Generally speaking, no difference
was found between the nominal scenario’s calculation time and the non-nominal scenario’s
calculation time regarding the flow model. The calculation time of the event model and
the motion model was always less in the case of the nominal scenario compared with the
non-nominal scenario. Taking into consideration both scenarios, we can conclude that the
flow model has the shortest average calculation time among the simulation models.

5. Discussion

In this section, we discuss the simulations’ results and give a critical analysis regarding
the assessment of the prediction tools.

5.1. KPIs

The results of KPI 1 regarding the nominal scenario show that there is only a slight
discrepancy between the real data and the flow model/motion model for the landing
phase. A larger discrepancy was noted for the off-block and takeoff phases. A possible
explanation for this difference is that flights have a negative delay in the real data, which
means that their real off-block time was earlier than their scheduled off-block time. Early
arrivals are not considered by all simulation models since they depend on factors beyond
the particular airport (e.g., the situation at the departure airport or en route weather
conditions). Therefore, the largest discrepancy between the real data and the results of the
event model and the motion model appears for the off-block and takeoff phases. When
looking at the non-nominal scenario, the primary cause of the discrepancy for the landing
phase was the occurrence of an Air Traffic Flow Management (ATFM) delay within the
real data. It can be noted that 80 out of 167 arrivals were affected by ATFM regulations on
this day. No prediction tool considers such regulative actions, since ATFM regulations are
issued due to capacity constraints within the network. As en route sectors are not within the
scope of the simulation tools, these effects could not be considered. One can observe from
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Table 6 that there were no delayed flights within the landing phase in the case of the flow
model because this prediction tool prioritizes arrival flights when single-runway operations
are in use. Consequently, this leads to a large number of delayed flights within the takeoff
phase. The delayed flights within the in-block phase are a consequence of occupied aircraft
stands because the flow model considers capacity values for aircraft stands (cf., Figure 6).
Exceeding the capacity values leads to delayed flights. With regard to the off-block phase,
the flow model has a specific handling capacity (cf., Figure 6). If the demand exceeds
the capacity, aircraft have to wait and will become delayed. This is a different approach
compared with the event model and the motion model, where delays are caused by the
landing delay plus the taxiing delay (in-block) as well as the rotational delay (off-block).
There is no evident trend apparent with KPI 1 to finally assess the three different prediction
tools, which is why we have to take a look at KPI 2.

Regarding KPI2 and the nominal scenario, the large negative deviation in the real
data for the landing phase is very likely a result of the flight time planning. In reality, the
scheduled flight times are calculated with additions to cover minor contingencies, whereas
the scheduled simulative flight times do not have such additions. As was mentioned for
KPI 1, the prediction tools cannot have negative deviations within the off-block phase. The
results of KPI 2 show that the motion model is the only simulation model with a negative
deviation in the case of the in-block phase. This result could be explained by the calculation
of the in-block deviation. According to the Norwegian AIP, a taxiing time of 10 min has
to be considered for flight planning of the scheduled arrival time [25], but the simulation
results reveal that none of the 168 arrivals had a taxiing time equal to or greater than
10 min. Therefore, most of the flights arrived before their scheduled in-block time at the
respective aircraft stands. Looking at the non-nominal scenario, the foremost cause of the
discrepancy between the real data and the simulation models for the landing phase was the
ATFM delay. The larger landing deviation in the real data then leads to a higher average
off-block deviation because of the aircraft turnaround. Additionally, departing flights are
also affected by ATFM delays, but this affected just 4 out of 171 flights. As was mentioned
for the nominal scenario, the discrepancy between the event model and the motion model
within the in-block phase can be explained by the calculation of the in-block deviation
for the motion model. Taken together, we can derive from KPI 2 that the motion model
delivered the results that came closest to the real data. The flow model showed an inability
to compute results for this KPI, thus indicating a disadvantage in terms of accuracy.

The results of KPI 3 are in line with the expectations because, on the one hand, the
motion model provides the most detailed forecast (cf., Section 2.2), thus leading to a higher
calculation time. On the other hand, the flow model has the lowest accuracy but the fastest
calculation time. The event model lies between the flow model and the motion model. This
matches the findings because its accuracy lies between the two other simulation models.
The calculation time needs to be regarded in reference to the available overall decision time
because it is a subprocess within the decision process. Thus, the calculation time needs to be
lower than the decision time. Additionally, the lower the calculation time, the more what-if
cases can be calculated, which offers the possibility of assessing unlikely weather situations
as well as a larger set of solutions. Previous human-in-the-loop experiments considered a
decision time of 45 min [35]. The results of KPI 3 show that each simulation model has a
calculation time that falls inside this timeframe. The flow model enables approximately
120 times as many runs as the event model and 8136 to 9246 times as many runs as the
motion model. The event model can calculate 69 to 78 times as many runs as the motion
model. On the basis of KPI 3, no simulation model can be regarded as unsuitable for a
what-if tool, so the choice rests with the user and is dependent on the available calculation
time within the overall decision time.

5.2. Summary

To sum up, the results show that no prediction tool outclasses the others in terms
of accuracy and calculation time, although the flow model could not provide results for
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KPI 2. Therefore, it would be necessary to define thresholds for the KPIs in the case of
determining an acceptable model. The acceptable accuracy of a prediction tool is strongly
dependent on the respective airport. The prediction tool may be less accurate if more free
resources are accessible at the airport. In terms of an acceptable calculation time, this KPI
is strongly dependent on the available decision time. If the stakeholders have more time
for the decision process, higher calculation times are tolerable. This leads to the following
conclusion. The selection of a prediction tool has to be made in dependence of the airport
and the decision processes. The presented results show the advantages and disadvantages
of each tool and, therefore, provide a first quantification by which a selection can happen.
Besides accuracy and calculation time, the effort or expertise required to prepare and set up
the simulation models should be considered as well. If a data base is available with existing
capacity values, the effort required to use the flow model is low. In this case, and given the
assumption that the average deviation is not necessary as an output, it is a suitable tool for
what-if purposes. In contrast, simulation models such as the motion model require much
more expertise to use. Here, an expert would be necessary for the use of this tool. If such
an expert exists, a motion model would be suitable for what-if purposes.

6. Conclusions

The fundamental research question stated in the introduction was to determine which
simulation model is most suitable for what-if purposes. The literature review discovered
that a large number of airport simulation models exist, but a comparison of the four basic
model types (cf., Section 2.1) in terms of what-if has not been conducted thus far. In this
study, we investigated three different simulation model types by means of two days of
operations (one day without the influence of weather effects on the airport and one day
where snowfall affected an airport). These scenarios were replicated in each simulation
model and afterwards simulated. To analyze the results, we defined three KPIs that enable
a comparison with the real data and among the simulation models. These KPIs are the
number of delayed flights per phase, the average deviation per flight and phase, and the
average calculation time of the simulation models. The results of KPI 1 show no evident
trend as to which simulation model came closest to the real data. Regarding KPI 2, it became
clear that the motion model had the smallest discrepancy compared with the real data,
whereas the flow model could not provide results for this KPI. In case of KPI 3, the flow
model demonstrated its advantage in calculation time compared with the event and motion
models. In general, the results suggest that, as expected, calculation time and accuracy
are opposed. The model with the highest accuracy has the longest calculation time and
vice versa. A consequence of this is that the simulation model has to be chosen regarding
the circumstances at the airport. The flow model is suitable for airports where capacity
values are known and where the what-if tool is exclusively used for quick decisions by the
operational staff. In the case of accuracy and calculation time, the event model represents a
trade-off between the flow model and the motion model. In our opinion, it is appropriate for
airports where the durations of the operational processes and operational dependencies are
known. Additionally, the airport should occasionally have simulative expertise available
for the set-up and adjustment of the model. The motion model is an appropriate what-if
tool for airports that have simulative expertise continuously available in the form of human
simulation experts. This is necessary, because the set-up and operation of the tool requires
much more effort and experience compared with the two other simulation models.

The present findings may help with the application of a what-if tool for airport
management decisions. Future work should focus on quantification of the state model
as well as evaluation with other operational scenarios. Future work should focus on the
acceptance and application of the considered simulation models by the proposed users
since they are not simulation experts. This may be a suitable additional KPI that supports
the identification of the simulation model that is best placed to act as a prediction engine
for what-if systems. A constraint of our research is the focus on Oslo airport. It would be
possible to simulate various airports and analyze whether the results are different to the
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findings of the present paper. Moreover, advancing automation regarding the calculation
time and event transmission is a vital issue for future research. As an example, the required
simulative expertise as well as preparation and calculation times can be reduced by digital
automation. In particular, the motion model has a broad range of interfaces to communicate
with the tool. This enables the possibility of implementing an automated interface that
inputs events, such as weather effects, into the simulation in the form of occupancy times,
runway closure times, and closed aircraft stands. A possible option would be automated
processing of a METAR. The design and development of a self-learning system could be
possible processes in the future.
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