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Abstract: Rapid and accurate rendezvous and proximity operations for spacecraft are crucial to the
success of most space missions. In this paper, a sequential convex programming method, combined
with the first-order and second-order Birkhoff pseudospectral methods, is proposed for the au-
tonomous rendezvous and proximity operations of spacecraft. The original nonlinear and nonconvex
close-range rendezvous problem with thrust constraints and no-fly zone constraints is converted into
its convex version by using the sequential convexification techniques; then, the Birkhoff pseudospec-
tral method is used to transcribe the dynamic constraints into a series of linear algebraic equality
constraints, in other words, a convex second-order conic programming problem with a relatively
small condition number. Thus, the resulting problem can be accurately and efficiently solved by a
convex solver. The simulation results indicate that the proposed methods, especially the second-order
Birkhoff pseudospectral method, have obvious advantages over other methods in computational
efficiency and sensitivity.

Keywords: close-range rendezvous; Birkhoff pseudospectral method; convexification; computational
efficiency; sensitivity analysis

1. Introduction

The rendezvous and proximity operation (RPO), a key technology in on-orbit space
missions such as the assembly, supply, maintenance, or astronaut rotation, usually refers
to the process in which the chaser spacecraft approaches the target spacecraft to complete
docking or accompany a flight. In the last century, the early space programs carried out
by the United States and Russia have accumulated rich RPO technological experiences,
hence, some famous projects have naturally become the main research objects of scholars.
Fehse [1] presented the background information, related concepts, and control strategies of
early RPO tasks, such as the Gemini [2], Apollo [3], and Space Shuttle of the US, as well as
the Soyuz/Progress [4] of the former Soviet Union, or Russia. Goodman [5] surveyed the
overall development and flight history of the Space Shuttle from 1983 to 2005 and gave a
detailed introduction to the procedural limitations and technical challenges encountered
in the early space shuttle RPO missions. Based on the characteristics of different technical
routes between the United States and Russia, Woffinden and Geller [6] comprehensively
summarized the orbital rendezvous standards, tasks, and technologies, and concluded that
autonomous technology would become the mainstream trend of RPO tasks in the future.

Generally, an RPO can be divided into five periods: the launch, phasing, close-range
rendezvous, final approach, and docking [7,8]. The spacecraft’s maneuver requires com-
prehensive navigation and control support from the ground during the phasing period.
As a result, researchers are concentrating their efforts on the close-range rendezvous and
final approach to prepare for final docking or berthing using autonomous rendezvous
technology [9]. Autonomous rendezvous technology means that the entire rendezvous
procedure relies solely on onboard equipment to create a full set of maneuver solutions,
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without the need for ground-based assistance. In the decades before and after the beginning
of the 21st century, to achieve this goal, the researchers of the Engineering Test Satellite
VII (ETS-VII) [10], Experimental Satellite System-11 (XSS-11) [11], Demonstration of Au-
tonomous Rendezvous Technology (DART) [12], and Orbital Express [13], have actively
investigated and made significant progress in the autonomous rendezvous technologies.
In recent years, China has also achieved several new technological breakthroughs [14,15],
among which the Shenzhou manned spacecraft, as well as the rapid autonomous ren-
dezvous and docking process of the Tianzhou cargo spacecraft, which has been reduced
to around 6.5 h. SpaceX, a private US aerospace company, also has matured autonomous
rendezvous and docking technology through its Dragon spacecraft and Crew Dragon
spacecraft projects [16]. However, owing to the limited computing power of onboard
equipment, it is challenging to achieve the online and real-time trajectory generating re-
quirements when dealing with complicated conditions, such as power loss and safety
obstacle avoidance.

The process of close-range rendezvous is a typical trajectory optimization problem
with various constraints, which can be treated as an optimal control problem. Numerical
methods for solving optimal control problems (OCPs) are mainly divided into indirect
methods and direct methods [17-19]. The indirect method converts the OCPs into extrema
for multi-point boundary value problems based on the calculus of variations and the
first-order optimality condition [20]. Despite having a globally optimal solution with high
accuracy, the indirect method is not suitable for solving complicated OCPs because of the
tedious derivation process and sensitive initial values. The direct method discretizes the
state and control, transforms the continuous-time OCPs into nonlinear programming (NLP)
problems, and then employs the optimization techniques [21] to directly solve the index
function [22,23]. The convex optimization method has swiftly drawn the interest of schol-
ars because of its polynomial complexity, great computational efficiency, and theoretical
guarantee of a solution for optimal control issues [20,24,25]. In the convex optimization
framework, an original OCP is often converted into a convex programming problem by us-
ing convexification techniques for the non-convex constraints and discretization techniques
for the dynamical constraints. Malyuta et al. [26] comprehensively reviewed the success
experience and latest progress of convex optimization in the fields of planetary landing,
RPOs, and asteroid landing.

Discretization methods are crucial to an NLP problem or a convex programming
problem because the converted problem can be numerically solved using a well-known
NLP-solver [27,28]. Actually, the discretization approach necessitates a trade-off between
the computing efficiency and solution accuracy. The early discretization methods [29]
(e.g., the Euler, Trapezoidal, or Runge-Kutta methods) were developed based on discretized
uniform grids, where the state or control in each grid interval was approximated by the
same fixed-order piecewise polynomials. This simple construction means that only a
large number of grid points achieves sufficient accuracy. The applications are constrained,
since an increase in the variables typically results in significant computing overhead [30].
In recent years, the pseudospectral discretization methods have made great progress
in theory [31-35] and engineering practice [36-38]. The pseudospectral discretization
methods, based on non-uniform grid points, have spectral convergence accuracy with an
increase in the number of grid points, but hence bring a sharp deterioration in the condition
number [39]. The modified pseudospectral knots method [40] suppresses the growth of
the condition number at the expense of the computational efficiency and convergence rate.
Some preconditioning techniques have made effective attempts [41,42]. At present, the
most attractive work is the Birkhoff pseudospectral method framework for solving OCPs,
proposed by Ross et al. [39,43]. They investigated the first-order Birkhoff interpolation on
arbitrary grids and transcribed the dynamic constraints into algebraic constraints using
the idea of pseudospectral methods. The condition number of the original system has

decreased significantly, from O (N 2) to O (\/N ) , and, in some cases, it has even reached
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O(1), thanks to the advantage of the Birkhoff interpolation in dealing with higher-order
differential equations [44—46].

In light of the progress of the Birkhoff interpolation [39,43-45], we extend the paradigm
of the Birkhoff pseudospectral method and supplement the research findings in computa-
tional efficiency and stability. Three main contributions can be summarized in our work.
First, we provide a novel sequential convex programming method that combines convex
techniques and the Birkhoff pseudospectral method, focusing on the rendezvous and
proximity operation of the spacecraft. Second, we provide a modified pseudospectral dis-
cretization technique based on the second Birkhoff interpolation to deal with the dynamic
constraints. According to the simulation results, the revised technique performs better
than the first-order Birkhoff pseudospectral method. Finally, we discover that the Birkhoff
pseudospectral methods have clear advantages in computing efficiency and sensitivity, in
addition to the improvement in the condition number.

The content of this paper is arranged as follows. The close-range rendezvous problem
is discussed in the second section, along with several convexification techniques. Section 3
presents the discretization of the optimal control problem by using the classic pseudospec-
tral method. In Section 4, two well-conditioned pseudospectral discretization approaches,
based on the Birkhoff interpolation, are provided for the rendezvous trajectory optimiza-
tion. The computational efficiency and sensitivity of the proposed algorithm are described
through simulation experiments and results analysis in Section 5. Finally, Section 6 provides
a conclusion and evaluates the work of this paper.

2. Problem Formulation
2.1. Relative Equations of Motion

A close-range rendezvous maneuver scenario is discussed in this paper, in which
the deputy spacecraft (called the Chaser) passes by the chief spacecraft (called the Target)
without colliding. The motion of the Chaser relative to the Target is normally used to
illustrate the above proximity. As shown in Figure 1, a local-vertical, local-horizontal
(LVLH) coordinate system is defined at the center of the Target Or and moves with it. The
x axis, or R-bar, is radially outward. The y axis, or V-bar, is perpendicular to the x axis and
points in the direction of the Target’s motion. The z axis, or H-bar, completes the right-hand
rule. The position and velocity of the Chaser are indicated by the vectors r = [x,y, Z]T and
v =[xy, Z}T, respectively. The superscript T represents the transpose operation of a vector
or matrix.

Figure 1. A close-range rendezvous maneuver scenario.

Figure 1 also contains the geocentric equatorial inertial (GEI) coordinate system, which
sets its origin at the center of the Earth Of, the X-axis point in the vernal equinox direction,
and the Z-axis point in the direction of the North Pole. The Y-axis is in the equatorial plane
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and completes the right-hand rule. The vector positions of the Chaser and Target relative
to the center of the Earth Of are denoted by rr and r¢, accordingly. The angular velocity of
the Target is given by the vector w, and the scalar w indicates its magnitude. Therefore, the
vector position of the Chaser satisfies

rc=rr+r. (1)

Differentiating both sides of the Equation (1) twice with respect to time for the GEI
coordinate system yields the Chaser’s motion equation as

fc=tfr+7+2(wx#) +wxr+wx (wxr), )

where the vectors, ¢ and 71, denote the inertial acceleration of the Chaser and the Target.
The vector r represents the acceleration of the Chaser relative to the Target. The remaining
three terms on the right side of Equation (2) are the Coriolis acceleration, the tangential
acceleration, and the centripetal acceleration, respectively. The dot notation [-] on signals is
defined as the derivative d/dt. The double dot [-] on signals represents the second-order
derivative d?/dt?. The cross-product of the two vectors is indicated by the operator [x].
The following are the operation rules.

~

WXt=0rwxr=wrwX (wxr)=w(wr) 3

where @ and w are the skew-symmetric matrices corresponding to w and w, respectively.
The following essential assumptions are made to simplify the model of the close-range
rendezvous motion. Assume that

1. the Target is in a circular orbit near the Earth, and w = 0;

2. the orbit radius of the Target rr. is much larger than the distance between the two
spacecraft r;

3. both spacecraft are regarded as mass points, and all the orbit perturbations are ignored.

The motion of the Chaser, relative to the Target, can be described by the Clohessy—
Wiltshire(CW) equations, based on Equations (2) and (3) and the above assumptions. The
CW equations are a set of linear, time-invariant differential equations [47]. The detailed
derivation is shown in Chapter 7, reference [48], and the results are given here, directly.

X — 2wy — 3wy = Ix
i+ 2wk = 1 (4)
itwz=1
where scalar T;(i = x,y,z) represents a thrust component of the Chaser’s engine. The

mass of the Chaser is given by m. Therefore, the relative equations of motion or dynamics
equations can be written as a first-order system of variables (r,v)

r| _ |Osx3 Ds||r 03,5] T
L}] - { G G } L’} * Laxa*] m’ ®)

or a second-order system of r

. T
r=Cir+ Cr+ —, (6)
m
where
302 0 0 0 2w 0 Ty
Ci=|{0 0 0 |[,G=|-2w 0 0|,T=|Ty|. (7)
0 0 —w? 0 0 0 T,

The matrix 0343 and I3, 3 denote the [3 x 3]-dimensional zero matrix and the identity
matrix, respectively.
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The analysis of the relative motion of two bodies using the CW equations, which
can offer analytical solutions, is widespread and effective [49]. However, the dynamical
constraints in the close-range rendezvous process must be balanced against the events,
path constraints, and other factors. The analytical solution of the CW equations becomes
invalid in this instance. The RPO problem is treated as an optimal control problem (OCP),
with various nonlinear and nonconvex constraints in the later subsection.

2.2. Rendezvous Trajectory Optimization

The Chaser completes the objective of approaching the Target with the shortest maneu-
vering time, or the least fuel consumption, under complicated constraints using the law of
relative motion equations. This process is called rendezvous trajectory optimization (RTO).
Let [r,0,m] € R7*1 be the state variables and T € R3*! be the control variable. Therefore,
the OCP version of the RTO in the LVLH coordinate system can be defined as follows:

minimize | = fotf || T|dt.

_ A
Lspgo”

Problem 1 (NonconvexRTO) IT|| < Tmax, (8)

subject to Il = /22 + 2+ 22 > R,

[r/ o, m]T|t:0 = [7'0, 0o, mO]T/

m:

[r,v]T|t:tf = [rf, vf]T.

where scalar ¢ 1 signifies the terminal time, which is set as a constant, i.e., the time of RTO is
fixed. Scalar Isp is the engine-specific impulse, and gy is called the sea level gravitational
acceleration. The operator ||-|| here denotes the modulus of a vector. The magnitude of
the thrust vector, || T||, must not be greater than the maximum thrust amplitude Tmax. The
objective function ] is the integral of thrust || T|| to time. The initial condition [ry; vg] and
the terminal condition [rs; vf] for the Chaser are generally determined according to the
mission requirements and serve as reference indexes for the accuracy of the subsequent
algorithms. The radius of the no-fly zone, denoted by R;, is the minimum safe distance at
which the Chaser will not collide with the Target when approaching it.

The existence of nonlinear or nonconvex terms, such as ||T||, T/m and ||r||, makes it
challenging to obtain the optimal solution to Problem 1. Convexification techniques will be
utilized in the following section to convert the original problem into a SOCP problem with
a linear objective function and convex constraints.

2.3. Convexification Techniques Applied to RTO

Convexification techniques are used to handle the dynamic constraints and no-fly
zone constraints in Problem 1, which was inspired by the study of Aciknese et al. [50,51].
In this study, the key convexification techniques are equivalent transformation, change of
variables, and successive approximation, as stated in reference [52].

2.3.1. Equivalent Transformation of the Objective Function

The objective function in Problem 1 cannot become a linear function after discretization,
because of the nonlinear factor ||T||. Equivalent transformation is used to deal with this
situation, as is done in [20]. A slack variable, g, is introduced to replace the norm, ||T||. The
new objective function, [, is as follows:

t
minimize [; = /Of rdt )
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subject to
IT|| <, (10)

0 S C S Tmax‘ (11)

The transformation from | to J; is equivalent and satisfies the following property at
the optimal solution of the problem.

1T (&) = & (). (12)
Proof of the equivalence and property is given in Proposition 1, reference [53].

2.3.2. Change of Variables for Dynamic Constraints

The nonlinear terms in dynamic constraints are replaced by linear terms, using a
change of variables. The following variables are defined:

T 4
v = E,p—lnm,a— p

The dynamics equations can be rewritten as

r=1v (13)
v=Cir+ Cuo+vy (14)
p=—puo (15)

where the constant 1/ I5,go is replaced by u for brevity.

Letx = [r,v, p]T € R7*1 be the state vector and u = [y,0]" € R**! be the control
vector. Therefore, the new description form of the dynamic constraints is as follows:

x=Ax+ Bu (16)
where

033 I3xz 03x1 O3x3 031
A= C G 03q|,B= | 031 (17)

0153 0143 0 01x3 —H

The following is an update to Equation (10)

vl <o, (18)
0 <0 < Tmaxe . (19)

Then, using the first-order Taylor expansion, the nonlinear term ¢~ in Equation (19)
is approximated at the time, t, yielding:

e P~ empolt) —e=r0(t) (p(t) — po(t))

20
= O~ (p(t) ~ po(t))] 20
where p = Inm and the lower bound py is In(19 — #Tmaxt)-
Now, we can replace Equation (9) with
oty
minimize J, — / o(f)dt 1)
to

derived from Equation (15),
m(t) = moe M. (22)
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. No-fly zone D Safety zone

From Equation (22), minimizing J, is equivalent to maximizing m(t), which also
implies the optimal fuel consumption. Therefore, replacing J; with |, as the objective
function is identical.

2.3.3. Linearization of the No-Fly Zone

Setting a no-fly zone is a crucial step in ensuring the safety of the proximity process.
The no-fly zone constraint in Problem 1 is defined in the LVLH coordinate system, as shown
in Figure 2a. The magnitude of the position vector ||7|| also represents the distance between
the two spacecraft, as the origin is set at the Target centroid. The distance must at least
meet the minimum safe distance, R;, to avoid collisions.

(a) (b)

Figure 2. No-fly zone (red area) and safety zone (white area): (a) Nonconvex no-fly zone; (b) Linear
no-fly zone.

The no-fly zone constraint can also be expressed as follows:
rlr> R2. (23)

The affine function of the position vector r is denoted by g(r) and approximated using
the first-order Taylor expansion at a given reference point #¢f. The left side of Equation (23)
becomes a linear term.

Ty~ g(rref) 4 gl(rref)(r _ rref)
— (rref)Trref + Z(rref)T(r _ rref) (24)
= 2(r’ef)Tr — (r’ef)Tr”f > R?

g(r)

The trust region constraint is added to guarantee a reasonable approximation of the
original value.
lr =7l <, (25)

where the radius of trust-region ¢ is positive and small enough. The reference trajectory 7y
commonly takes the solution of the last iteration using the SC algorithm, as mentioned in
Section 4.4. Inspired by the separating hyperplane theorem [24], we define a separating
hyperplane, as shown in Figure 2b, and the describing equation is

rhr = R?, (26)
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Problem 2 (ConvexRTO)

where the vector rp is in the same direction as #*/ and the endpoint P is on the boundary
of the no-fly zone. The relationship can be denoted as

e f
rp = WRS (27)

Based on Equations (24)—(27), we can derive a more intuitive and linear expression of
the no-fly zone constraint.
ror > R? (28)

Therefore, the original Problem 1 is converted into a convex Problem 2 through the
above convexification techniques.

minimize J, = ftgf o(t)dt
x = Ax + Bu,
vl <o,
subjectto 0 < ¢ < Tmaxe PO [1 — (p(t) — po(t))],
> R Jr— ] < ¢,
x(to) = xo,x(tf) = xy.

For Problem 2, the linear time-varying system (LTV) in Equation (29) can be converted
from a continuous infinite dimension to a discrete finite dimension by some discretization
methods, including the zero-order hold (ZOH), first-order hold (FOH), the Runge-Kutta
(RK) method, and the global pseudospectral (PS) method [26]. After discretization, Prob-
lem 2 with the convex constraints can obtain the optimal solution by solving a convex
programming problem in each iteration until the convergence criterion is satisfied, via
the sequential convex (SC) method. In this study, the PS method based on the Birkhoff
interpolation is combined with the SC method to solve the RTO problem.

(29)

3. Discretization Based on Classical PS Method
3.1. Time-Domain Transformation

In the standard PS method, the time domain is transformed from the physical time
to€l[to,tf] to the PS time T € [—1,1]. The mapping function I'(7) is given as:

_ tf_t0T+tf+t0

t=T
(T) 2 2 4

(30)

where the time mapping factor is defined as x = dI'/dt =(tf — to)/2.

The discretization method of dynamic constraints, or the transformation of differential
equations into algebraic equations, is the focus of this section. For the convenience of ex-
planation, we describe the convex RTO problem as a distilled optimal control problem [35],
which simplifies the expression of the boundary constraints and path constraints in Prob-
lem 2. For multivariable differential systems, the dynamic constraints follow the vector
representation. The time-domain transformation of dynamic constraints is defined as

dx  dx dt
= = = Kx

xl(T) = E = EE = (31)

where the notation ” denotes the derivative d/d7. On the one hand, the boundary con-
straints were simplified into unified equality constraints

G(x(=1),%(1)) = Ocq (32)

where the dimension of the zero vector 0.,; was determined by the number of equal-
ity constraints. On the other hand, the path constraints included the thrust constraints
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Equations (18)—(20) and the no-fly zone constraints, Equations (25)—(28), and were simpli-
fied into unified inequality constraints.

H(X(T),u(”f)) < oineq (33)

where the dimension of the zero vector 0;,,; depended on the number of inequality constraints.
As a result, a distilled Problem 3 [39,54] is rephrased in the PS time domain as follows:

Varibles: x € R”,u € R, 7 € [-1,1]

minimize | =« f (t)dt
Problem 3 (Distilled) ¥/ (t) = x(Ax(7) + Bu(1)), (34)
subject to  G(x(—1),x(1)) = Ocy,
H(x(r), u(1)) < Oy,

3.2. Classical PS Method for RTO

Firstly, an arbitrary grid of distinct nodes is defined in the interval [—1, 1]. These nodes
are chosen to be the roots of orthogonal polynomials, such as the Legendre polynomials
and the Chebyshev polynomials [55]

nNé [TO,Tl,"',TN], (35)
-1<p<py<---<1w<l1

where the scalar N represents the order of the orthogonal polynomials and the number of
grid points is N + 1. The well-conditioned Gauss—Lobatto (GL) points are chosen as the
discrete grid points [35].

Let p(7) denote a component of the states x = [r, v, o]" ona grid 7N. In the PS theory,
the state function p(T) can be approximated by the approximation function pN (7) with the
interpolation basis polynomial at these collocation points. For the GL points, the collocation
points are the same as the discrete grid points [35]. Therefore, on the grid N, we define

N

p(r) = pN(t) = Y p(m)Le(T) (36)

where the Lagrange basis functions Ly(t) (k = 0,1,2,..., N) satisfy the Kronecker delta
condition.

1,k= j
Li(tj) = 0 = {O k£ =0,1,2,...N. (37)
The symbol ‘2’ can be replaced by the symbol ‘=" when the order N tends toward

positive infinity.
By introducing Equation (37) into Equation (36), we can get

p(t) = pN(%),k=0,12,...N (38)

To simplify the representation, we use py instead of p(7;), and Equation (38) can be
written as py = pN (i).

One of the features of the PS methods, or any Galerkin method, is that the differ-
entiation of the approximation function can be converted into the differentiation of the
interpolation polynomial [56-59]. Consequently, taking the derivative of the time T on both
sides of Equation (36), we get

N

d = 3 dL 39
7?2 *kgopkg «(T) (39)
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Define D = (Dk') ~as the first-order PS differential matrix (PSDM), which is
1) 0<k,j<N

represented as

D, dLi(7)

j= kj =012,...N, (40)

L

where Dy, = (D )
in kj 1<kj<N—
operator, and it possesses a key characteristic proposed in [14].

) is part of D. Matrix D is also referred to as the differential

DY) = DeDe--- oD =D} A >1 (41)

where DM is called the A-th order PSDM.
In addition, px(k = 0,1,2... N) can also be denoted by the vector p.

p=Ipo.p1.p2 - pnl" 42)
Equation (39) can be simplified as a matrix-vector product by combining (40) and (42).
p'=Dp (43)

Equation (43) is extended to a higher-order form by applying Equation (41) [44]
’D()‘)p = ’D’\p = pw (44)

where p(A) denotes the A-th derivative of p with respect to the PS time 7.
For example, for a second-order system, Equation (44) can be written as

p? = D(Z)p_ (45)
The discretized decision variables are expressed as follows:
X := [xo,x1,...,xN] € R7*(N+1) 1 .= [ug,u1,...,uN] € R4 (N+1) (46)

where
xk:x(Tk),uk:u(Tk),kzo,l,...,N. (47)

Therefore, the dynamic constraints in Problem 3 can be discretized as

X
Trk = x(AX; + BUy),k=0,1,...,N. (48)

Defining an overloaded function F (X, U), Equation (48) can be written as
X =«xF (X U) =«x[AXo+BUy AX;+BU; --- AXy+BUy]. (49)

Based on Equation (43), a new matrix form of differential transformation is given by:

T T
Dx' =X (50)

Note that the transpose operation here is because the decision variable X is a combi-
nation of seven variables, and, after discretization, it is a matrix of 7 x (N + 1), as stated
in Equation (46).

Substituting Equation (50) into Equation (49), we get

DX = kF(x,u)’ (51)
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The dynamic constraints have been turned into a set of algebraic equations, using the
differential transformation of the PS method. This means that the RTO problem has become
an NLP problem that can be solved by specific solvers [27,28].

For the objective function Equation (21), we make an affine transformation on the time
domain, according to Equation (30).

t tr—tg [l
/fa(t)dt: S0 o(t)dt (52)
to 2 Ja

The integral term in the objective function is calculated using the Gauss quadrature
formula, as described in [44].

1 N
/ o(r)dt =Y wio; =w'e (53)
-1 i=0
where 0; = 0(1;) and
_ T T
w = [wo,wy, -, wN], 0 = [00,01,+,0N] (54)

The weight, w;(i = 0,1,2,- - - ,N), and the first-order differential matrix, D, as mentioned
before, have many representations based on different grid 7tV values. Readers can refer
to [39,44] for further information, owing to the article’s length and major topics.

Due to the length of the paper, the specific derivation process is omitted and the
results are directly used in Section 4.4. Readers can refer to Sagliano’s research [58] for a
detailed processing framework. Thus, the PS transformation of the boundary constraints
and the path constraints on the grid " remains as in Problem 3. As a result, Problem 3
on the discretized points T € 7N can be rewritten, using the first-order differential PS
method (FDPSM).

Varibles : X € R7*N+1 {f ¢ R¥*N+1 1 ¢ 1N
T

minimize w'o
T _ T
Problem 4 (EDPSM) . DX* = xF(X U (55)
subjectto G(X(—1),X(1)) =0,
H(X(7),U(T)) <0

4. Well-Conditioned Birkhoff PS Methods for Multiple Dynamic Systems
4.1. Basic Properties of Birkhoff Interpolation

As the basis of the Birkhoff PS method, the Birkhoff interpolation is regarded as a
new extension of the Lagrange interpolation and Hermite interpolation [60,61]. Unlike the
Lagrange interpolation in Equation (36), the Birkhoff interpolation function is a mix of various
orders of the derivatives of a function [60]. Two general forms of the Birkhoff interpolation,
based on the first-order or second-order boundary value problems (BVPs), were proposed
in [44]. The dynamics system in the RTO can be a first-order system about (r, v), as indicated
in Equation (5), or a second-order system about r, as shown in Equation (6).

Let ¢(7) be a first-order, continuously bounded function on the grid points T € 7tN.
Therefore, a first-order Birkhoff interpolation polynomial ¢ (1) is defined as [39],

N
¢(t) = N (1) = ¢p(10) By (1) + k; ¢ (1) By (1), (56)
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where the Birkhoff interpolation basis polynomials, B,% (t),k=0,1,...,N, can be regarded
as the counterpart of the Lagrange polynomials [39] and must satisfy

Bj(tw) =1,Bi(1) =0,k=1,2,...N.
-1 1 ) (57)
Bo(T]) = O,Bk(T]) = (Skj/] =1,2,...N.

The interpolation polynomial ¢ () needs to meet the interpolation conditions, which
can be regarded as an extension of Equation (38)

N
N (1) = ¢(10), d%f’{) =¢'(%),k=1,2,...,N. (58)

Let B].lk = B]%(T]'), thus a first-order Birkhoff PS integral matrix (FBPSIM) B! is de-
fined as
B' = B} B, = [Bj (59)

]ogj,ng’ ]lgj,ng

and satisfies that N
DB = Iy, DB, = In, (60)

where the matrix D is generated by substituting the initial row of D with e; = (1,0, - - - ,0).
The calculation of B! and the property of B' and B}, in Equation (60) are omitted here,
and the detailed derivation can be found in Section 4.1, reference [44]. Therefore, the
Equation (56) can be rewritten in vector-matrix form:

@ =B (61)
where

®=[p(n) ¢(r) ... o)), ¥ =[p(w) ¢(m) ... ¢)]. (62

Let ¢ () be a second-order, continuously bounded function on the grid points T € 7.
Similarly, a second-order Birkhoff interpolation polynomial ¢ () can be written as

N-1
p(0) = 9N (1) = p(w0)B3(1) + Y, 9P (W) B(T) + p(n) By (1), (63)
k=1

the interpolation conditions Equations (57) and (63) can be rewritten as

B (1) =1,B%(1) =0,B% (1) =L,k=1,2,...N—1
Bi(tn) =0,B2(tn) =0,B%(ty) =Lk=1,2,...N—1 (64)

2 .2 .2 ,
By(tj) = 0,By(15) = 0,Bi (1) = dj,j =1,2,... N =1
and

2.,N
0 (0) = (), 9N (o) = g(), L = @, k=12, N -1 @)

Let B]Zk = B]%(T]'), thus a second-order Birkhoff PS integral matrix (SBPSIM) B? is

defined as
2 7[ 2

]ogj,ng’ B, = J'k]lgj,ng (66)

B? = [B

and satisfies that @
~ 2
DB =1y, DPB2 = Iy (67)

where the matrix p? can be produced by replacing the initial and last rows of the matrix
D@ with e1 = (1,0,---,0) and ey = (0,0, -+ ,1), respectively. The detailed derivation
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can be found in Sections 3.1 and 3.2, reference [44]. The vector-matrix form of Equation (63)
is given as
¥ = B2¥(?) (68)

where

= [y g o )] = [pm) 9@ o @) pw)] (69)

4.2. The First-Order Birkhoff PS Method for RTO

The first-order Birkhoff PS method (FBPSM) is based on the first-order Birkhoff inter-
polation in Equation (56). For the first-order system, we approximate the state function
p(7) by applying Equation (56) to Problem 3. The approximation function pN(7) on the
grid 7N can be rewritten as

N
p(1) = p" (1) = p(10)B(7) + Y p'(w) B (1) (70)
k=1
where the vector o' = [py P/ ... Pyl " is regarded as the unknown optimization

variable and B,%, k=0,1,..., N satisfies Equation (57). Taking the derivative of the time T
on both sides of Equation (70), we get

dpN (T -1 N -1

p 2 LD By + Y p B (). )
k=1

As in Equation (61), the vector-matrix form of Equation (70) is given by

p=BY. (72)

Therefore, the vector-matrix form of Equation (71) can be given by

p=T%. (73)
where Z' = [T} (1)), <ik<N = % = [lek] 0<j k<N TEpresents the derivative of B! over 7.
According to Equations (43) and (70), it can be deduced that
I' =DB, I}, = DB, = In (74)
where ,
Thy =1Bil ey (75)

Applying the property of the FBPSM to Problem 3, the discretized unknown variables
can be denoted by

P:= [x(1),%(11),..., % (ty)] € R7*(N+D) (76)

Combining the decision variables defined in Equation (46), the dynamic constraint in
Equation (51) is rewritten as

ZyP" = xFo(Xo, Up) (77)
I}, P}, = Pl = «F iy (Xin, Upy)" (78)
where
I(lJ = [ I(% (T()) Ill (T()) . I}\](To) ],P,‘n = [x/(Tl),x/(Tz),. . .,x/(TN)],
Fo(Xo, Up) = F(Xo, Up) = AXp + B, (79)

Fin(Xin, Uip) = F(Xin, Uiy) = [ AXq1 +BU; AXp, +BU, --- AXy+BUy |.
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Therefore, Problem 3 on the discretized points T € 7tV is given by using the first-order
Birkhoff PS method (FBPSM).

Variables : P € R7*(N+1) 11 ¢ R4*(N+1),

T
Intermediate Variable : X = (BlpT) c R7x(N+1)
minimize wlo
TIPT - xFo(Xo, W) )
P! = kF i (Xin, Uin) ",
G(X(-1),X(1)) =0,
H(X(7),U(T)) <0

Problem 5 (FBPSM) subjectto

4.3. The Second-Order Birkhoff PS Method for RTO

The second-order Birkhoff PS method (SBPSM) is based on the second-order Birkhoff
interpolation in Equation (63). The Equations (13) and (14) in the dynamic constraint can
be expressed in a second-order form.

r= Cir+ Czi’ + 7. (81)

Let set g(7) be a component of r. Applying Equation (63) to Equation (81) on the grid

N we get

7T
N-1

9(7) = q"(v) = 4(0)B5(0) + Y 4% (w) BE (1) + () By (v)- (82)
k=1

T
where the vector ﬁ(z) = [q(ro) dD(m) ... ¢ (tn1) q(TN)} is the unknown opti-

mization variable, qN (7) is the approximation function, and B]%(T), k=0,1,...,N satisfies
the condition in Equation (64). Differentiating twice on both sides of Equation (82), we get

N .2 N-1 2 %) 5
q (1) =q(w)By(T) + k; 07 (1) Bi (1) + q(7) B..y (7). (83)

The vector-matrix form of Equation (82) can be written as

g =B%4G?. (84)
where g = [q(%) q(m) ... ()] " and B is the SBPSIM defined in Equation (66).
The vector-matrix form of Equation (83) is given as
q? = IZﬁ(Z)_ (85)
where % = [T2(1))], <ik<N = ddz—fj = [B]?k] 0<jk<n Tepresents the derivative of B2 over 7.

Combining the properties of Equations (45) and (67), we have
2=D28, 12, =DPB2 = Iy 4 (86)
where

.2
1<jk<N-1

Applying the SBPSM to Problem 3, the unknown optimization variables are defined as

Q=[rw) D(m) ... D) rlay)] e BN (88)
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The new discretized representation of the decision variables is given as

2T\T - pax(Nt+1) yr _ 9XT 2 3x (N+1)
X’(B 0 ) c R X" = (DB Q /k) R (89)

Thus, Equation (81) is rewritten as

I%QT = Kzfo(X(r), 67, UO) .
72,0l = QI = F (X, X'}, Us) (90)

I3Q" = k2 Fn (X, X'y, Un)

where

I%z[IS(To) () - Iﬁ;(fo)},l%\]: I5(w) IF(ww) - I%](TN)},
Qin:[r(z)(rl) () ... r(z)(TN,l)},Xf :[xg X, ... XN |,

X/lrn:{xq X5 .. X’N]]Uin:[ul u ... uNl],C3_[(1)3x3 8]
1x3

fQ(XB,X/r, Up) = C]Xr + CzX/O + C3U,, fN(XrN,X/rN, Uy) = C1X7N + CzX/rN + C3UY,
Fin(Xy X i Ui) = [ FL(XY, X, UL) Fo(X5, X5, Up) ... Fno1(Xy_y, X'No1 Un-1) ]

In addition, the FBPSM is used to deal with the remaining first-order equation,
Equation (15). We define the unknown variable as

Z=lp(n) p(m) ... p'(y)] € RN (91)

The new discretized representation of the decision variables p is given as

T
X — (BlzT) c RIX(N+1) (92)
Thus, Equation (15) can be rewritten as

Tz = Mo(Xh, Uy),
7l = M, (X, u’

m=in in’ in)’

(93)

where

Zn=[0(n) ¢(n) o(tn) |, Ca=[0 0 0 1)U =] umT Uy |
M(Zy, Up) = pCally, My (X UL )) = [ puCally uCqll, ... uCylly | .

Therefore, Problem 3 on the discretized points T € 7V is given by using the second-
order Birkhoff PS method (SBPSM).

Varibles : Q € R¥>*N+1 7z —c RI¥N+1 {1 ¢ R#*N+1 7 ¢ gN
T T
Intermediate Varibles : X" = (BZQT) € R3*XN+1 x/" — (DBZQT/K> € R3xXN+1
XP — BlzT c RlXN+1
minimize w!o
TQ" = R (X5, X o),
T
Qi = 1 Fin (X[, X'jy Uin) (94)
I%\]QT = Kz]:N(XTN,X/r , UN),
subjectto Z3Zy = My (X‘o )

7T = M (Xf’ up)

Problem 6 (SBPSM)

g(X(-1),x(1)) =0,
H(X(7), U(T)) < 0.




Aerospace 2022, 9, 505 16 of 30

4.4. Sequential Convex Algorithm for RTO

In this section, the sequential convex (SC) algorithm is used to solve the finite convex
problem after the convexification and discretization. The main idea is to solve a series of
convex subproblems to converge to the optimal solution {x*, u*}. The iteration process via
the SC algorithm is described in Algorithm 1.

Algorithm 1 The iteration process of the SC algorithm

SC Algorithm for RTO
Input: The initial state xp = [rg,v0] and the terminal state x; = [rf,v¢]; the initial mass of the Chaser
my; the initial and terminal time [fo,f] .

Step 1: Calculate the initial trajectory  without the no-fly constraint and set it as the reference
trajectory #'¢ of the first iteration. Go to step 2.

Step 2: Start the loop until meeting the trust-region constraint.
1. For k = 1:Maxiter;
2. Calculate the current trajectory {rk,uk} ;
3. Calculate the maximum distance Admax between #* and ¥

4. Check the trust-region constraint:

Adpax = || —7f|| <.

If Adyax < € established, exit the loop and go to step 3; otherwise, set 7 = ¥* and continue.
5. End.

Step 3: Evaluate the accuracy of the solution e. Go to step 4.

Step 4: Output the result. The optimal trajectory and optimal control are {r*,u*} ; the optimal
objective value is j*.

Remark 1. The convergence of the SC algorithm is significantly influenced by a good initial
trajectory. We propose to cancel the no-fly zone constraint to achieve this goal, which is also given
by the subsequent simulation. Therefore, the first subproblem is given as

Variables : x° € R7,u® € R*, 7 € [—1,1]
minimize | = kfil (t)dt
(1) = k(AX0(T) + Bu(1)),
Subproblem 1 I¥°ll < o?,
subjectto 0 < 00 < Taxe (D [1 — (0°() — po(7))]

X (19) = x,x° (Tf> = Xf.

(95)
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Remark 2. In step 2, the subproblem required to be solved in the k-th iteration with all constraints
is as follows:

Variables : x* € R7,uF € R*, 7 € [-1,1]
minimize | = Kfil ok (t)dr

(1) = k(Ax* (1) + Buk (1)),

v |l <o, (96)
subjectto 0 < 0% < Tpaxe P07 {1 — (¥ () - PO(T))]

rFT,rk > Rg,

Xk(T()) = Xo,Xk(Tf) = Xf.

Subproblem 2

The parameter maxiter in step 2 represents the SC algorithm’s maximum number
of iterations. The SC algorithm does not converge to the optimal solution, fulfilling the
trust-region condition, if k takes the value of maxiter. It’s feasible to replace more re-
laxed convergence conditions or add the mesh points to improve the convergence of the
SC algorithm.

Remark 3. In step 3, we linearly interpolate the optimal control u* of the iterative result of the SC
algorithm, integrate the original dynamic equation with fourth-order Runge—Kutta to obtain the
terminal state ¥, and then compare the terminal value i‘k(Tf) to the given accurate value r(Ty) to
calculate the terminal error e, which is used as the algorithm’s accuracy index.

e= f’k(Tf) —r(7f)|. (97)

The stepsize of the fourth-order Runge-Kutta integral was 0.001 in the PS time domain.

Remark 4. To simplify the problem, only one no-fly zone constraint is considered in step 2, and
the geometric shape is a sphere or an ellipsoid. Readers can learn more about the excellent work on
multiple no-fly zones and complex geometries through [62,63].

For the ease of comprehension, we provide the complete process framework of the SC
algorithm, using the FBPSM discretization method as an illustration, in Figure 3.
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Figure 3. The complete process framework of the SC algorithm takes the FBPSM discretization
method as an example.

5. Numerical Simulation

In this section, two cases are given to illustrate the feasibility and advantages of the
proposed SC algorithm, based on the first-order and second-order Birkhoff pseudospectral
discretization methods (FBPSM and SBPSM). As comparison methods, other discretization
techniques, such as the zero-order hold (ZOH) [26] and the classic pseudospectral method,
as mentioned in Section 3 (FDPSM), are chosen.

All numerical simulations were performed on a desktop with an Intel (R) Core
(TM) i5-10400 (CPU 2.90 GHz) and with MATLAB version 2020a. The modeling tool
is Yalmip [64] and the solver tool is Mosek [21]. Additionally, we found through research
that the preprocessing option of the MOSEK solver significantly affects the results of the
solution. Therefore, we changed the value of the option “MSK_IPAR_PRESOLVE_USE” to
OFF and the reason is given in the following section.

Nondimensionalization is an effective method to simplify the calculation and improve
accuracy. Table Al in Appendix A provides a list of the principal dimensionless units. The
radius of the earth, R,, is 6378.14 km, and the gravitational acceleration, go, is 9.807 m/s.
The value of the geocentric gravitational constant, Gy, is 3.986012 x 10'* m3/s%. The
satellite completes the maneuvering and rendezvous at an orbital altitude, Hy, of 600 km.
The initial mass of the Chaser, M, is 1000 kg. The initial parameters of the simulations are
dimensionless, as shown in Table A2, Appendix A. Note that the variables contained in
this section tables and figures are defined in the LVLH coordinate system.

5.1. Case 1: Excellent Computational Efficiency and Solution Accuracy under Different
Grid Points

We set up several numerical tests with different grid points to evaluate the accuracy of
the solution and the computational efficiency of the proposed methods. In general, the grid
points of the ZOH method are evenly distributed. The Runge phenomenon [54] becomes
increasingly prevalent as the number of grid points rises, which reduces the precision of
the solution. Although the FDPSM improves the situation to a certain extent, it destroys
the sparsity of the system, which is manifested in the exponential growth of the condition
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number of the coefficient matrix and leads to a longer solution time. This situation can be
improved by using the proposed methods, based on the Birkhoff interpolation. Given that
reference [39] contains the outcomes of the first-order system, we just provide the change
law of the condition number of the coefficient matrix under the second-order system, as
depicted in Figure A1, Appendix A. The definitions of three types of coefficient matrices
can be found in Section 5 of [39]. The condition number, based on the second-order Birkhoff
PSIM B2, shows an obvious decrease from O (N4) to O ( VN ) , even with an invariable

constant O(1), which indicates that the Birkhoff PS method also has a significant effect on
improving the condition number of the second-order system.

First, we divided the tests into seven groups, each with a number of grid points
ranging from 30 to 210. The total time, T},,;, required to arrive at the optimal solution is
utilized as the evaluation criterion for computational efficiency, and it primarily involves
the two stages of problem-modeling and solver-solving. The expression is as follows:

Siter
k

k k
Trotar = (T1910del + Tsoolver) + Z (Tmodel + Tsolver) + Totners (98)
=1

where the term (T,% odel T TSOO Ivey) TEPTESENtS the time of solving Subproblem 1 in Equation
(95), the intermediate-term denotes the time of solving Subproblem 2 in Equation (96), and
Siter is the number of iterations. The term Ty, is the time of the remaining parts in Figure 3
and is equal, in principle, for the above four methods. The terminal state error, ¢, which
is stated in Equation (97) of remark 3, is used to determine the accuracy of the solution.
The value of the performance index, J,p;, is related to the optimality of the solution. The

statistical results are shown in Table 1.

Table 1. The statistical results under different grid points N.

ZOH FDPSM 1 FBPSM 2 SBPSM 3

N Ttotal 4 Jobj T Jovj T Jovj T Jobj
j total obj total obj total obj

¢ (kg) (s) “m g (s) “m g (s) “m (g
30 1950 40471  0.5547 5.35 0.296  0.5524 5.01 0.296  0.5524 492 0.296  0.5524
60 2488 20196  0.5538 8.78 0.328  0.5536 9.69 0.328  0.5536 8.33 0.328  0.5536
90 3146  13.398 05525  10.39 0.177 05531 10.62 0.177  0.5531 10.42 0.177  0.5531

120 40.82 10.038  0.5502 18.97 0.100 0.5532 17.19 0.100 0.5532 18.03 0.100 0.5532
150 51.33 8.042 0.5523 64.11 0.131 0.5515 24.33 0.002 0.5529 20.98 0.002 0.5529
180 61.63 6.819 0.5508 76.44 0.034 0.5524 26.85 0.021 0.5529 23.78 0.021 0.5529
210 7091 5.744 0.5522 94.61 0.326 0.5501 35.76 0.034 0.5529 29.19 0.034 0.5528

1 First-order differential pseudospectral method in Section 3.2, FDPSM; 2 first-order Birkhoff pseudospectral
method in Section 4.2, FBPSM; 3 second-order Birkhoff pseudospectral method in Section 4.3, SBPSM (the same
below). 4 Error here refers to the terminal position error in the y-axis direction.

The results in Table 1 demonstrate that the number of grid points, N, does have
an impact on the computational efficiency and some new findings are given here. The
indicators of the final three methods show a minimal difference, whereas the ZOH method’s
total time, T}y, has nearly tripled and has a significant terminal error, according to the
findings of the first four groups. However, when N is selected as 150 or more, the total
solution time of the FDPSM rises sharply, which is roughly three times that of the Birkhoff
PS methods.

According to our analysis, the Birkhoff PS methods decrease the condition number
of the coefficient matrix, enhance the dynamics equations, and thus shorten the modeling
time of the optimization problems. Additionally, we discover that the total solution time of
the SBPSM is less than the FBPSM. In comparison to the FDPSM and FBPSM, the SBPSM
reduces the number of unknown variables, which, in turn, reduces the dimension of the
problem and ultimately speeds up the solving process. Figure 4 illustrates the model time
and solver time at various grid points and supports the validity of the conclusion. For
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example, the model time of the FDPSM in Figure 4a is greater than that of the FBPSM and
SBPSM, when N is set as 150 or more. In contrast, the two first-order approaches take
longer to solve the problem than the SBPSM in Figure 4b.

25 . . . ; - - - - ; 35 . . . ; - - - - -
—e—ZOH —e—ZOH
—A—FDPSM —A—FDPSM
30 FBPSM
1 —#— SBPSM
25
’ L 20t
5]
=
@ 151
. -
10+
51
0
20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 120 140 160 180 200 220
N N

(a) Model time (b) Solver time

Figure 4. The curve of model time and solver time under the different number of grid points.

A perfect discretization method has a modest terminal state error, in addition to a
brief total solution time. Figure 5 demonstrates that, although the terminal error of ZOH
steadily lowers as the number of grid points increases, it is still higher than that of other
discretization approaches. In terms of the solution accuracy, this result demonstrates that
the ZOH is inferior to the pseudospectral discretization method. The outcomes also indicate
that the new discrete approach, which is based on the Birkhoff interpolation, inherits the
superior qualities of the conventional pseudospectral method. Figure 6 displays the position
errors as measured by the difference between the optimal trajectory and the propagated
trajectory in both the x-axis and y-axis directions. The solution accuracy of the SBPSM is
higher because, during the entire maneuver, the error of the SBPSM is smaller than the
result of the ZOH in both directions.
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Figure 5. Cont.
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Figure 5. The terminal position and velocity error under the different number of grid points.

10°

—6—ZOH —6—2ZO0H
- B —SBPSM - B —SBPSM
; ; ; !

0 50 100 200 250 300 350 400 450 500 250 300 350 400 450 500
time (s) time (s)
(a) the x-axis direction (b) the y-axis direction

Figure 6. The position errors, as measured by the difference between the optimal trajectory and the
propagated trajectory. (N = 90).

Furthermore, we investigated the impact of the grid points count on the no-fly zone
and thrust constraints. The findings indicate that increasing the grid points was necessary
to improving the practicality of the ideal solution and the maneuverability. Readers can
refer to Appendix B for details.

In summary, to ensure that the constrained problem has an optimal solution, we
need to set the number of grid points, N, to be large enough, which will reduce the
computational efficiency and solution accuracy. The proposed methods based on the first-
order and second-order Birkhoff interpolation can significantly improve the efficiency of
the solution, while maintaining high accuracy.

5.2. Case 2: Sensitivity Analysis under Different Conditions

In this section, the performance of the proposed algorithm was verified by a sensitivity
analysis under different test conditions. The main measurement indicators were the total
solution time, the number of iterations, and the terminal state error. Firstly, two conditions
were considered: the type of grid points, and the shape of the no-fly zone. By adding
the perturbation Ay to the initial position in the y-axis direction, a Monte Carlo analysis
was conducted. The grid points were chosen between LGL and CGL [26] for the fuel
optimization problem over a fixed time interval. In addition to the sphere, the ellipsoid
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was also selected for the shape of the no-fly zone. Table A2 in Appendix A displays the
shape characteristics of no-fly zones. The value of the perturbation Ay (m) was randomly
generated within the range of [-1,1] m and the number of simulation groups was set as
300. The different simulation settings are denoted by the titles of the subgraphs in Figures 7
and 8, and three pseudospectral methods are described in the legend. The ZOH technique
is not considered in this section, due to the uniform distribution of the grid points and the
difficulty in meeting the accuracy requirements with the maximum number of iterations,

due to the huge terminal position error.
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It is clear from Figure 7 that the FBPSM and SBPSM have more stable total solution
times than the FDPSM, as evidenced by the roughly linear growth and square growth
trends once the grid point exceeds 100, respectively. At the same time, the SBPSM performs
marginally better than the FBPSM, which is in line with the analysis in the preceding section.
The number of iterations of the three methods in Figure 8 displays a “steady” fluctuation,
but the interpretation is different. The fact that the number of iterations fluctuates between
five and eight for the FBPSM and SBPSM indicates that the two approaches can steadily
converge to the optimal solution. The approach of the FDPSM cannot ensure a stable
convergence to the optimal solution since the number of iterations varies between the
maximum and the finite number of iterations (Maxiter = 20). The findings demonstrate that
the SC algorithm, based on the FBPSM and SBPSM, is suitable for the four circumstances
listed and can maintain a faster solution and more stable convergence when there are more
grid points.

The purpose of the Monte Carlo simulation tests is to evaluate the sensitivity of these
three methods in dealing with the initial state perturbations. The tests are divided into two
scenarios: N = 90 and N = 150. Each test only changes the initial position in the y-axis
direction, and the perturbations are randomly generated. The total solution time, Tjy,;,
and the terminal position error, e, are chosen as the evaluation indices. The results are
presented in Appendix A.

A visual evaluation model is created in Figure A2 by using the total solution time
as the vertical axis and the terminal position error as the horizontal axis. The overall
performance of this method is better the closer the results are to the lower left corner. In
scenario 1, as depicted in Figure A2a, the output from the three algorithms reveals two
identical clustering zones, with an error line of 0.4 m serving as the dividing line. The
increase in the terminal position accuracy is accompanied by a jump in the total solution
time, which rises from the right side of the dividing line to the left side of the dividing
line, with an increase of roughly two seconds. The clustering regions’ findings indicate
that, while the solution accuracy may increase in some ranges, the total solution time may
remain unchanged. Figure A2b depicts the differential distribution between the FDPSM
and the Birkhoff pseudospectral methods results in scenario 2. Although the majority of
the FDPSM results are clustered around T}y, = 60 s, there are some scattered points in
a wider range in both the horizontal and vertical directions. The results of the FBPSM
and the SBPSM are more concentrated, and the advantage in the total solution time can
be perceived. To some extent, the approach of the FDPSM is more sensitive to the initial
position disturbance.

Figure A3 illustrates the findings of our quantitative analysis of the Monte Carlo
simulation data, which is an addition to the results of the qualitative study discussed above.
The terminal position errors of the three methods are primarily spread in the range of
[0,1.2] m depicted in Figure A3a, with a median value of roughly 0.5 m. The highest limit
of the FBPSM is closer to 15 s in terms of total solution time, whereas the majority of the
SBPSM outcomes (about 75%) are 1.5 s faster than the other two approaches. When the
number of grid points is set to 150, in Figure A3b, the terminal position error of the FDPSM
spreads to 1.5 m, the median value of the total solution time rises from 10 s to 60 s, and the
properties of the centralized distribution deteriorate. The original error level is maintained
by the FBPSM and SBPSM, and the median value of the total solution time is 21 s and
19 s, respectively. In terms of both the solution accuracy and computational efficiency, the
Birkhoff pseudospectral approaches are more stable than the FDPSM.

Through sensitivity analysis, it is found that, compared with the FDPSM, the Birkhoff
pseudospectral methods have the following advantages: (i) they can converge to the
optimal solution steadily at a faster speed and are suited for two different types of grid
points and no-fly zones. (ii) In the case of the initial position disturbance, they can maintain
a more stable terminal position error distribution and higher computational efficiency.
(iii) Under the same conditions, the second-order Birkhoff pseudospectral method (SBPSM)



Aerospace 2022, 9, 505

24 of 30

is better than the first-order Birkhoff pseudospectral method (FBPSM), both in solution
time and the robustness against the initial position disturbances.

6. Conclusions

With the increase in the series of space missions, such as the space station construction,
on-orbit maintenance, material supply, and astronaut rotation, in the future, the RPOs will
play a more important role. The popularization of automatic rendezvous technology will
be of great significance to save human and material resources. The method proposed in
this paper combines convex optimization technology with the Birkhoff pseudospectral
method. The advantages of convex optimization techniques, such as polynomial complexity
and global optimal solution, are inherited. At the same time, the pseudospectral method,
based on the Birkhoff interpolation, overcomes the shortcomings of the original, traditional
differential operator pseudospectral method. With the increase of the polynomial order,
N, the proposed methods can not only maintain the solution accuracy but also greatly
improve the computational efficiency. Especially for the dynamic system, the second-order
Birkhoff pseudospectral method will have a more obvious improvement effect. Under
certain conditions, the improvement of the computational efficiency can be expanded by
up to three times. This work discovery will provide a possible basis for realizing spacecraft
autonomous online real-time trajectory planning. Further exploring the computational
performance of the proposed method and striving for practical onboard applications will
be the goal of our future work.
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Appendix A
Appendix A contains some of the tables and result charts that are needed for Chapter 5.

Table A1l. Dimensionless units and values for Section 5.1.

Dimensionless Unit Value
Length L, R,
Speed V, VGum/R,

Time T (Re)®/Gum
Acceleration ay Gum/ (Re)?
Mass M, Mo

Force F, MOGM/(RL’)2
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Total solution time T, (s)

Total solution time T, (5)

Table A2. Initialization parameters of the RTO problem for Section 5.1.

Initialization Parameters

Value

Initial Mass
Initial and Terminal Time
Initial and Terminal Position
Initial and Terminal Speed

No-fly Zone Radius

Maximum Thrust Limit
Reciprocal of effective exhaust velocity

mg = 1000/ M,,
to=0,tf =500/T,
rg = [0, —100,0]/Ls; s = [0,20,0]/ Ly,
vy = [0,0,0]/Vu;vf =10,0,0]/V,
Rs =10/ Ly (Spherical);
Ry =10/Ly; Ry =15/Ly; R, = 10/ Ly (Ellipsoid)
[Tmin Tmax] = [0 1O/Fu]
u =V, /2000

—
[}
o]
IS
]
c
c
RS
=
©
c
o
O
N

I ]

1.8 E

1.6 3

1.4 1

1.2 .

1 102
N

Condition number Condition number

N

102

Figure A1. The change law of condition number of the coefficient matrix under the second-order system.
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Figure A2. 6 x 300 groups of Monte Carlo simulation results based on initial position perturbation Ay.
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Appendix B

Figure A4a illustrates that the no-fly zone constraint fails when N is 30 because the
Chaser’s optimal trajectory, as determined by the FDPSM, passes across the no-fly zone.
The optimal trajectory, as seen in Figure A4b, flies around the boundary of the no-fly
zone and finally reaches the desired position safely when there are 120 grid points. This
demonstrates that the effectiveness of the no-fly zone constraint is correlated with the
number of grid points.

Generally, the distribution characteristics of the Chebyshev—Gauss—-Lobatto (CGL) grid
points cluster at both ends and are sparse in the middle. As a result, when N is too small,
there are few interpolation points near the no-fly zone, causing the trajectory to directly
cross this area, as illustrated in Figure A5. Finally, the optimal trajectory fails to meet the
no-fly zone constraint, and the two satellites may collide in the close-range rendezvous
mission. There are enough interpolation nodes close to the no-fly zone’s boundary when
N is a suitable value. Through the successive iterative optimization process, the Chaser
satellite avoids the no-fly zone along the optimal trajectory and reaches the endpoint, as
shown in Figure A6. The results and conclusions obtained by using the FBPSM and SBPSM
are consistent with the above findings using the FDPSM. Therefore, after assessing the
computational efficiency and precision of the solution, the Birkhoff pseudospectral method
is unquestionably a better option when the number of grid points must be raised to satisfy
the requirements.
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Figure A4. The two-dimensional trajectory of the Chaser satellite approaches the spherical no-
fly zone.

T T T T T

————— No-fly Zone
Trajectory

B |nitial Position
¢ End Position
O CGL Nodes

-100 -80 -60 - 40 -20 0 20
X (m)

Figure A5. Distribution of trajectory grid points (red circles) near the no-fly zone. (N = 30).
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Figure A6. Distribution of trajectory grid points near the no-fly zone. (N = 120).

Figure A7 depicts the variation curve of the component and the magnitude of the
Chaser’s thrust when the number, N, is taken as 30 and 120, respectively. First, from
the two subgraphs on the right, it can be found that the slack variable, {, is completely
consistent with the change curve of the thrust magnitude, ||T||. This illustrates that the
lossless convexity operation is effective and verifies that the solution of the relaxed Problem
2 is equivalent to the original Problem 1. From the subgraphs of the thrust component, it



Aerospace 2022, 9, 505 28 of 30

can be found that the thrust mainly acts on the x-axis and the y-axis, which is also in line
with the characteristics of the maneuvering transfer in the xOy plane, with minimum fuel
consumption. Moreover, when the number of grid points is small, the change in thrust
is relatively stable and slow, especially when passing through the no-fly zone, when the
working time of the whole engine is about 80 s. In sharp contrast, when N is 120, the
satellite makes a rapid maneuver response when approaching the no-fly zone, which lasts
only 15 s. From the previous result analysis, it is known that, in the end, the former mission
failed, while the latter perfectly avoided the no-fly zone and reached the destination.
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Figure A7. The curve of the thrust components and magnitude for the spherical no-fly zone when N
is 30 and 120,respectively.
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