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Abstract: With the development of next-generation airplanes, the complexity of equipment has
increased rapidly, and traditional maintenance solutions have become cost-intensive and time-
consuming. Therefore, the main objective of this study is to adopt predictive maintenance techniques
in daily maintenance in order to reduce manpower, time, and the cost of maintenance, as well as
increase aircraft availability. The landing gear system is an important component of an aircraft. Wear
and tear on the parts of the landing gear may result in oscillations during take-off and landing rolling
and even affect the safety of the fuselage in severe cases. This study acquires vibration signals from
the flight data recorder and uses prognostic and health management technology to evaluate the
health indicators (HI) of the landing gear. The HI is used to monitor the health status and predict
the remaining useful life (RUL). The RUL prediction model is optimized through hyperparameter
optimization and using the random search algorithm. Using the RUL prediction model, the health
status of the landing gear can be monitored, and adaptive maintenance can be carried out. After the
optimization of the RUL prediction model, the root-mean-square errors of the three RUL prediction
models, that is, the autoregressive model, Gaussian process regression, and the autoregressive
integrated moving average, decreased by 45.69%, 55.18%, and 1.34%, respectively. In addition, the
XGBoost algorithm is applied to simultaneously output multiple fault types. This model provides a
more realistic representation of the actual conditions under which an aircraft might exhibit multiple
faults. With an optimal fault diagnosis model, when an anomaly is detected in the landing gear,
the faulty part can be quickly diagnosed, thus enabling faster and more adaptive maintenance. The
optimized multi-fault diagnosis model proposed in this study achieves average accuracy, a precision
rate, a recall rate, and an F1 score of more than 96.8% for twenty types of faults.

Keywords: prognostics and health management; remaining useful life; landing gear; predictive
maintenance; hyperparameter optimization

1. Introduction

The landing gear system is a critical component for the take-off and landing of aircrafts.
Malfunctions in the landing gear system pose a serious risk to an aircraft’s take-off and
landing operations and can potentially lead to significant casualties. With the advent of
the jet age, the tricycle configuration of landing gear systems has been widely adopted. To
enable steering, the structure of the front landing gear is designed differently from that of
the rear landing gear, including the addition of steering brakes and steering linkages as
transmission mechanisms to satisfy steering requirements.

Owing to the design requirements for steering, the stability of the front landing gear
is relatively poor, making it susceptible to deviation and shimmy phenomena [1]. The
front landing gear has the capability to steer left and right and interact with the elastic
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metal structure and the friction of the ground acting on the landing wheel. During the
taxiing phase before take-off and after landing, external forces can affect the aircraft. When
structural failure occurs, the front landing gear may deviate from its original direction of
motion. Consequently, the interaction between the elastic structure and friction may lead
to lateral shimmy phenomena, which occur perpendicular to the direction of motion.

If the rolling speed of the aircraft is low, this phenomenon gradually converges,
resulting in the restoration of stability. However, as the speed increases to a certain value,
this shimmy phenomenon becomes more pronounced, making it difficult to control the
direction. This can lead to increased tire wear in the best case and to damage to the front
fuselage structure and the landing gear system in the worst case, thus endangering flight
safety [2].

This study focuses on the landing gear system, which, over a certain period of opera-
tion, is bound to exhibit anomalies. Therefore, it is essential to detect faulty components
early before the landing gear’s malfunction can jeopardize aircraft safety or lead to dam-
ages. By doing so, maintenance time can be reduced, aircraft reliability can be enhanced,
and maintenance efficiency can be improved. Research indicates that expenses associated
with fleet operation and maintenance constitute 60–70% of the total lifecycle cost, while
the increasing complexity of designs further contributes to the escalation of maintenance
costs [3].

A functional health monitoring system for the shock absorber in landing gear was
developed using prognostic and health management (PHM) [4]. The PHM-based landing
gear system includes multiple sensors installed on the shock strut to monitor and record
various shock absorber parameters, including gas temperature and pressure, and measure
the stroke and travel of the shock absorber piston during an aircraft landing event. In
addition, a PHM-based system can detect hard and heavy landings, enabling immediate
maintenance action by staff.

Lee et al. proposed a cost-optimal RUL-driven maintenance strategy for the landing
gear brakes of a fleet of aircraft [5]. Bayesian linear regression was used to predict the RUL
of the brakes. Then, an integer linear program was used to combine all RUL predictions
for the landing gear brakes of the fleet of aircraft. The results indicated that RUL-driven
opportunistic maintenance led to 20% lower costs than traditional preventive maintenance.

Lin et al. focused on predictive maintenance of aircraft landing gear using a self-
attention integrated learning model [6] and proposed multiple correlation analysis and a
multilayer perception with the self-attention (MLPSA) method. First, three coefficients,
including the Pearson coefficient, Spearman coefficient, and Kendall coefficient, were
integrated to establish indicators that were used to select key features. Then, eight machine
learning models, including Ridge, Elastic, KNN, SVM, DT, BP, RBF, and MLPSA, were used
to predict the performance of the landing gear. The proposed MLPSA exhibited a smaller
prediction error compared with other algorithms.

Hsu et al. [7] adopted the PHM methodology to construct a model for the prediction of
remaining useful life (RUL) for landing gears. The health indicator (HI) was evaluated based
on data acquired from the flight data recorder (FDR). Based on historical data from HI, the
autoregressive integrated moving average (ARIMA) model was built to predict the lifetime
of landing gear. However, there were significant discrepancies in the trends predicted using
the three different forecasting algorithms. Furthermore, the specific components causing
degradation in landing gear health remained unidentified.

Using the RUL prediction and fault diagnosis models, the status of the landing gear is
time-varying, and the working conditions of the landing gear are non-stationary. Variations
in missions, payload weights, weather conditions, and runway statuses can affect the
degradation trend because the landing gear changes gradually. Additionally, the quality
of the airport’s runway and the pilot’s driving technique affect the degradation trend. A
model constructed in the present may not be suitable for the future.

To address this problem, we propose a practical application of the RUL prediction
model and the fault diagnosis model constructed in the current study. Moreover, we focus
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on the hyperparameter optimization of algorithms to improve their predictive accuracy. In
addition, a multi-fault diagnosis model is incorporated to facilitate the rapid maintenance
and repair of faulty components. This approach is expected to reduce maintenance duration
and increase aircraft reliability.

2. Problem Statement
2.1. Effects of Missing Data on the Prediction Model

In this study, we analyzed data collected from the flight data acquisition unit (FDAU).
The FDAU gathers data from various sensors and avionic systems in the form of discrete,
analog, and digital parameters. These parameters are then routed to the flight data recorder
(FDR). We utilized historical data on take-offs and landings from each aircraft, along
with associated maintenance records, which are downloaded monthly from the FDR by
manufacturing and maintenance units. A total of 43 aircraft were included in the analysis.
FDR data encompass parameters such as time, airspeed, and vibration, spanning a duration
of approximately 10 years. The maintenance records comprise planned and unplanned
maintenance activities.

The FDR begins to record data immediately after the engine starts. The recorded data
cover all flight phases, including taxiing, take-off, climbing, cruising, descent, and landing.
Given our focus is on landing gear, the data used for analysis pertain to aircraft operations
on the ground, particularly during the high-speed taxiing phases of take-off and landing.
To isolate the data during these high-speed taxiing phases, airspeed is used as an indicator.
Since airspeed exhibits a monotonic increase before take-off and a monotonic decrease after
landing, the airspeed can be utilized to filter out the high-speed taxiing data during take-off
and landing.

However, owing to memory limitations within the FDR module, when extracting data
from the FDR at scheduled intervals, a portion of the data can be overwritten and lost. Time
intervals with missing data result in discontinuities. Missing data significantly affect the
performance of the models. Thus, when predicting the RUL, it is essential to address the
issue of missing values. The types of missing values can be classified as completely random,
random, or nonrandom. There are two types of missing data: non-random missing values
caused by data being overwritten because of insufficient memory, and completely random
missing values that occur randomly and rarely. Techniques for handling missing values
were used to mitigate the risk of prediction bias due to missing data [8].

2.2. Challenges to Identifying Different Fault Causes through Vibration Signals

Vibration signal analysis has emerged as a crucial tool for diagnosing and identifying
various faults in mechanical systems. The methodology adopted in the current study uses
vibration signals to discern distinct fault origins within these systems. By monitoring
and analyzing vibration patterns, practitioners gain insights into the root causes of faults,
enabling effective maintenance and troubleshooting.

To distinguish between different faults and the occurrence of multiple faults, it is nec-
essary to examine historical maintenance records. These records encompass both planned
and unplanned maintenance activities. As model construction requires maintenance actions
associated with actual faults rather than those prompted by flight requirements, routine
updates, or maintenance tasks, preprocessing of the maintenance record data involves fil-
tering out maintenance actions related to actual faults. The initial step involves identifying
maintenance actions related to real faults. Categorizing malfunctioning items based on
vibration data requires the participation of domain experts possessing relevant expertise in
this field.

3. Methodology
3.1. Basics of PHM Methodology

The PHM method was first applied in the field of aircraft maintenance [9]. The
aim of PHM is to optimize operational readiness by employing affordable, integrated,
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and embedded diagnostics and prognostics, embedded training and testing, serialized
item management, automatic identification technology (AIT), and iterative technology
refreshes [10]. The PHM method has been widely applied in many industries, and many
reviews of industrial applications have been published [11–15].

In the current study, the primary focus is on the use of the PHM method to perform
health assessments, fault diagnosis, and RUL predictions for landing gear. The method-
ological flowchart of this study is shown in Figure 1. The analysis steps are as follows:

• First step: data acquisition;
• Second step: data preprocessing;
• Third step: feature extraction;
• Fourth step: feature selection;
• Last step: constructing a health assessment model, a fault diagnosis model, and an

RUL model.
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Figure 1. Overview of the proposed method for landing gear modeling.

In the first step, the data acquired from the FDR must be filtered out of the taxiing data
during take-off and landing before analysis. The dataset comprises information about the
time, airspeed, y-axis vibration, and z-axis vibration acquired from the accelerometer sensor.
The FDR records data from the initiation of aircraft engine start-up. The FDR data are not
recorded at fixed intervals but rather when the signal exceeds the preset threshold value.
To obtain the vibration data from the take-off and landing operations, the airspeed must
be examined monotonically. The airspeed increases or decreases gradually for take-off
or landing operation. Therefore, data filtering involves searching for a monotonically
increasing airspeed for take-off data and a monotonically decreasing airspeed during
take-off and landing operations.

The maintenance record form provides details of maintenance activities. We selected
twenty items that are very important for landing gear maintenance. As shown in Table 1,
the faulty items are 1. nose wheel/tire; 2. left main wheel/tire; 3. right main wheel/tire;
4. main wheel/tire; 5. main wheel hub; 6. nose wheel hub; 7. nose landing gear drag brace;
8. left landing gear drag brace; 9. right landing gear drag brace; 10. left landing gear brake;
11. right landing gear brake; 12. nose landing gear retract actuator; 13. left landing gear
retract actuator; 14. right landing gear retract actuator; 15. nose landing gear shock strut;
16. left landing gear shock strut; 17. right landing gear shock strut; 18. steering actuator;
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19. steering control valve; and 20. brake control valve. Based on our observations, it is
imperative to determine the main malfunctioning items in current maintenance activities
and properly document them. However, when the maintenance record form indicates
the occurrence of more than one malfunctioning item, that is, multiple faults occurring
simultaneously, the multi-fault label method is required [16]. We employ the one-hot
encoding technique to ensure that multiple faults can be distinguished by the classification
algorithms. Figure 2 shows the utilization of the one-hot encoding method to reencode
multiple items from the maintenance record form.

Table 1. Twenty items used for the fault diagnosis model.

Item No. Malfunctioning Item Number of Data

A Rose wheel/tire 224
B Left main wheel/tire 947
C Right main wheel/tire 899
D Main wheel/tire 57
E Main wheel hub 106
F Nose wheel hub 77
G Nose landing gear drag brace 25
H Left landing gear drag brace 25
I Right landing gear drag brace 41
J Left landing gear brake 69
K Right landing gear brake 61
L Nose landing gear retract actuator 22
M Left landing gear retract actuator 24
N Right landing gear retract actuator 27
O Nose landing gear shock strut 37
P Left landing gear shock strut 37
Q Right landing gear shock strut 40
R Steering actuator 27
S Steering control valve 5
T Brake control valve 26

Total 2776
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We extracted ten time-domain features, such as peak-to-peak, mean, root mean square,
standard deviation, skewness, kurtosis, crest indicator, clearance indicator, shape indicator,
and impulse indicator, from the signals. The definitions of these characteristics can be
found in our previous work [7].

This study adopted a wrapper approach based on Fisher’s criterion for feature se-
lection, as proposed in the literature [17]. After selecting the crucial features, a logistic
regression algorithm was adopted to calculate the HI from historical data. After the HI
was evaluated, the RUL prediction model can be implemented using various algorithms.
In the previous study [7], we adopted the ARIMA algorithm to predict the RUL of the
landing gear. In the current study, we adopted more algorithms to obtain more accurate
predictions and compare their performances. Therefore, time-series analysis techniques,
such as the autoregressive model (AR) [18], ARIMA model [19], and Gaussian process
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regression (GPR) model [20], were used to implement the prediction model for landing
gear. The AR model offers advantages such as simplicity and efficiency, making it suitable
for short-term forecasting. The ARIMA model can handle trends and seasonality, offering
greater flexibility. The GPR model has the characteristics of a non-parametric regression
method, meaning that it can capture complex, non-linear relationships in time-series data.
In addition, GPR can handle irregularly spaced data points and is well-suited for data with
nonuniform sampling intervals. Obviously, GPR has a considerably greater advantage
in handling landing gear datasets. To improve model accuracy, a monotonicity check
was performed to ensure a monotonous degradation of the HI while predicting RUL. The
re-ranking of features was also performed based on the monotonicity check [7,16].

In this study, we employed the XGBoost (eXtreme Gradient Boost) algorithm for fault
classification modeling [21,22]. The XGBoost algorithm is based on the gradient-boosted
decision tree (GBDT) and encompasses the advantages of both bagging and boosting,
representing an enhanced algorithm. One of its primary strengths is the ability to amal-
gamate weak classifiers into a strong classifier. This algorithm is particularly beneficial
for developing diagnostic models for the multi-fault classification model. We adopted the
crucial features of these twenty fault types and the multi-fault labels obtained from the
one-hot encoding technique for fault codes into the classification model.

3.2. Hyperparameter Optimization
3.2.1. Optimization of the RUL Model

The performance of many machine learning algorithms depends on their hyperpa-
rameter settings. Therefore, to achieve optimal accuracy of the prediction model, hyperpa-
rameter optimization was applied. However, defining a formula to discover the optimal
hyperparameters is challenging. Some optimization strategies, such as manual search, grid
search, random search, and Bayesian optimization, have been proposed [18–23]. In the
current study, random search was used for RUL model optimization. As shown in Figure 3,
different combinations of varying hyperparameters were used to train the AR, ARIMA,
and GPR predictive models, and the corresponding model performances were evaluated
using a loss function. Through a continuous search, our objective was to minimize the loss
function, thereby obtaining the optimal RUL prediction model.
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The objective of hyperparameter optimization is to find an optimal setting of the
hyperparameters of the AR, ARIMA, and GPR algorithms as quickly as possible. As
previously mentioned, due to the varying flight tasks, distinct operational conditions, and
random absence of historical data, the optimal hyperparameters for each aircraft differ.
Therefore, optimizing these hyperparameters is essential to ensure that each aircraft has
the best RUL prediction model. However, given the algorithms used here, i.e., AR, ARIMA,
and GPR, the number of hyperparameters, their value ranges, and their significance vary.
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In this context, we employ a random search method for hyperparameter optimization.
Compared to grid search and manual search, random search can find superior models
by effectively searching for a larger but less promising configuration space in the same
domain [24,25]. As shown in Algorithm 1: random search optimization, a pseudo code for
random search optimization, is employed.

As detailed in Algorithm 1, the initial settings of the random search optimization
algorithm are established. This includes the initialization of the model score, denoted
as ‘best_score’; the maximum number of iterations, termed ‘iterations’; the hyperparam-
eter space, term ‘hyperparameter_space’; and the model to be optimized. Following
these settings, the optimization process begins. For each iteration, hyperparameters are
randomly selected from the hyperparameter space and then integrated into the model.
Cross-validation is used for model evaluation. If the current model’s evaluation score
surpasses the initial best_score, then the best_hyperparameters are replaced by the present
hyperparameters. This iterative process continues until the best hyperparameters are
determined. The hyperparameters used for optimization in the AR, ARIMA, and GPR
algorithms are shown in Tables 2–4, respectively. The parameters are detailed on the
Statsmodels website [26].

Algorithm 1: Random Search Optimization

function RandomSearch(model, hyperparameter_space, iterations):
best_score = 0

for i = 1 to iterations do:
sampled_hyperparameters = SampleFrom(hyperparameter_space)
current_model = TrainModel(model, sampled_hyperparameters)
current_score = Evaluate(current_model)
if current_score > best_score:

best_score = current_score
best_hyperparameters = sampled_hyperparameters

return best_hyperparameters

Table 2. Hyperparameters used in the AR algorithm [26].

No Hyperparameter Search Range Description

1 P Integer (0–10) Number of previous time steps.

Table 3. Hyperparameters used in the ARIMA algorithm [26].

No Hyperparameter Search Range Description

1 P Integer (0–10) Number of previous time steps.
2 D Integer (0–5) Number of times differencing.
3 Q Integer (0–10) Number of previous forecast errors.

3.2.2. Optimization of the Fault Diagnosis Model

In the implementation of the multi-fault diagnosis model, in addition to using the HI
corresponding to each fault repair event, it is essential to incorporate the fault category
occurring in each maintenance activity, as represented by fault codes, into the classification
model. Subsequently, we calculated the accuracy and F1 score of the classification model,
introduced various hyperparameters, and recorded the corresponding accuracy and F1
score. Through iterative refinements aimed at maximizing the model’s accuracy and F1
score, we can derive the optimal fault diagnosis model. The classification algorithm, such
as XGBoost [17–20], was used to construct the fault diagnosis model in conjunction with
the one-hot encoding method. Figure 4 shows the flowchart of the optimization process.
Hyperparameter optimization was applied to enhance model performance using a random
search algorithm [26–32]. We used the Python code to develop the program for XGBoost
hyperparameter tuning [32].
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Table 4. Hyperparameters used in the GPR algorithm.

No Hyperparameter Search Range Description

1 Kernel

Categorical
(‘kernel_rbf’,
‘kernel_rq’,
‘kernel_expsine’,
‘kernel_matern’,
‘kernel_dotproduct’)

Kernel specifying the covariance
function of the Gaussian process.

2 Alpha

Integer (1× 10−13

1× 10−12, 1× 10−11,
1× 10−10, 1× 10−9,
1× 10−8,1× 10−7)

Value added to the diagonal of the
kernel matrix during fitting.

3 n_restarts_optimizer Integer (0, 1, 2, 3)
Number of restarts of the optimizer for
finding the kernel parameters that
maximize the log-marginal likelihood.
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Figure 4. Overview of the proposed hyperparameter optimization for the fault diagnosis model.

The fundamental concept of Bayesian optimization involves using past samples of
the objective function, f, to determine the next optimal point for sampling, f. The Gaussian
process is a convenient and powerful prior distribution on functions f. We assume that the
function f (x) is drawn from a Gaussian process prior, and our observations are in the form
fφ(x). The optimization problem can be defined as Equation (1), and the key steps of the
Bayesian optimization algorithm are outlined in Algorithm 2:

∅∗ = arg max
∅ ∈ Φ

fφ(x), (1)

where Φ is the space of all possible hyperparameters, and ∅∗ is the current best-observed
outcome by ∅ ∈ Φ. The hyperparameters used for optimization in the XGBoost algorithms
are shown in Table 5 [24].
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Algorithm 2: Bayesian Optimization

Function BayesianOptimization(model, hyperparameter_space, evaluations):
Initialize an empty dataset D to store hyperparameters and their respective scores
for i = 1 to evaluations do:

surrogate_model = Fit(D)
next_hyperparameters = SelectNext(surrogate_model, hyperparameter_space)
new_score = Evaluate(model, next_hyperparameters)
new_data_point = (next_hyperparameters, new_score)

Add new_data_point to D
best_hyperparameters = hyperparameters in D with the highest score
return best_hyperparameters

Table 5. Hyperparameters used in the XGBoost algorithm [21].

No Hyperparameter Search Range Description

1 n_estimators Integer (100–10,000) Number of boosting rounds.
2 max_depth Integer (100–10,000) Maximum tree depth for base learners.
3 learning_rate Real number (0.01–0.5) Boosting learning rate.

4 Booster Categorical (‘gbtree’,
‘dart’)

Specify which booster to use: gbtree,
gblinear, or dart.

5 Gamma Real number (0–1000)
Minimum loss reduction required to
make a further partition on a leaf node
of the tree.

6 min_child_weight Real number (1–100) Minimum sum of instance weight
(hessian) needed in a child.

7 Subsample Real number (0.5–1) Subsample ratio of the training
instance.

8 colsample_bytree Real number (0.5–1) Subsample ratio of columns when
constructing each tree.

9 reg_alpha Real number (0–1) L1 regularization term on weights.
10 reg_lambda Real number (0–1) L2 regularization term on weights.

The metric used for the evaluation of the RUL prediction model is the loss function.
The loss function, also known as the cost function, serves as a measure to evaluate the
discrepancy between the predicted and actual values. A smaller loss function indicates
a closer alignment of the model’s predictions with the actual values, signifying a more
robust model. Common regression loss functions are represented as root-mean-square
error (RMSE), as shown by the following:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2, (2)

where ŷi is a predicted value, yi is an actual value, and n is the number of data. Our goal is
to minimize the RMSE during hyperparameter optimization.

In terms of the fault diagnosis model, the metrics used for evaluation are accuracy,
recall rate, precision rate, and F1 score, as shown by the following:

Accuracy =
TP + TN

TP + FP + FN + TN
, (3)

Precision rate =
TP

TP + FP
, (4)

Recall rate =
TP

TP + FN
, and (5)

F1 score =
2× Presion rate× Recall rate

Presion rate + Recall rate
. (6)
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where TP denotes true positives, TN denotes true negatives, FP denotes false positives, and
FN denotes false negatives in the confusion matrix. To avoid the overfitting of the model,
a ten-fold cross-validation scheme was used for the evaluation of model performance.
The primary objective is to maximize accuracy, recall rate, precision rate, and the F1 score
during hyperparameter optimization.

4. Results and Discussion
4.1. Health Indicator Model

By defining the state before and after maintenance and inputting key features into
the health assessment module, the HIs of each aircraft landing gear can be calculated,
as shown in Figure 5. However, because of the limited memory capacity of older FDRs,
the data from some flights are missing. Therefore, a moving average method [26] with a
window size of 50 flights (MA50) was used to estimate the missing values, thus obtaining a
complete HI curve. We used the moving average window to not only tackle the issue of
data discontinuity but also eliminate the severe fluctuation of the HIs. In order to determine
the proper window size, we varied it from 0 to 100. Based on the current data, we selected a
window size of 50 for the best results. The health status of each airplane is indicated by its
HI. Any fault in the items listed in Table 1 can degrade that item’s HI. Based on historical
HIs, we can predict the future trend of His by using the regression algorithm and identify
the faulty item using the classification algorithm.
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4.2. RUL Prediction Model

After obtaining the full HI curve of each aircraft’s landing gear from the HI model,
we can implement the RUL prediction model. As shown in Figure 6, the original HI, as
calculated from the HI model, is not continuous, which is attributed to the insufficient
memory of the aircraft itself. Additionally, the pronounced fluctuations in the HI can
be ascribed to the variations in the flights, payload weights, weather conditions, and
runway statuses of each flight. To construct an RUL prediction model, we must address
discontinuities within the HI. To this end, we employ a moving average method with a
window size of 50 (MA50) to address the issue of data discontinuity. After processing, we
obtain a continuous HI curve, as shown in Figure 6. Based on the HI curve, we can then
construct the RUL prediction model.
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The RUL prediction models were implemented using the AR, ARIMA, and GPR
algorithms. A certain period of historical HI data was used to train the prediction model.
For a prediction made at arbitrary time A, the historical HI data before time A were used as
training data, and the historical HA data after time A were used as testing data. The results
of the three RUL prediction models, i.e., AR, ARIMA, and GPR algorithms, are compared
in Figure 7. The performances of the RUL prediction model were evaluated from the testing
data and the prediction data calculated from AR, ARIMA, and GPR.
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As discussed in the Introduction, the status of a landing gear is time-varying, and its
working conditions are nonstationary. The flights, payload weights, weather conditions,
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pilot’s operational habits, and the distance and condition of the runway may affect the
degradation trend. Therefore, in the current study, we first determine the HI using key
features. Then, we can use the historical HI to predict the future degradation trend. Thus,
to make predictions on time A, we can use the historical HI shortly before time A to predict
the future trend from time A. The prediction is more precise if the future trend from time A
is affected directly by the historical HI shortly before time A.

4.3. Optimization of the RUL Prediction Model

To optimize the RUL prediction model, the first 80% of the historical data for each
airplane was used as training data, while the remaining 20% was used as validation data.
Seven airplanes were selected for hyperparameter optimization. Tables 6–8 display the
prediction results for each model, comprising actual and predicted values of the final
airplane’s health index, RMSE, and error range. Based on the model evaluation outcomes,
the RMSE error was consistently lower than 0.1 after hyperparameter optimization. The
average RMSE error for the AR model decreased from 0.0682 to 0.0371, representing a
reduction of 45.69%. The ARIMA model’s average RMSE error decreased from 0.0372 to
0.0367, which is a slight reduction of 1.34%. For GPR, the average RMSE error decreased
from 0.0888 to 0.0398, which is a reduction of 55.18%. The results of this study indicate that
optimized prediction outcomes are more accurate than before optimization, with significant
reductions in RMSE errors observed for both AR and GPR models.

Table 6. Comparison of the results of the RUL prediction model with AR before and after optimization.

Airplane
Number Optimization Actual HI of

Latest Flight
Predicted HI of

Latest Flight RMSE Error Range

Airplane #1 Before 0.379 0.391 0.013 [−0.017, 0.026]
After 0.379 0.358 0.022 [0.000, 0.047]

Airplane #2 Before 0.718 0.712 0.026 [−0.081, 0.010]
After 0.718 0.685 0.030 [−0.045, 0.048]

Airplane #3 Before 0.431 0.479 0.027 [−0.048, 0.050]
After 0.431 0.436 0.050 [−0.005, 0.071]

Airplane #4 Before 0.259 0.331 0.082 [−0.133, 0.014]
After 0.259 0.251 0.040 [−0.071, 0.012]

Airplane #5 Before 0.117 0.176 0.028 [−0.062, 0.039]
After 0.117 0.077 0.056 [−0.007, 0.081]

Airplane #6 Before 0.058 0.291 0.157 [−0.233, −0.006]
After 0.058 0.040 0.022 [−0.043, 0.043]

Airplane #7 Before 0.136 0.384 0.145 [−0.249, −0.003]
After 0.136 0.155 0.040 [−0.027, 0.063]

Average Before 0.0682
After 0.0371
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Table 7. Comparison of the results of the RUL prediction model with ARIMA before and after
optimization.

Airplane
Number Optimization Actual HI of

Latest Flight
Predicted HI of

Latest Flight RMSE Error Range

Airplane #1 Before 0.379 0.340 0.038 [0.005, 0.065]
After 0.379 0.342 0.036 [0.004, 0.064]

Airplane #2 Before 0.718 0.677 0.024 [−0.050, 0.044]
After 0.718 0.677 0.024 [−0.050, 0.044]

Airplane #3 Before 0.431 0.436 0.043 [−0.022, 0.081]
After 0.431 0.435 0.044 [−0.021, 0.081]

Airplane #4 Before 0.259 0.244 0.038 [−0.066, 0.019]
After 0.259 0.243 0.037 [−0.064, 0.020]

Airplane #5 Before 0.117 0.120 0.037 [−0.008, 0.063]
After 0.117 0.120 0.037 [−0.008, 0.063]

Airplane #6 Before 0.058 −0.032 0.054 [−0.037, 0.100]
After 0.058 −0.032 0.054 [−0.036, 0.100]

Airplane #7 Before 0.136 0.167 0.027 [−0.044, 0.043]
After 0.136 0.151 0.025 [−0.030, 0.045]

Average Before 0.0372
After 0.0367

Table 8. Comparison of the results of the RUL prediction model with GPR before and after optimization.

Airplane
Number Optimization Actual HI of

Latest Flight
Predicted HI of

Latest Flight RMSE Error Range

Airplane #1 Before 0.379 0.704 0.163 [−0.325, −0.002]
After 0.379 0.314 0.063 [0.024, 0.094]

Airplane #2 Before 0.718 0.771 0.068 [−0.136, −0.043]
After 0.718 0.707 0.027 [−0.080, 0.014]

Airplane #3 Before 0.431 0.474 0.027 [−0.043, 0.050]
After 0.431 0.446 0.037 [−0.030, 0.071]

Airplane #4 Before 0.259 0.238 0.039 [−0.073, 0.027]
After 0.259 0.243 0.032 [−0.060, 0.020]

Airplane #5 Before 0.117 −0.107 0.206 [0.043, 0.268]
After 0.117 0.173 0.031 [−0.058, 0.049]

Airplane #6 Before 0.058 0.171 0.051 [−0.113, −0.005]
After 0.058 0.009 0.037 [−0.027, 0.071]

Airplane #7 Before 0.136 0.264 0.068 [−0.131, 0.029]
After 0.058 0.009 0.037 [−0.027, 0.071]

Average Before 0.0888
After 0.0398

Figures 8–14 compare the three algorithms—AR, ARIMA and GPR—before and after
hyperparameter optimization. As illustrated in the figures, after hyperparameter opti-
mization, the trend of the HI prediction curve becomes more reasonable, aligning with the
gradually declining trend of HI. Conversely, before optimization, the HI prediction trend
occasionally exhibits sudden increases, which clearly deviate from the actual scenario. In
addition, the consistency of the predictions for the seven airplanes from the three algo-
rithms varied before optimization. However, after the optimization process, the predictions
become more aligned, indicating that optimization significantly enhances the accuracy of
predictions, thus greatly improving the practicality of the models.
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4.4. Optimization of the Fault Diagnosis Model

We extracted 15,706 data entries from the FDR. However, because of overwriting issues
in the FDR, only 2776 data entries could be used for labeling as faulty items. The total
numbers of each faulty item are provided in Table 9. During hyperparameter optimization,
we employed cross-validation to validate the performance of our proposed model. The
evaluation results for the accuracy, precision rate, recall rate, and F1 score of the twenty
fault types are displayed in Table 9. As shown in the table, the optimized model achieved an
average accuracy rate of higher than 96% in detecting faults in the landing gear components,
indicating that this optimized fault diagnosis model is applicable in practice.

Table 9. Results of the fault diagnosis model after hyperparameter optimization.

Item Malfunctioning Item Accuracy Precision Rate Recall Rate F1 Score

A Nose wheel/tire 99.96% 100.00% 96.88% 98.41%
B Left main wheel/tire 99.73% 100.00% 95.56% 97.73%
C Right main wheel/tire 99.80% 100.00% 96.44% 98.19%
D Main wheel/tire 99.97% 100.00% 91.23% 95.41%
E Main wheel hub 99.95% 100.00% 92.45% 96.08%
F Nose wheel hub 99.97% 100.00% 93.51% 96.64%
G Nose landing gear drag brace 99.99% 100.00% 96.00% 97.96%
H Left landing gear drag brace 100.0% 100.00% 100.00% 100.00%
I Right landing gear drag brace 100.0% 100.00% 100.00% 100.00%
J Left landing gear brake 99.98% 100.00% 95.45% 97.67%
K Right landing gear brake 99.98% 100.00% 95.08% 97.48%
L Nose landing gear retract actuator 100.00% 100.00% 100.00% 100.00%
M Left landing gear retract actuator 100.00% 100.00% 100.00% 100.00%
N Right landing gear retract actuator 99.99% 100.00% 96.30% 98.11%
O Nose landing gear shock strut 99.99% 100.00% 97.30% 98.63%
P Left landing gear shock strut 100.00% 100.00% 100.00% 100.00%
Q Right landing gear shock strut 99.99% 100.00% 97.50% 98.73%
R Steering actuator 100.00% 100.00% 100.00% 100.00%
S Steering control valve 100.00% 100.00% 100.00% 100.00%
T Brake control valve 99.99% 100.00% 92.31% 96.00%

Average 99.96% 100.00% 96.80% 98.35%
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We can see that the fault diagnosis model achieved 100% accuracy for some mal-
functioning items. As discussed in the Methodology section, ten time-domain features
were extracted from four signal data, i.e., take-off y-axis vibration, take-off z-axis vibration,
landing y-axis vibration, and landing z-axis vibration. A total of forty features were used
for the XGBoost algorithm. In addition, we adopted the one-hot encoding technique in
conjunction with the XGBoost algorithm. The multi-fault classification model can simulta-
neously output multiple fault types. The results showed that some items related directly
to vibration correspond to notably high accuracy, for example, the left landing gear drag
brace, the right landing gear drag brace, the nose landing gear retract actuator, the steering
actuator, and the steering control valve. Some other items, such as brakes or shock struts,
yield lower accuracy.

To evaluate the statistical significance of the fault diagnostic model’s results, we used
the ten-fold cross-validation method to obtain ten accuracies with the XGBoost algorithm.
Then, we used a one-sample t-test to test the significance of the model. The results showed
that the classifier of the fault diagnostic model is significant (p-value < 0.05) [33].

4.5. Applications of RUL Prediction Model and the Fault Diagnosis Model

Figure 15 shows the thresholds for two HI levels confirmed by experts, that is, HI = 0.65
and HI = 0.2. The HI can be divided into three regions: the white region (1.0 < HI < 0.65)
indicates a healthy status, the yellow region (0.65 < HI < 0.2) indicates a degraded state,
and the red region (0.65 < HI < 0.2) indicates a critical state. We predict the future trend of
the HI from point A, as shown in Figure 15. If the predicted HI of the landing gear falls
into the critical state, then maintenance service can be arranged for the plane before failure
occurs. Predictive maintenance can be achieved using the RUL prediction model.
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To confirm what kind of fault type occurs when the HI decreases, we can input the
feature dataset of the flights. The fault diagnosis model proposes the fault type. The
maintenance engineer can perform maintenance according to the suggestions and thus
reduce the mean time to repair (MTTR) and increase the availability rate.

5. Conclusions

Previous researchers predicted the remaining useful life (RUL) of landing gear using
a model with a fixed set of hyperparameters. When various aircrafts exhibited different
trends of degradation because of a multitude of factors, this approach led to substantial
discrepancies in the prediction accuracy. According to the results of this study, the root-
mean-square (RMSE) errors after hyperparameter optimization in all cases were less than
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0.1. The RMSE errors for the three algorithms were 0.0371, 0.0398, and 0.0367, respectively,
all of which outperformed previous research [7].

To address the issue of accuracy variations due to different degradation trends and
more accurately reflect the actual conditions of each aircraft’s landing gear, this study con-
sidered factors such as the pilot’s operational habits, length and conditions of the runway,
and meteorological conditions, which contribute to different degradation patterns. Hyper-
parameter optimization techniques were implemented, achieving RMSE errors consistently
less than 0.1 after optimization. After hyperparameter optimization, the average RMSE er-
rors for the autoregressive model (AR), autoregressive integrated moving average (ARIMA),
and Gaussian process regression (GPR) models decreased by 45.69%, 1.34%, and 55.18%,
respectively. These results confirm that hyperparameter optimization effectively improves
prediction accuracy and captures the diverse degradation patterns of landing gears.

In the current study, we adopted the one-hot encoding technique to overcome the
inability to simultaneously output multiple types of faults. In conjunction with the XG-
Boost algorithm, the multi-fault classification model can simultaneously output multiple
fault types. This model more realistically represents conditions where an aircraft might
exhibit multiple faults that are not mutually exclusive. By using XGBoost for multilabel
classification and incorporating records from various operational conditions, the model dis-
tinguished between twenty different fault types, achieving an average accuracy of 99.96%.
According to the findings of this study, the fault diagnosis module achieved an average
precision, precision rate, recall rate, and F1 score of 99.96%, 100.00%, 96.80%, and 98.35%,
respectively. This confirms that the XGBoost model can be used to diagnose multiple fault
types simultaneously with high accuracy.

This study demonstrated that, even with data limitations, reliable results can be
achieved for aircraft in their mid-to-late service life using prognostic and health man-
agement techniques. The empirical results of this study also support the application of
data-driven methods to complement traditional reliability engineering based on experien-
tial judgments in fleet maintenance management.
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