
����������
�������

Citation: Zhang, S.; Kong, J.; Chen,

C.; Li, Y.; Liang, H. Speech GAU: A

Single Head Attention for Mandarin

Speech Recognition for Air Traffic

Control. Aerospace 2022, 9, 395.

https://doi.org/10.3390/aerospace

9080395

Academic Editor: Jules Simo

Received: 29 May 2022

Accepted: 21 July 2022

Published: 22 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Speech GAU: A Single Head Attention for Mandarin Speech
Recognition for Air Traffic Control

Shiyu Zhang †, Jianguo Kong †, Chao Chen, Yabin Li and Haijun Liang *

College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China;
zhangshiyu@cafuc.edu.cn (S.Z.); kongjianguo@cafuc.edu.cn (J.K.); chenchao123@cafuc.edu.cn (C.C.);
liyabin@cafuc.edu.cn (Y.L.)
* Correspondence: navyliang@cafuc.edu.cn
† These authors contributed equally to this work.

Abstract: The rise of end-to-end (E2E) speech recognition technology in recent years has overturned
the design pattern of cascading multiple subtasks in classical speech recognition and achieved direct
mapping of speech input signals to text labels. In this study, a new E2E framework, ResNet–GAU–CTC,
is proposed to implement Mandarin speech recognition for air traffic control (ATC). A deep residual
network (ResNet) utilizes the translation invariance and local correlation of a convolutional neural
network (CNN) to extract the time-frequency domain information of speech signals. A gated attention
unit (GAU) utilizes a gated single-head attention mechanism to better capture the long-range depen-
dencies of sequences, thus attaining a larger receptive field and contextual information, as well as a
faster training convergence rate. The connectionist temporal classification (CTC) criterion eliminates
the need for forced frame-level alignments. To address the problems of scarce data resources and
unique pronunciation norms and contexts in the ATC field, transfer learning and data augmentation
techniques were applied to enhance the robustness of the network and improve the generalization
ability of the model. The character error rate (CER) of our model was 11.1% on the expanded Aishell
corpus, and it decreased to 8.0% on the ATC corpus.

Keywords: end-to-end speech recognition; ResNet-GAU-CTC; air traffic control; transfer learning;
data augmentation

1. Introduction

The main task of ATC is to prevent aircraft collisions and facilitate the smooth, orderly
flow of air traffic. Control instructions are primarily transmitted through pilot-controller
voice communications (PCVCs). The accuracy of the receipt and comprehension of instruc-
tions is vital to ensure flight safety. The continuous increase in air traffic has resulted in
more planes in the air, flying on different routes in different directions, all at the same time,
which, in turn, has increased the chances of air mishaps. Efforts to address this have led
to the gradual integration of artificial-intelligence-based technologies in ATC operations,
such as controller instruction–pilot repetition consistency monitoring, and post-event voice
analysis. The application of speech recognition techniques can effectively reduce controller
workload and improve operational efficiency and safety.

In early research, the development of techniques was dominated by pattern matching.
Most of the methods were hidden Markov model (HMM)-based frameworks, where the
Gaussian mixture model (GMM) [1] was the most advanced speech recognition technique
in the early stages. Based on this framework, researchers have proposed various improve-
ments, such as dynamic Bayesian networks [2] and discriminative training [3]. With the
emergence of deep learning techniques and advances in hardware and software capabil-
ities, deep neural networks (DNNs) replaced GMM for estimating the probability of the
HMM states, resulting in the DNN-HMM framework [4–6]. However, the HMM-based
architectures still suffer from shortcomings in practical applications due to the structural
design of the cascade, including an acoustic model (AM), a pronunciation model (PM),
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and a language model (LM). Moreover, each module uses different training datasets and
training measures, and is optimized independently by different objective functions, so the
local optimality of each module is not a sufficient condition for global optimality. With the
CTC loss function [7,8] proposed by Graves, this was achieved by omitting the tedious steps
of building AM, PM, and LM separately and, instead, using a single network structure to
map variable-length speech frames directly to variable-length output labels automatically,
thus creating a new paradigm for E2E speech recognition. Due to the advantages of CTC in
applications such as automatic alignment and fast convergence, it has become one of the
mainstream approaches used in the development of speech recognition systems. Recurrent
neural networks (RNNs), long short-term memory (LSTM) [9] and gated recurrent units
(GRUs) [10], in particular, can effectively model the temporal long-range dependencies in
the audio sequences. Combining them with CTC has yielded excellent results in speech
recognition tasks [11–14]. However, the inherently sequential nature of RNNs precludes
parallelization within training examples. Recently, the transformer architecture, based on
multi-head self-attention (MHSA) [15,16], has enjoyed widespread adoption for modeling
sequences due to its ability to capture long distance interactions and its high training
efficiency. To further improve the performance of this structure, the gated linear unit
(GLU) [17], an improved multi-layer perceptron variant augmented with gating, was pro-
posed and used in state-of-the-art transformer language models [18,19]. While the standard
and improved architectures are good at modeling the long-range global context, they are
less capable of extracting fine-grained local feature patterns. At the same time, they rely
heavily on the attention mechanism, and the weight parameters increase with the number
of attention heads, which greatly increases the computational burden.

In this investigation, we consider that both global and local interactions are important
for being parameter efficient and examine how to improve computing efficiency. We
propose that a novel combination of ResNet [20] and GAU [21] will achieve the best of both
worlds—a deep residual convolutional framework can capture the relative-offset-based
local correlations of audio sequences progressively via a local receptive field layer-by-layer
whilst a simpler, yet more performant, layer than the other transformer architectures, is
used to learn content-based global interactions. The remainder of this paper is as follows:
Section 2 points out the difficulties in using speech recognition techniques in this field,
and also expounds the efforts of other researchers in the application of the techniques for
ATC. In Section 3, we introduce the implementation of transfer learning and describe the
use of data augmentation techniques to improve the robustness and generalization ability of
the network. We also describe the principle and structure of the GAU module and present
the overall framework of the model. In addition, we analyze the implementation process of
training the decoding algorithms. In Section 4, we compare the performance of different
models in the source domain. The framework proposed in this study is adjusted to different
degrees and the experimental results of the target task are compared and analyzed. Finally,
Section 5 summarizes the major findings and provides an outlook on our future work.

2. Challenges and Related Work

Over the past few years, much research has been conducted to bring speech recognition
techniques into various areas of ATC. Due to the high accuracy requirements and real-time
feedbacks of the ATC context, the techniques for ATC applications need further improve-
ment in terms of recognition rate, overall performance, and technology integration [22].
Currently, the primary challenges for implementing the techniques in ATC operations are
as follows:

• Inferior speech quality : PCVCs use radio as the transmission vehicle for control com-
mand interaction. Generally, the pilot and the controller establish a two-way voice
conversation through the transmitter and the receiver in the same designated very high
frequency channel. Figure 1a–c shows the Mel spectrogram of several ATC utterances.
Clearly, radio signals are inevitably subject to interference, distortion, deformation,
and loss during propagation. Consequently, they are vulnerable to noise through di-
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rect or indirect coupling, which can result in issues such as degraded reception quality
and communication jamming, which adversely affect speech recognition efficiency.

Figure 1. (a–c) Mel spectrogram of several ATC utterances.

• Excessive speech rate: Since ATC officers have to provide pilots with control instructions,
intelligence information, and provision of warning signals in a timely and effective
manner, they often have to speak much faster than would occur in normal daily
conversation. In busy airspace, with controllers interacting with multiple aircraft
simultaneously, the speech rate can be as high as twice the normal rate. This is
corroborated by the fact that the average speech rates in the open-source domain
training set corpus and the target domain training set corpus we used in this study
were 3.16 words/s and 4.75 words/s, respectively. High speech rates and varying
accents can adversely affect model decoding.

• Scarcity of calibration data: Most E2E systems require large training sets that have
speech data from the appropriate field with text annotations to achieve high accuracy.
These training sets could range from hundreds of hours to hundreds of thousands of
hours. In addition, the annotation of this large set of speech data requires specialized
personnel. As a result, it is a significant challenge to obtain large-scale and high-quality,
text-annotated, speech datasets relevant to civil aviation.

• Complications due to partial pronunciation: To avoid the ambiguity of terms leading to
the asymmetry of information understanding between the transmitting and receiving
ends in PCVCs, the Civil Aviation Administration of China has developed a set
of guidelines titled “Radiotelephony Communications for Air Traffic Services”, based
on the International Civil Aviation Organization guidelines, to standardize radio
communication in China. The Mandarin speech communication standard integrates
the control work experience and the daily speech habits. For example, the numbers 1
and 7 have a similar pronunciation. To avoid ambiguity, 1 (yi) is pronounced as yao,
and 7 (qi) is pronounced as guai.

In view of the above problems, researchers have carried out various studies. When
faced with the small sample problem, and misunderstandings caused by homonyms, or
near-homonyms, during PCVCs, Wang et al. proposed a new cross-lingual knowledge
transfer learning method and a semi-shared hidden layer cross-lingual DNN architecture
in which the number of hidden layers of the source language shared with the target
language are tuned and serve as universal transformations [23]. An effective combination
of unsupervised pre-training and supervised transfer learning was proposed, where the
pre-training is applied to learn speech representations from unlabeled speech samples and
the transfer learning is regarded as a subdomain adaption task [24]. A semi-supervised
training of a DNN-based AM [25] and a knowledge extraction algorithm [26] were also
applied to improve the performance of speech recognition. Zhou et al. suggested the
application of a hybrid CTC-attention model to E2E systems in ATC tasks, including the
use of CNN networks to improve the encoder architecture to address the noise problem [27].
Multiple CNN kernels, with average pooling operations, were also proposed to address
background noise and an unstable speech rate affecting ATC [28].
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3. Methodology
3.1. Optimization Measures

Speech recognition has shifted from the structure of multi-modules to an E2E model
in recent years. Instead of having separate modules, such as AM (GMM-HMM, DNN-
GMM et al.), LM (N-grams, RNNs-based et al.), and PM (phonemes to words), as in the
original system, a neural network connects the input (speech waveform or feature sequence)
with the output (word or character sequence) and incorporates the functions of the original
modules, as shown in Figure 2.

Figure 2. Comparison between traditional and E2E speech recognition.

In deep learning research, a long-standing idea is that the final performance depends
to a great extent on the data size, coverage and diversity of the training samples. How-
ever, the main problem faced by E2E systems is that the scarcity of annotated data in
some specific fields leads to serious overfitting problems in classical supervised learning.
Therefore, in this study, two approaches, knowledge transfer from auxiliary domains and
data augmentation, are proposed to improve the generalization ability of the model on the
target task.

3.1.1. Transfer Learning

Transfer learning from related domains relaxes the constraint encountered in tra-
ditional machine learning that training data and test data must have independent and
identical distributions. The use of transfer learning makes it possible to mine the invariant
essential features and structures of the domain between interrelated domains, thus enabling
the transfer and reuse of supervised information, such as annotated data between domains.

The domain consists of two components: the feature space X and its marginal distri-
bution P(x), where {x1, x2, . . ., xn} ∈ X. Given a domain D = {X, P(x)}, the task consists
of the label space Y and the target prediction function f (x). In addition, given a source
domain Ds, a source domain learning task Ts, a target domain Dt, and a target domain
task Tt (where Ds is not equal to Dt, or Ts is not equal to Tt), transfer learning uses the
knowledge in the source domain Ds and Ts to enhance or optimize the learning efficiency
of the target prediction function ft(x) in the target domain Dt.

As mentioned earlier, transfer learning addresses the scarcity of annotated data in
the civil aviation domain and for special pronunciation problems. As shown in Figure 3,
we first trained the model on the large-scale source domain Aishell corpus to obtain good
transcription capability. Subsequently, we fine-tuned and re-trained the model on the
relatively small-scale target domain ATC corpus. Eventually, the model performed well on
the source task and retained generalization ability on the target task.
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Figure 3. Transfer learning between different fields.

3.1.2. Data Augmentation

Data augmentation is a way to make limited data produce more value equivalent to
valid data in the case of the non-substantial addition of extended data. Increasing the sam-
ple size and enriching sample diversity by data augmentation can reduce the dependence
of the model on certain attributes to improve its generalization ability. However, excessive
data augmentation does not lead to the best possible model performance. Optimum model
performance can be attained only with an appropriate level of data augmentation.

The source domain that we selected from the Aishell corpus website [29] was recorded
in a quiet indoor environment. The recorded text covers eleven fields that include smart
home, unmanned vehicle, and industrial production. The basic information of the source
domain and target domain datasets were organized and compared, as shown in Table 1.

Table 1. Basic information of the datasets.

Dataset Utterances Total Time (h) Average Rate
(Characters/s)

Aishell corpus 141,600 178 3.16
ATC corpus 50,902 67 4.75

The number of samples in the Aishell corpus was approximately three times larger
than those in the ATC corpus. Their average speech rates were 3.16 and 4.75 words/s,
respectively. Most of the sample durations in the two datasets were between 2 and 8 s,
as shown in Figure 4, indicating a nearly consistent sample duration distribution.

Figure 4. Duration distribution chart of two datasets.

Three approaches were used to expand the Aishell corpus in the source domain with
reference to the basic features of the two datasets to reduce the variability in the nature of
the samples from different domains. Figure 5a shows the Mel spectrogram after visualizing
the speech signal of a certain sample in the Aishell corpus. As shown in Figure 5b, the time-
frequency masking technique in SpecAugment [30] was used. The maximum range for
setting the continuous mask in the temporal (frequency domain) axis direction is 250 ms
(100 Hz). In addition, the uniform sampling of one t ( f ) is performed in the range [0, 250]
([0, 100]), a point t0 ( f0) is randomly selected in the range [0, τ − t] ([0, v− f ]), and t ( f )
successive masks are performed along the time (frequency domain) axis starting from
the position t0 ( f0), where τ and v denote the time dimension and the frequency domain
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dimension, respectively. In the ATC domain, noise due to the interference of signals from
various sources is present in the control speech. Incorporating synthesized Gaussian noise
in the source domain data serves as an approximate simulation that is both simple and
efficient. Figure 5c displays the Mel spectrogram generated after adding Gaussian white
noise with a certain signal-to-noise ratio. As shown in Figure 5d, we performed a 1.5×
speed enhancement compared to the average speech rate of both datasets. We refer to this
speech data, after the above three changes, as the improved Aishell corpus.

Figure 5. Speech signal visualization of one utterance in the Aishell corpus. (a) Raw Mel spectrogram.
(b) Masked Mel spectrogram. (c) Mel spectrogram with Gaussian noise. (d) Mel spectrogram with
1.5× speech rate.

3.2. GAU Module

The MHSA-based transformer fully integrates global information and has powerful
parallel computing power, achieving many breakthroughs in natural language processing
(NLP) and computer vision fields. However, most transformers are still subjected to short
context sizes because of the quadratic complexity of the input length (older information has
to be discarded due to the limited memory capacity). GAU, a new transformer variant, still
encounters a quadratic complexity problem. However, it has a faster training speed, a lower
memory footprint, and better training results than the standard transformer. The core idea
behind GAU is to use self-attention and GLU as a unified layer and share as much of their
computation as possible. This not only achieves higher computational efficiency, but also
naturally empowers a powerful attention-gating mechanism. Currently, GAU has achieved
remarkable success in NLP tasks. Therefore, we explored the applicability of GAU in the
speech recognition domain in this study, with the structure shown in Figure 6.

Figure 6. GAU Module.

The input features first go through layer normalization to ensure the stability of the
distribution of each sample feature and to improve the speed of convergence of the model
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training process. After this, the input features go through the dense layer and are subjected
to a non-linear transformation to obtain the gated matrix U, and Value, Query and Key of
the computing attention scoring, respectively.

U = φu(XWu), V = φv(XWv) ∈ RT×e (1)

Q&K = φq&k(XWq&k) ∈ RT×s (2)

where X ∈ RT×e, T denotes the sequence length, e denotes the expanded intermediate size,
s denotes the head size, and φ denotes the activation function. Subsequently, the attention
score is computed with the ReLU2 activation function [31] including the relative position
bias [32]. This ensures feature sparsity to some extent and increases the bias in the attention
mapping. In addition, the gating mechanism alleviates the burden of attention, which
allows the use of a single head attention with almost no quality loss.

A = ReLU2(QKT + B) ∈ RT×T (3)

O = (U � AV)W0 ∈ RT×d (4)

where A is the attention matrix to fuse information between tokens and � denotes element-
wise multiplication. Therefore, the output O contains the interactions between tokens. Fi-
nally, the use of a dropout layer helps to avoid overfitting during the model training process.

3.3. Overall Architecture of the Model

The Mel spectrogram, as one of the visualization methods of speech signals, con-
tains both time and frequency domain information. We take it as the input of the model.
The structure of our model consists of two parts, as shown in Figure 7.

Figure 7. Overall framework of the model.

Since CNNs can provide temporal and spatial translation-invariant convolution, we
can apply them to the acoustic modeling. Furthermore, the invariance of the convolution
is used to realize local information fusion and dimension compression of time series.
Therefore, the first part consists of ResNet. When the input goes through the 7× 7 conv
layer, the convolution kernel first regularly sweeps through the input features, performs
matrix element multiplication summation on the input features within the receptive field,
and superimposes the bias. Next, the output feature map is passed to the max pooling layer
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for feature selection and information filtering. Since the pooling layer contains pre-defined
pooling functions, we replace the results of the individual points in the feature map with the
feature map statistics of their neighboring regions. Finally, the pooled feature vectors pass
through a heap consisting of different numbers of residual blocks (Figure 8) sequentially
to obtain the highly featured representations with local information interaction, where
residual connections are introduced within the blocks and between the heaps. Subsequently,
the input is passed across layers and the result of convolution is added to it to alleviate
the vanishing gradient problem caused by increasing depth in CNN. Finally, the outputs
that have built local temporal-frequential correlations are passed to the flatten layer for
dimension reduction to serve as the input for the next part.

Figure 8. Residual block in ResNet with different number of layers. (a) Residual block for ResNet34.
(b) Residual block for ResNet50.

The second part is primarily composed of several GAU modules in series. This
attention-mechanism-based module solves the problem that RNNs cannot be computed
in parallel. However, it cannot capture the word order information. Therefore, we add
absolute position coding to the input to ensure consistency in the temporal dimension.
Similarly, we connect the residuals between modules to prevent the stacked modules
capturing global information among the feature vectors from leading to vanishing gradient
and network degradation problems. Finally, the output is passed to the dense layer for linear
variation, to map the feature dimension into the classification number in each time step, and
passed through the softmax layer to calculate the final classification prediction probability.

3.4. Training and Decoding

The introduction of CTC in the training process eliminates the difficulty of alignment
due to differing lengths of input and output sequences in the speech recognition domain.
In addition, the introduction of the special character, blank enables each frame of the speech
sequence to predict the conditional probability distribution of the corresponding output
label sequence in a one-to-one manner. In a given input sequence X (x1, x2, . . ., xT) of
length T, where V′ denotes the dictionary (V′ = characters ∪ {blank}), the output vectors
yt are normalised with the softmax function, then interpreted as the probability of emitting
the label (or blank) with index k at time t.

Pr(k, t|x) = exp(yk
t )

∑k exp(yk
t )

(5)



Aerospace 2022, 9, 395 9 of 16

where yk
t represents element k of yt. For a given input sequence X, the conditional probabil-

ity of any path a in V′T is calculated as follows:

Pr(a|x) =
T

∏
t=1

Pr(k, t|x) (6)

where V′T denotes the set of all paths of length T defined on V′. The lengths of the input
speech sequence and the output path are equal in the calculation of the path probability.
This is primarily ensured by inserting blanks between the outputs and by generating
duplicate tokens. The actual speech sequence length is much larger than that of the label,
resulting in a multiple-input to single-output mapping. To obtain the predicted sequence,
path aggregation (merging identical consecutive tokens and removal of blanks from paths)
is performed, followed by the summation of all path probabilities.

Pr(y|x) = ∑
a∈β−1(y)

Pr(a|x) (7)

where β is an operator that first removes the repeated labels, then the blanks from align-
ments and β−1(y) denotes all paths corresponding to the label sequences in the set V′T .
The final objective function of CTC is the sum of the negative log probability of all tokens.
Thus, the loss can be calculated using a backward–forward algorithm and minimized by
back-propagating to train the network.

CTC(x) = −logPr(y|x) (8)

The decoding process uses a beam search rather than the traditional greedy algorithm [33].
As shown in Figure 9, the search tree is built using a breadth-first strategy and the nodes at each
layer of the tree are sorted according to the heuristic cost. After this, only a pre-determined
number of nodes are left. These nodes continue to expand at the subsequent layer while the
other nodes are clipped. The beam width can either be pre-determined or variable. The search
can be performed using a pre-determined minimum cluster width. In case no suitable solution
is found, the search can be repeated using an expanded beam width. Finally, the difference
between the search solution and the standard solution is evaluated using the Levenshtein
distance formula.

Figure 9. Beam search with beam width equal to 2.

4. Experiments
4.1. Experimental Data

The source domain dataset consists of the Aishell corpus and the improved Aishell
corpus (hereafter referred to as the expanded Aishell corpus). The training, validation,
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and test sets contain 240,196, 28,652, and 14,352 speech items, respectively. The ATC corpus
is derived from the first-line control recordings of the North China Air Traffic Control
Bureau of civil aviation of China, and the control simulation training recordings of the
Civil Aviation Flight University of China, with training, validation, and test sets containing
47,084, 2545 and 1273 speech items, respectively. In addition, the modeling unit contains
4243 Chinese characters, one special character, “blank”, and one unknown character, “unk”.

4.2. Experimental Platform

The experiments were performed on a Windows operating system. The computer
configuration was as follows: Intel Xeon Silver 4110 CPU, two NVIDIA RTX2080Ti 11 G
discrete graphics cards, 128 GB 2 666 MHz ECC memory, 480 GB SSD and a 4 TB SATA
hard disk. The Pytorch framework was used to build the neural network model.

4.3. Experimental Analysis

The input used in this study was a Mel spectrogram with shape equal to (None,
3, 64, 512), where the “None ” is variable. The four dimensions denote batch size, channel,
height, and width, respectively. In the training phase, the CTC objective function loss
was calculated using the forward–backward algorithm. The model weights were updated
using the Adam optimizer [34] with initial learning rate set to 0.0001 and hyperparameters
β1 = 0.9, β2 = 0.98, and ε = 10−9. A beam search method with a width of 5 was used
in the inference process to obtain the final prediction text. In addition, with the same
convolutional structure, we selected several representative networks, such as LSTM, GRU,
and a transformer variant (MHSA + GLU), to compare the experimental results with our
proposed outcomes in the expanded Aishell corpus. In the ATC corpus, the experimental
results were analyzed by changing the number of layers of the GAU module and by using
different convolutional structures. In these experiments, the final performance on the
speech recognition task was evaluated in terms of CER, real-time factor (RTF), total number
of parameters, running total time, and training time each step. The CER was calculated
according to the following rule:

CER =
I + D + S

N
× 100% (9)

where the denominator N represents the total length of the true label and the notation I, D,
S denote the number of the insertion, deletion, and substitution operations, respectively.
The RTF was applied to evaluate the decoding efficiency.

RTF =
Td
Ts

(10)

here, Ts is the time decoded for a speech with a duration of Td.

4.3.1. Pre-Training Results of Different Models in the Expanded Aishell Corpus

Our model architecture was based on ResNet34_GAU@24 in the pre-training process.
The specific parameter setup is shown in Table 2. In the control model, the number of layers
of MHSA+GLU was set to be the same as in our framework and we employed eight parallel
attention layers, each with a dimension of 64 [15]. In addition, there were four stacked
layers each of bidirectional-LSTM (BiLSTM) and bidirectional-GRU (BiGRU), and 512
hidden units per layer, where the trainable parameters were approximately two-thirds of
our proposed parameters.
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Table 2. Details of architecture. (input: Mel spectrogram with shape equal to (None, 3, 64, 512)).

Structural Order Output Size Parameters Setup

Conv layer (None, 64, 32, 256) k = (7, 7), s = (2, 2), f = 64

Max pooling layer (None, 64, 16, 128) k = (3, 3), s = (2, 2)

Residual block × 3 (None, 64, 16, 128) {k1, k2 = (3, 3) and f1, f2 = 64} × 3

Residual block × 4 (None, 128, 8, 128) {k1, k2 = (3, 3) and f1, f2 = 128} × 4

Residual block × 6 (None, 256, 4, 128) {k1, k2 = (3, 3) and f1, f2 = 256} × 6

Residual block × 3 (None, 512, 1, 128) {k1, k2 = (3, 3) and f1, f2 = 512} × 3

Permute (None, 1, 128, 512) (0, 2, 3, 1)

Flatten layer (None, 128, 512) start_dim = 1, end_dim = 2

GAU module × 24 (None, 128, 512) Linear1(512, 1024) for U, Linear2(512, 1024) for V,
Linear3(512, 128) for Q&K, Linear4(1024, 512) for O

Dense layer (None, 128, 4245) Linear(512, len(dict.))

The specific training process loss curve is shown in Figure 10. The number of itera-
tion rounds was 20 epochs (74,980 steps in total), with each step containing 64 samples.
During the first 9000 steps, BiLSTM had a significantly slow convergence rate. Although
BiGRU and MHSA+GLU had similar convergence rates, the loss curve of GAU had a larger
slope and decreased faster after 1000 steps. Thus, GAU had significantly faster convergence
than the other three models. During the last 9000 steps, BiLSTM and BiGRU had similar
convergence patterns, with a larger range of training loss fluctuations. In contrast, the loss
curve amplitudes for MHSA+GLU and GAU were smaller.

Figure 10. Pre-training loss of different models.

The three models were validated and tested after each training epoch. BiLSTM and
BiGRU had the lowest CERs of 15.4% and 15.7%, and 17.6% and 17.4%, as shown in
in Figure 11a,b, respectively. In comparison, MHSA+GLU and GAU achieved the lowest
CERs of 11.0% and 10.2%, and 12.5% and 11.1%, respectively. Our model reduced CERs
by 34.4% in the validation set, relative to the RNN-based model, and by 7.3% relative to
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the multi-head attention-based model. In the test set, the corresponding relative reduction
amplitudes were 36.6% and 11.2%.

Figure 11. Pre-training CER of different models. (a) CER of expanded Aishell corpus for dev. (b) CER
of expanded Aishell corpus for test.

The comparison of the four models in terms of CER, RTF, total number of parameters,
running time, and training time is shown in Table 3. The total number of parameters of
our model was 63.3 M, which was 1.35, 1.54, and 0.68 times higher than those of BiLSTM,
BiGRU, and MHSA + GLU, respectively. In addition, our model was more competitive in
recognition results, as compared to other models, with less time taken per step and total
time needed for the training process. The average RTFs for the test samples were 0.24,
0.23, 0.20, and 0.18, respectively, which means that the time consumption of the proposed
approach for decoding a 10-s speech was approximately 1.8 s.

Table 3. Evaluation metrics of different models.

Model
CER (%)

RTF Params Run Time Training Time
dev Test

ResNet34_BiLSTM@4 15.4 17.6 0.24 46.9 M 15.7 h 1.51 s/step
ResNet34_BiGRU@4 15.7 17.4 0.23 41.2 M 14.2 h 1.36 s/step

ResNet34_MHSA-GLU@24 11.0 12.5 0.20 93.2 M 13.9 h 1.33 s/step
ResNet34_GAU@24 (ours) 10.2 11.1 0.18 63.3 M 12.7 h 1.22 s/step

4.3.2. Experimental Results of GAU Module with Different Number of Layers in the
ATC Corpus

Our model achieved satisfactory results on the source task. To explore the effect of
layer changes on the final recognition results of the target task, we used the optimal weights
of GAU modules with different layers during the expanded Aishell corpus test as the
initialization parameters for training on the ATC corpus dataset. The training process
is shown in Figure 12. There were ten epochs (15,760 steps in total), with 64 samples in
each step. GAU modules with 12, 24, 36, and 48 layers all attained a fast convergence rate.
From 15,000 steps to the end of the iteration, the convergence rate was more stable as the
number of layers increased.
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Figure 12. Training loss of GAU module with different number of layers in the ATC corpus.

Figure 13a,b show a comparison of the CERs of GAU modules with different layers on
the ATC corpus validation, and on the test set. After one epoch of iteration, the CER of the
12-layer GAU module was approximately 19% and 20%, while the CERs of the 24-, 36- and
48-layer GAU modules were all approximately 15% and 16%. As the number of iteration
epochs increased, the lowest CERs for the 12-, 24-, 36-, and 48-layer GAU modules were
8.9%, 8.2%, 7.7%, and 6.8%, as well as 9.7%, 9.2%, 8.6%, and 8.2%, respectively. Furthermore,
the CERs of the 48-layer GAU module were lower than those of the 12-layer GAU module
by 23.6% and 15.5%, respectively.

Figure 13. CERs of GAU modules with different layers in the ATC corpus dataset. (a) CER of ATC
corpus for dev. (b) CER of ATC corpus for test.

As shown in Table 4, the training time increased linearly with an increase in the
number of layers and the total number of parameters of the model. This increase in the
number of GAU modules connected by residuals led to a significant improvement in
recognition accuracy.

Table 4. Evaluation metrics of GAU module with different layers in the ATC corpus.

Model
CER (%)

RTF Params Run Time Training Time
dev Test

ResNet34_GAU@12 8.9 9.7 0.16 43.6 M 1.6 h 0.74 s/step
ResNet34_GAU@24 8.2 9.2 0.18 63.3 M 2.3 h 1.03 s/step
ResNet34_GAU@36 7.7 8.6 0.21 83.0 M 3.0 h 1.36 s/step
ResNet34_GAU@48 6.8 8.2 0.23 102.7 M 3.9 h 1.76 s/step
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4.3.3. Experimental Results of Different Convolutional Architectures in the ATC Corpus

The effects of different convolutional structures on the experimental results of the
target task are shown in Table 5. To ensure the approximate number of total parameters, we
set the number of layers of the GAU module as 48 and selected VGG16, VGG19, ResNet34,
and ResNet50 as the experimental controls. No significant difference was observed in the
training time spent by each network architecture. The step durations for the four models
were 1.88 s, 2.31 s, 1.76 s, and 2.01 s, respectively, and the total training time was kept
within 5 h. The CERs of the four models on the validation and test sets were 7.1%, 6.9%,
6.8%, and 6.8%, as well as 8.3%, 8.2%, 8.2%, and 8.0%, respectively. Although the ResNet-
based model slightly outperformed the VGG architecture [35], the different convolutional
architectures did not improve the final recognition rate significantly.

Table 5. Evaluation metrics of different convolutional architectures in the ATC corpus.

Model
CER (%)

RTF Params Run Time Training Time
dev Test

VGG16_GAU@48 7.1 8.3 0.23 102.4 M 4.1 h 1.88 s/step
VGG19_GAU@48 6.9 8.2 0.25 107.8 M 5.0 h 2.31 s/step

ResNet34_GAU@48 6.8 8.2 0.23 102.7 M 3.9 h 1.76 s/step
ResNet50_GAU@48 6.8 8.0 0.24 106.0 M 4.4 h 2.01 s/step

5. Conclusions

In this study, a new E2E speech recognition model ResNet–GAU–CTC was developed.
Specifically, ResNet extracts the time-frequency domain features of speech signals, the GAU
module captures the global interaction information between sequences, and CTC automat-
ically aligns the input and output sequences that may be unequal in length. In addition,
this study proposes transfer learning and data augmentation technologies to solve the
challenges faced by ATC-related Mandarin speech recognition. The former technology
addresses the problems of scarcity of ATC domain-related annotated data and special pro-
nunciation of certain phrases, whereas the latter expands the source domain data, enriches
the diversity of data features, reduces the variability of data distribution among different
domains, and improves the generalization ability of the model after transfer learning.
The CER of the model on the source task was 11.1%. Furthermore, ResNet50_GAU@48
achieved optimal recognition performance and the CER decreased to 8.0% on the target
task. We will collect and expand the ATC corpus to optimize our model in future work.
In addition, we aim to address the control speech recognition tasks in English and mixed
Mandarin–English scenarios to provide technical support for the application of ASR in the
ATC field.
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Abbreviations
The following abbreviations are used in this manuscript:

E2E End-to-End
ATC Air Traffic Control
ResNet Residual Network
CNN Convolutional Neural Network
GAU Gated Attention Unit
CTC Connectionist Temporal Classification
CER Character Error Rate
PCVCs Pilot-Controller Voice Communications
ASR Automated Speech Recognition
HMM Hidden Markov Model
GMM Gaussian Mixture Model
DNN Deep Neural Network
AM Acoustic Model
PM Pronunciation Model
LM Language Model
RNNs Recurrent Neural Networks
LSTM Long Short-Term Memory
GRU Gate Recurrent Unit
MHSA Multi-Head Self-Attention
GLU Gated Linear Unit
NLP Natural Language Processing
ReLU Rectified Linear Unit
SiLU Sigmoid Linear Unit
RTF Real-time Factor
VGG Visual Geometry Group
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