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Abstract: Landing impact load design is essential, but the process has rarely been fully described,
and some designers have even neglected the differences between wheel-axle and ground-contact
loads, as well as loads in the longitudinal direction, especially in experimental validations. In this
paper, the entire design process of a nose landing gear is addressed, including a theoretical analysis
of the unit and its experimental validation. In the theoretical analysis, a mathematical model of a
two-mass system with four degrees of freedom was adopted, a computer simulation model was
built accordingly, and a preliminary analysis was subsequently conducted to analyze the landing
impact loads, verify the landing gear performance, and gauge the difference between the wheel-axle
and ground-contact loads. For the experimental validation of the gear, a landing gear drop test was
conducted in an optimized manner that emphasized pre-test preparation and during-test wheel-axle
load measurement. The test results showed that both the vertical and less studied longitudinal loads,
as well as the wheel-axle and ground-contact loads, had good agreement with the analysis; thus, the
model, the tool, and the preliminary design were considered to be experimentally validated.

Keywords: landing gear; shock absorber; landing loads; drop test

1. Introduction

The landing gear is the key to ensuring the safe landing of an airplane. To reduce
the landing impact loads, different kinds of methods have been tried, of which the oleo-
pneumatic shock absorber is the most used because of its high energy absorption efficiency,
but the landing dynamic process is still complicated. Because the landing impact load is
the basis for the structural design of the landing gear and fuselage, in order to ensure the
accuracy and rationality of the loads, related theoretical analyses, simulation tools, and
experimental tests have attracted a lot of attention from industry and academia.

Theoretical studies have evolved from being linear to being nonlinear, from being
simple to complex [1–4]. In terms of mathematical and mechanical modeling, the most
common choice is the two-mass model system with various degrees of freedom, which is
typically a set of second-order nonlinear differential equations. Numerous studies have
been conducted on the fundamental components of the system, including the air spring
force, oil damping, bearing friction, tire deflection, wheel rotation, tire friction, structural
arrangement, and structural flexibility [5–13]. Some studies have even looked at the impact
from the aircraft level, like airframe flexibility, aerodynamics, and the controller systems
effect [14–18]. Nowadays, theoretical modeling and simulation analyses are still crucial
areas [19–21].

Solving the theoretical models of complex nonlinear mathematical equations by hand is
complicated, so it is generally inseparable from computer-aided support. Simulation tools
can be created by building specific computer programs, like GearSim [22,23], or using generic
business multibody dynamics software like MSC.ADAMS and LMS.Virtual.Lab [3,24]. The
latter has been the focus of research in recent years and is gradually maturing thanks to quickly
expanding computational multibody technology and virtual prototyping technologies [25].
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Experimental research has mainly been conducted via landing gear drop tests, which
simulate the landing impact process to verify the landing gear design by releasing the test
unit from a set height and therefore dropping it so that it impacts the test table below (force
measuring platform) to gauge dynamic characteristics [26,27]. In the early days, engineers
used time history loads after obtaining them through testing as a design reference for a
variety of landing scenarios [28]. After the drop tests started to make more sense and the
level of theoretical analysis gradually improved, it was eventually viewed as a final stage to
confirm and verify the theoretical analysis instead of being used as a benchmark to expand
to other scenarios. As for the development of modern large civil aircraft, airworthiness
authorities like the FAA, EASA, and CAAC have made it clear in their regulations that drop
test validation activities must be taken seriously. In the last ten years, various experts have
conducted test research. Xue Caijun conducted a drop test for the Seagull-300 aircraft [29];
D. Scoot Norwood conducted a full aircraft landing test for F-35 fighters [30]; Zhang Zihao
researched drop test equipment [31]; Fang Wei carried out a four-wheeled landing gear
drop test [32].

Although extensive research has been conducted in this area, there is still ample op-
portunity for further improvements and implementation. Some research might neglect the
distinction between wheel-axle and ground-contact loads, and some tests have prioritized
vertical loads at the expense of longitudinal loads, and in such tests, researchers have
alternatively attempted to tackle the complexity of longitudinal loads using rudimentary
engineering methods [27,33–35]. In the case of advanced large civil aircraft, the landing
gear design and the landing load design need to be as accurate as possible in order to
ensure safety and save money, but very few studies on this have been published.

This paper presents a practical study of the landing load design process for a large civil
aircraft’s nose landing gear, encompassing an initial theoretical analysis and a subsequent
validation drop test, thus providing a good reference for further research in this field. For
this study, some meaningful investigations and innovations were made. All processes were
systematically carried out in accordance with the latest airworthiness requirements and
were somewhat advanced. Firstly, the analysis basis of the theoretical mathematical model
and the computer simulation tool were studied. After conducting a preliminary analysis,
the performance indexes of load factor and energy-absorbing efficiency were verified, and
then the load difference between the wheel-axle (WA) center and the ground-contact (GC)
point was discussed. Secondly, a landing gear validation drop test was conducted in an
optimized way that focused more attention on the activities that needed to be prepared
before the test as well as the load measurement during the test. The test results showed
that both the loads at the WA center and GC point and both the loads in the vertical and
longitudinal directions showed good agreement with the analysis result. The landing
impact loads, the performance indexes, the mathematical model, and the simulation tool
were all experimentally validated.

2. Theoretical Model and Tool
2.1. Landing Gear Structure

The civil aircraft considered in our research for the creation of this paper is a single-
aisle civil aircraft, like the Airbus A320, with a maximum capability of 170 passages, a
maximum take-off weight of 80,000 kg, and a maximum landing weight of 68,000 kg. It
adopts a typical three-point landing gear layout in which a single-strut two-wheeled nose
landing gear carries about 10% of the weight, adopting a typical type of oleo-pneumatic
shock absorber. Performance indexes are aimed so that the vertical overload factor should
be less than 1.70, and the energy absorb efficiency should be greater than 65%.

The structural outline diagram is shown in Figure 1. It contains an outer cylinder, a
piston, a drag brace, a locking stay, two torsion links, and two wheels. The wheel axle is
integrated at the bottom of the piston and symmetrically mounted with two wheels. The
oleo-pneumatic shock absorber chamber is formed by the outer cylinder and piston, as
shown in Figure 1. This is a classic single-chamber design for an oleo-pneumatic shock
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absorber, with fixed oil orifices and a variable-section metering pin. During the instroke
and outstroke movement, the gas in the chamber is compressed or expanded, resulting
in different spring forces. Meanwhile, the oil passes through the orifice with different
sections and speeds, resulting in different damping forces. In the landing impact process,
two forces work synergistically to reduce impact, decrease loads, dissipate energy, and
improve comfort.
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Figure 1. Landing gear and shock absorber: (a) nose landing gear structure; (b) internal schematic of
shock absorber.

2.2. Landing Dynamic Model

Based on industry experience with respect to meeting airworthiness regulations, some
reasonable assumptions of the landing dynamic model can be used, and some reasonable
simplifications can be made. The airframe can be treated as rigid, the landing attitudes
can be assumed to be symmetrical without rolling, and the airlift force can be assumed to
be equal to gravity. A two-mass spring-damper mathematical model with four degrees
of freedom (DOF) for the nose landing gear was adopted in this study. A diagram of the
two-mass landing gear dynamic model, in which the two masses, DOF, and forces are
labeled, is provided in Figure 2.

The un-sprung mass includes the piston, wheels, and lower torsion link. Its center of
gravity (C.G.) is assumed to be located at the wheel axle center. The rest of the reduced mass
is the sprung mass. The reduced mass of the landing gear is equal to the vertical component
of the static reaction, assuming that the mass of the aircraft acted at the C.G. and exerted
a force of 1.0 g downward and 0.25 g forward [36]. The four degrees of freedom are as
follows: q1 is the up and down of the un-sprung mass, q2 is the up and down of the sprung
mass, q3 is the wheel rotation, and q4 is the forward and afterward of the un-sprung mass,
namely the gear walk phenomenon caused by strut flexible bending. The corresponding
mass definitions are as follows: m1 and m4 represent the un-sprung mass, m2 represent the
sprung mass, and m3 is the inertia moment of wheels.
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Figure 2. Landing gear dynamic model.

The dynamic model can be defined by the following equations:

m1
..
q1 = QV + (m1g− FT) cos (b+q3)− DTsin(b + q3

)
m2

..
q2 = (L−m2g) cosq3+2QV cos b−2QH sin b

m3
..
q3 = DT(R− d)

m4
..
q4 = (m4g− FT) sin(b+q3) + DTcos(b + q3)−QH

(1)

where QV is the vertical load inside the shock absorber, consisting of the gas spring force,
oil damping force and bearing friction forces; FT is the vertical load on the tire; DT is the
longitude friction on the tire; L is the airlift force assumed to be equal to the gravity of the
reduced mass; QH is the strut bending force; b is the fixed pitch angle of the pillar; R is the
tire radium; d is the tire deflection; g is the gravity coefficient.

Additionally, the detailed equations of the friction forces and bending force are
as folllows:

DT = FT f (s)

Q f = µ|QH |
[

2(L2−S)
L1+S +1

] .
S∣∣∣ .
S
∣∣∣

QH = kq4 + c
.
q4

(2)

where f is the function of tire friction coefficient and skip ratio, which refers to MIL-A-
8863B(AS) if not specified; s is the skip ratio of the tire; L1 is the distance between the upper
and lower bearing; L2 is the distance between the lower bearing to the wheel axle center; µ
is the bearing friction coefficient; S is the shock absorber stroke; k is the structural stiffness
in the bending direction; c is the structural damping coefficient (assumed to be 5%).

2.3. Landing Analysis Tool

The mathematical equations can be solved with known initial motion conditions and
design parameters via numerical integration. The motion condition parameters are the
geometry position and velocity for each DOF, depending on the landing scenarios. The
design parameters, including the masses, spring and damping performance, geometry
sizes, and structural stiffness, are frozen after finishing the structural design.

Solving the equations by hand is not easy; thus, MATLAB/Simulink R2013a software
was used to build a simulation model according to the mathematical equations, through
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which the landing impact process can be automatically simulated and solved using the
method of numerical integration. This model is shown in Figure 3.
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In the tire deflection block, the tire deflections and slip ratios can be calculated. In the
tire force block, the vertical and friction tire loads can be calculated. In the SA displacement
block, the wheel-axle center’s movements and velocities in two directions can be calculated.
In the SA force block, the WA center forces in the strut direction and bending direction can
be calculated. In the DOF block, the displacements, the velocities, and the accelerations for
each DOF can be integrated and calculated according to the iteratively updated forces.

3. Preliminary Analysis
3.1. Analysis Cases

The input data of the landing conditions for the analysis were defined by the initial
motion states and aircraft design parameters. Regarding the airworthiness requirements,
various combinations of the weights, C.G. conditions, landing attitudes, and landing speeds
should be considered. The weight and C.G. are used to calculate the reduced mass. The
landing attitude of the nose landing gear is the three-point level landing. The sinking
speed is 1.83 m/s for the maximum take-off weight and 3.05 m/s for the maximum landing
weight. According to the regulations, the maximum longitudinal speed is 1.25 times
the stall speed corresponding to the highest permitted landing height. In contrast, the
minimum longitudinal speed is the stall speed corresponding to sea level altitude. Given
the challenging conditions of an icy or wet runway, an equivalent technique of setting
the minimum longitudinal speeds to zero was selected for this study. In addition, to
ensure the comprehensiveness of the design, more combinations may be added by different
manufacturers for different purposes, resulting in hundreds of combined conditions. We
used the severe conditions listed in Table 1 as examples.

Table 1. Preliminary analysis cases.

Preliminary Analysis Case A1 A2 A3

Reduced mass (kg) 13,400 13,400 13,400
Sinking speed (m/s) 3.05 3.05 3.05

Longitudinal speed (m/s) 0 58 96

The input data of the landing gear design parameters mainly included the gas spring
curve, oil damping coefficient curves, tire deflection curve, and tire friction–slip curve,
as shown in Figure 4. The other parameters, like the un-sprung mass, wheel rotation
inertia, strut bending stiffness, and other geometry information, were gauged from the
three-dimensional geometric model and finite element model (FEM).
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3.2. Performance Verification

After our preliminary analysis, the values of the ground-contact vertical loads and the
travels of the sprung mass were calculated, and the results are shown in Figure 5. The figure
shows the variation in the vertical loads relative to the travels, the maximum loads and
the maximum compressions, and how the landing gear absorbed impact energy in the first
compressions. These data were used to verify whether the landing gear’s performance in
terms of the overload factor and energy absorbance efficiency was theoretically adaptable.
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The overload factor is the ratio of the maximum vertical load to the reduced mass
weight. The maximum loads for cases A1, A2, and A3 are 215 kN, 210 kN, and 212 kN,
respectively. The overload factors are 1.63, 1.60, and 1.61, given the drop mass of 13,400 kg.
This shows that the landing gear design is capable of meeting the overload factor require-
ment that the maximum should be lower than 1.70.

The shock absorber (SA) efficiency is a factor that describes the ability of an element to
absorb impact energy, and it can be calculated using the following equation:

η =

∫ SM
0 QVdS
QVMSM

(3)

where QV is the vertical force along the strut direction; S is the stroke travel; QVM is the
maximum vertical force; Sm is the maximum stroke. The results corresponding to cases L1,
L2, and L3 were 65.3%, 67.6%, and 68.8%. This shows that the shock absorber efficiency of
the gear can meet the minimum shock absorber efficiency requirement (greater than 65%).
Compared to the other cases [4,8,17,33], the curve shapes and the absorber efficiencies are
basically similar. However, if the vertical loads before 250 mm can be optimized from
100 kN to about 150 kN by redesigning the damping parameter, the absorber efficiencies
may be better.
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3.3. WA and GC Loads

The preliminary analysis results regarding history loads, which include the two positions
of the wheel-axle center (WA) and ground-contact point (GC) and two directions (the vertical
and longitudinal directions), are shown in Figure 6.
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The key finding that was derived from these results is that faster longitudinal speeds
produce more dramatic longitudinal loads, in which both the values and frequencies
undergo changes, but the vertical loads are not that dramatic. What is more important
is that the load difference between the WA and GC is clearly non-negligible. The WA
loads have noticeable oscillation, with a frequency of around 20 Hz, but the GC loads
decay rapidly, more like a shock wave. This should serve as a reminder for engineers to
accurately analyze the wheel-axle loads rather than the ground-contact loads to support
static load selection and the structural strength of the design. Similarly, the same difference
in importance should also be noted in the landing gear drop test.

4. Drop Test Validation
4.1. Test Facility and Preparation

As seen in Figure 7, the major components of the landing gear drop test facility
included a column platform, a mass skip basket, an impact reaction table, a wheel speed-up
system, airlift rods, and measuring tools. The landing gear test unit was fixed to the skip
structure (skip basket), which modified the drop mass by carrying different weights of
iron blocks like a basket. The test unit could be lifted to a set height to obtain an accurate
impact velocity before being released and therefore dropped on to the table after the wheels
were accelerated. When the tires made contact with the table, the airlift rods, which are not
shown in the figure, provided a stable lift force.

Traditionally, the dynamic parameters, such as the loads, pressures, displacements,
velocities, accelerations, and temperatures, are measured and calculated with high sam-
pling during the drop impact process, in which the table forces are usually the focus of
attention. Three-dimensional load sensors were installed under the impact table to measure
the ground-contact loads. The absorber’s instroke, basket skip displacement, and tire
deflections were measured using displacement and velocity sensors.
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Additionally, to measure the wheel-axle forces, our drop test also included the instal-
lation of load sensors to the attachment points for the season that the load transfer from
the wheel-axle to the attachment points was clear after releasing the pressure inside the
retraction actuator namely that the total loads of all the attachment points were equal to
the wheel-axle loads. Additionally, to obtain wheel rotation information, two rotational
speed sensors and a tire deflection sensor were also installed to measure the linear speeds
at the ground-contact point, which can be used to determine the slip ratios. Because that
longitudinal loads, a key point of focus in this study, are highly correlated with slip ratios
and tire friction coefficients.

Another critical aspect of our study was the preparation for the test, which mainly in-
volved confirming the design parameters, including the air–spring curve, test unit weights,
drop masses, and the wheel moment of inertia. Particular attention was paid to confirming
the element’s structural stiffness, which was critical for the wheel-axle load analysis. This
was measured via finite element modeling analysis, in which the beam model shown in
Figure 8 was verified via a static load test.
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4.2. Test Cases

The primary goal of our drop test was to confirm that the landing gear dynamic
characteristics and design indexes meet expectations per the requirement of EASA CS25.723
and to ensure that the simulation analysis model and tool were valid for various landing
design conditions. The test criteria were the drop mass and sinking speeds, which needed
to be equal to or slightly larger than the theoretical value to provide sufficient impact energy.
Typically, heavy load situations with high-impact energy were chosen for the test cases,
and at the same time, various longitudinal speeds were considered. The landing conditions
of the preliminary analysis (Table 1) were selected as the drop test cases. The test results
are shown in Table 2, and each case met the energy criteria.

Table 2. Energy criteria results.

Test Case T1 T2 T3

Reduced Mass (kg) 13,472 13,472 13,472
Sinking Speed (m/s) 3.10 3.08 3.08

Longitudinal Speed (m/s) 0 58.6 96.5

4.3. Processing of Test Results

After the test, the verification and validation process mainly consisted of tuning
uncertain parameters and comparing the loads and performance indexes. Overall, the
results indicate that the preliminary analysis results regarding the loads and performance
are accurate, reasonable, and acceptable, meaning that they were validated by the drop test.
In addition to the loads, the theoretical model and simulation tools were also considered to
be valid.

4.3.1. Parameter Tuning

Uncertain parameters were tuned to accurately define parameters such as the gas
polytrophic factor, discharge coefficient, and bearing friction coefficient, which were initially
defined according to our engineering experience in the preliminary analysis stage but were
tuned following the drop test for further usage. The parameters were first tuned for
each case, and then a typical result was determined via a comprehensive judgment based
on the principle that the history loads for each case are in relatively good agreement;
meanwhile, the analytical loads were slightly conservative compared to the test. The
differences in the tuning results shown in Table 3 are noticeable but not dramatic, proving
that using one’s existing engineering experience with these parameters can support the
earlier theoretical analysis.

Table 3. Parameter tuning results.

Key Factor Pre. T1 T2 T3 Tuned

Gas polytrophic (−) 1.1 1.13 1.05 1.12 1.08
Oil discharging (−) 0.8 0.82 0.84 0.79 0.8
Bearing friction (−) 5% 5% 9% 8% 7%

Tire dynamic (−) 1.08 1.04 0.97 1.07 1.08

In addition, the most crucial correction is the tire friction coefficient. The relationship
curves of the friction coefficients and slip ratios in the test were obtained using the measured
results of the vertical loads, longitudinal loads, tire speeds, and tire compressions. As
shown in Figure 9, a vast difference can be seen compared with the theoretical curves
in Figure 4. The aforementioned verification tests can only be completed if the above
measurements are carried out.
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4.3.2. Load Validation

The load comparison, which includes both the wheel-axle loads and ground-contact
loads in the vertical and less-studied longitudinal directions, is to determine further the
accuracy of the pre-analysis loads, theoretical model, and simulation tool to support
accurate load analysis and structural design.

A new simulation analysis was conducted using the test conditions and tuned parame-
ters as input data. Graphical comparisons of the results are shown in Figure 10. This figure
shows that both the loads at the WA center and GC point and both the loads in the vertical
and longitudinal directions were all in good agreement between the simulation and test,
validating both the accuracy and comprehensiveness of the work previously performed.
Compared with other studies on the drop test [4,8,17,32,33], the longitudinal tire loads are
basically similar in shape, as are the vertical history loads, but the longitudinal loads of the
wheel axle, as described before, were not obtained in previous tests. This test result proves
that a significant load difference between the WA and GC exists and could motivate other
researchers to conduct WA load research.
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4.3.3. Performance Validation

A comparison of the performance indexes was carried out to obtain a higher confi-
dence level than the preliminary loop to further confirm the feasibility of the landing gear
design scheme. Design indexes from the test are summarized in Table 4. We have experi-
mentally validated that the landing gear design can meet the relevant requirements. The
maximum overload factor of 1.69 meets the requirement of 1.7. The minimum absorption
efficiency of 65.9% meets the requirement of 65%. Compared with other studies published
recently [4,8,17,33], in which the efficiencies ranged from 60% to 80%, the design of the
nose landing gear described herein is adequate, and the properly designed oleo-pneumatic
shock absorber has been proven to have stable performance.

Table 4. Performance indexes of test.

Performance Index T1 T2 T3

Load factor (−) 1.69 1.62 1.63
Absorption efficiency (−) 65.9% 67.8% 67.4%

5. Conclusions

The landing impact load design process of a nose landing gear for a civil passenger
aircraft has been described in this study. The accuracy and reliability of the load design
were analyzed and confirmed by means of mathematical modeling, preliminary simulation
and analysis, a landing gear drop test, parameter correction, and test data processing.
This process was proven to be able to accurately and comprehensively meet the relevant
airworthiness requirements, providing an excellent example for further development in
this area. From this study, three main conclusions can be drawn, and they are listed below,
as are two additional points regarding this study’s implications for future research and
suggestions for future research directions:

• The results of the drop test show that the landing simulation analysis model established
by the assumption of the two masses (sprung and un-sprung), four degrees of freedom,
and a rigid airframe can accurately analyze the landing impact loads.

• Through both the simulation and the test, the difference between the wheel-axle and
the ground-contact loads was revealed to be non-negligible.

• If one takes reasonable consideration in the pre-test preparation of the structure’s stiff-
ness and the during-test measurement of the wheel-axle loads, the drop test validation
can be accurate and comprehensive, and both the vertical and the longitudinal loads,
as well as the wheel-axle and ground-contact loads, can be fully validated.

• The importance of structural flexibility and tire friction modeling, as noted in this
paper, should be considered in the current popular dynamic analysis methods based
on ADAMS or other software, and the corresponding multi-body modeling methods
can be further investigated to accurately analyze longitudinal loads.

• The lateral loads and the detailed attachment point loads may also need to be in-
vestigated further via both simulations and tests, including the motion equations
for the lateral degrees of freedom, the lateral mechanics model of the tires, and the
experimental validation of attachment point loads, especially for main landing gears
with more complex asymmetric structures than the nose landing gear.
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