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Abstract: A dynamic model is established to investigate the shimmy instability of a landing gear
system, considering the influence of nonlinear damping. The stability criterion is utilized to determine
the critical speed at which the landing gear system becomes unstable. The central manifold theorem
and canonical method are employed to simplify the dynamic model of the landing gear. The first
Lyapunov coefficient of the system is theoretically derived and verified using numerical simulation.
Further investigation on the Hopf bifurcation characteristics and stability of the shimmy in the
landing gear system is conducted. The results indicate that above a certain threshold speed, with a
tire stability distance greater than half the tire length in contact with the ground plus the slack length,
the aircraft remains stable during taxiing. At critical speeds, a shimmy system with higher-order
nonlinear damping will undergo supercritical Hopf bifurcation. Quantitative analysis suggests an
increase in the linear damping coefficient within a range that ensures a stability margin to mitigate
undesired oscillation, while the nonlinear damping coefficient should be designed within a reasonable
range to decrease the amplitude of the limit cycle.

Keywords: nose landing gear shimmy; nonlinear system; central manifold; Hopf bifurcation; first
Lyapunov coefficient

1. Introduction

The phenomenon of shimmy is a self-excited lateral yaw oscillation that can occur
during the takeoff, landing, or taxiing of an aircraft’s landing gear. It is caused and
sustained by the transfer of kinetic energy from the aircraft to the landing gear. In order to
effectively address significant issues in the design of anti-swing mechanisms for aircraft
landing gears, it is crucial to have a comprehensive understanding of the mechanism
behind shimmy and investigate how various factors impact its stability [1]. The issue of
shimmy has always posed a formidable challenge in the design and operation of aircraft
landing gears. Mastering the accurate and appropriate analysis of shimmy dynamics is
pivotal in addressing the oscillation problems associated with shimmy [2].

Liu [3] found that shimmy is primarily caused by the torsional mode of the wheel’s
swinging part around its directional axis and the lateral bending mode of the landing gear
around its longitudinal axis. The longitudinal mode, on the other hand, has minimal impact.
At the same time, the tire and ground contact areas experience alternating deformation,
and the oscillation of the wheel can cause the landing gear strut and the fuselage to
shake, potentially resulting in the entire fuselage trembling, on the basis of the mechanics
of the landing gear and linear models of the tire elasticity. Somieski [4] applied well-
known linear mathematical methods to analyzing the shimmy of a basic nose landing
gear model and investigated the impact of various structural parameters on the shimmy
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dynamics. Tartaruga [5] performed sensitivity and uncertainty analysis using singular
value decomposition to investigate the impact of various structural parameters on shimmy
onset. The results indicate that the proposed method reduces the computational time
compared to full-scale full element simulation. The study conducted by Thota et al. [6]
examined a seven-dimensional landing gear model encompassing torsional, lateral, and
longitudinal degrees of freedom. Their analysis focused on the overall shimmy behavior
and frequency, revealing that variations in the forward velocity and vertical force influence
the interaction between the torsional mode and lateral bending mode, resulting in diverse
types of shimmy phenomena. Conversely, minimal involvement was observed from the
longitudinal mode regarding any potential occurrence of shimmy.

The landing gear is a complex structural system characterized by the high nonlinearity
arising from the nonlinear deformation of tires, elastic tire deformation, and side slip [7].
The nonlinearities in the landing gear include shock absorbers, dampers, joint free clear-
ance, and coulomb friction components [8,9], which contribute significantly to nonlinear
vibrations. From a dynamics perspective, bifurcation phenomena primarily encompass
saddle node bifurcation, transcritical bifurcation, pitchfork bifurcation, period-doubling
bifurcation, and Hopf bifurcation [10]. Among these types of bifurcation, Hopf bifurcation
is closely associated with the limit cycles and self-excited vibration within the system; thus,
it represents a dynamic form of bifurcation. Shimmy motion corresponds to periodic solu-
tions in nonlinear dynamics that typically emerge due to Hopf bifurcations. Consequently,
it holds substantial research value.

Thota et al. [11] distinguished the stable region from the shimmy oscillation region
by means of the Hopf bifurcation curve. They classified different types of shimmy as
torsional, lateral, and quasi-periodic shimmy. Ghadami [12] proposed an effective method
for predicting Hopf bifurcation and analyzing the complete post-bifurcation behavior of
nonlinear oscillatory systems. By measuring the system’s response to a disturbance in its
pre-bifurcation state, a three-dimensional bifurcation diagram was generated for prediction
purposes. The advantages of this prediction method were demonstrated by utilizing the
predicted bifurcation diagram of a fluid structure system, which accurately predicted both
supercritical and subcritical bifurcations. Thota et al. [13] investigated a nose gear model
with a two-wheel configuration. They selected forward velocity and vertical load as the
bifurcation parameters and analyzed how structural parameters influenced two types of
shimmy. Additionally, they provided transformations between different two-parameter
bifurcation diagrams. The research revealed that besides stable torsional shimmy and
stable lateral vibration, it could also trigger quasi-periodic shimmy. Li [14] studied the
Hopf bifurcation of an aircraft nose landing gear model based on two pairs of continuous
parameters. The results showed that higher-order terms caused deviations between the
original system’s bifurcation curve and truncated amplitude system’s bifurcation line. This
deviation led to a contraction in the bistable region compared to in previous findings.

In recent years, extensive research has been conducted on Hopf bifurcation and the
central manifold of nonlinear dynamical systems. Zhang [15] proposed a model for a
piecewise smooth suspended single wheelset, investigating the influence of the vehicle
parameters on the characteristics of Hopf bifurcation. By employing the central manifold
theorem, they successfully reduced the dimensionality of the wheelset equation and derived
an expression for the first-order fine focus. Dong [16] utilized the normal form method to
demonstrate that high-speed EMUs exhibit subcritical and supercritical Hopf bifurcations
under simplified wheel–rail contact relationships. Additionally, Dong identified the factors
contributing to the distinct types of bifurcations observed in two types of bogies. Sandor
Beregi [17] employed a brush tire model to analyze the nonlinear dynamics of traction
wheels by reducing its center manifold into a normal form comprising linear and piecewise
smooth second-order terms. This normal form was used to establish stability at non-
hyperbolic equilibrium points within the system and provided an estimate for the limit
cycles appearing at linear stability boundaries. It has been proven that subcritical Hopf
bifurcations in non-smooth delay systems generate parameter ranges with bistability that is
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undetectable using standard tire models. Wang [18], using the vehicle speed as a bifurcation
parameter, applied central manifold theory to obtain a two-dimensional central manifold
at critical vehicle speeds in order to comprehensively analyze the characteristics of Hopf
bifurcation in shimmy systems while obtaining an approximate periodic solution.

The current research on the stability of aircraft nose landing gear has advanced from
linear stability theory to nonlinear bifurcation theory [19,20]; however, there remains a lack
of comprehensive explanations and solutions for certain fundamental shimmy problems
encountered in practical applications. Furthermore, the analysis of shimmy problems has
not yet considered the central manifold method. This article employs a combination of
theoretical derivation and numerical simulation to analyze a landing gear system that
incorporates higher-order nonlinear factors. The center manifold simplification method is
utilized to streamline the nose landing gear system, while the position of the equilibrium
point is examined using classical linear theory. The Hopf bifurcation of the equilibrium
point is investigated using classical bifurcation theory, with its specific type determined
based on the first Lyapunov coefficient. Both numerical simulation and theoretical deriva-
tion mutually validate each other’s findings. The research results presented in this article
can serve as valuable theoretical references for optimizing the structural design of aircraft
landing gear shimmy dynamics systems.

2. Dynamic Modeling of Nose Landing Gear Shimmy
2.1. Coordinate System and Degrees of Freedom

The stability of shimmy is influenced by various factors, including linear parameters
such as stability distance, tire characteristics, and aircraft taxiing speed and non-linear
factors such as damping, friction, and clearance. In order to investigate the impact of
key parameters on the shimmy behavior, this study employs a simplified model of the
nose landing gear in a two-wheeled aircraft equipped with an oil damper under a specific
vertical load, as shown in Figure 1:
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Figure 1. Schematic diagram of landing gear.

The landing gear follows the fuselage at a constant speed V, with the reverse direction of
the taxiing defined as the X-axis of the landing gear coordinate system. The Y-axis represents
horizontal movement to the right and the Z-axis represents vertical movement upward. The
landing gear strut torsion is in a neutral position, so any lateral motion of the fuselage is
not taken into consideration. During smooth taxiing, the aircraft does not experience any
vertical displacement, and the stroke of the landing gear buffer remains constant. Therefore,
the vertical displacement of the landing gear is not taken into account.

(1) The landing gear strut can rotate around the directional axis with an angle of ψ.
(2) In the X-axis direction, it is considered that the stiffness of the landing gear strut is

sufficient, and the deformation has a small impact on the shimmy.
(3) The lateral displacement λ of the left and right tires is used to describe the deformation

of the tires.
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(4) The degree of freedom φ of the axle torsion deformation indicates that the two wheels
do not rotate together.

Due to the fact that the strut does not have a forward inclination angle, the tire angle θ
is the same as the landing gear strut angle. Under a small angle rotation, assuming that
there is no change in the vertical load on the two wheels, it can be considered that the lateral
and torsional deformations of the two tires are the same. For the convenience of subsequent
calculations, the stiffness of the two tires is superimposed and set as the stiffness damping
parameter of a single tire.

2.2. Tire Dynamics Model

In Smiley’s tire mechanics theory, the forces and moments exerted by the ground on
the tire can be expressed as:

Fλ = Kλλ + Cλ

.
λ (1)

Mφ = Kφ φ + Cφ
.
φ (2)

where Kλ and Cλ are the lateral stiffness and damping coefficients of the tire, respectively;
Kφ and Cφ are the torsional stiffness and damping coefficient of the tire, respectively;
and λ and φ are the lateral elastic deformation and torsional elastic deformation of the
tire, respectively.

As shown in Figure 2, λ and φ can be expressed in the following form:

λ = y − eθ (3)

φ =
.
y/V − θ (4)
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y is the lateral displacement of the tire’s touchdown center point while e is the landing
gear stability distance. Smiley’s theory uses Taylor series, ignoring the higher-order terms
in the series, and can form different tire approximate constraint equations. This article
adopts Smiley’s second-order approximation formula:

L2
..
y + VL1

.
y + V2λ + V2L1θ = 0 (5)

In the equation, L2 = h(h + 2σ)/2 ,L1 = h + σ. h is the half length of the tire touching
the ground; σ is the tire slack length.

We calculate the tire formula using equation coordination:

.
λ + e

.
θ + V(θ + φ) = 0 (6)

.
φ +

.
θ − Vλ/L2 + L1Vφ/L2 = 0 (7)
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2.3. Nonlinear Analysis of Pendulum Reducers

The torsional damping moment provided by anti-swing dampers typically exhibits a
nonlinear relationship with the swing speed of the column’s torsional degrees of freedom.
During the front wheel shimmy process, the oil in the stabilizer is confined to enclosed
circuits such as damping pipelines and throttling devices. The damping pipeline of a
pendulum reducer generally adopts a circular cross-section. Ideally, the damping torque
of the pendulum reducer demonstrates a quadratic power function characteristic. In
reality, however, factors such as temperature and fluid boundary layer effects may result in
high-power damping as well. The torsional anti-swing damping torque provided by the
pendulum reducer can be roughly described as follows:

MC = C
.
ψ + C2

.
ψ

2
sgin(

.
ψ) + C3

.
ψ

3
+ h.o.t. (8)

C, C2, and C3 are the linear term torsional damping coefficient, square term torsional
damping coefficient, and cubic term torsional damping coefficient, respectively.

When considering the square term in nonlinear damping, its inclusion of a sign
function poses challenges for analysis. Within the range of small angle vibrations, cubic
damping also exhibits an increasing trend with angular velocity. In terms of the nonlinear
influence properties, studying cubic damping can serve as a substitute for investigating
square term damping.

2.4. Dynamic Equations of the System

The dynamic equilibrium equation for the torsion direction of the pillar is:

I
..
ψ + C

.
ψ + C3

.
ψ

3
= e · Fλ + Mφ (9)

Make x = [x1, x2, x3, x4]
T = [y,

.
y, λ, φ]

T . The equation can be represented as a system
of first-order differential equations, as follows:

.
x = Ax = F(x) (10)

where:

A =


0 1 0 0
0 −C

I
eKλ

I
Kφ

I
−V −e 0 −V

0 −1 V
L2

−VL1
L2

 (11)

F(x) = [0, f2(x2), 0, 0]T (12)

The parameters of the nose landing gear of the aircraft used in this study are shown
in Table 1:

Table 1. Structural model parameter table.

Symbolic Description Value Unit

e Stability distance 0.08 [m]

I Moment of inertia around the axis of
the pillar 0.25 [kg·m2]

σ Tire slack length 0.1376 [m]
h Half length of tire touching the ground 0.0517 [m]

Kλ Tire lateral stiffness 2 × 2 × 105 [N/m]
Kφ Tire torsional stiffness 2 × 1.2 × 103 [Nm/rad]
C Linear damping coefficient 10 [Nms]
C3 Nonlinear damping coefficient 1 [Nms3]
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3. Hopf Bifurcation Theory of the Oscillation Model
3.1. Linear Stability Theory

Before conducting stability analysis on the nose landing gear system, it is imperative
to initially acquire the eigenvalues of the linearized system at the equilibrium point. The
characteristic equation of the linear component within the dynamics equation pertaining to
the landing gear can be expressed as follows:

|A − λI4| = 0 (13)

In the equation, I4 is the fourth-order identity matrix, and λ represents the characteris-
tic root of the landing gear system. Expanding the equation yields:

λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 (14)

In the equation, a1∼4 is the coefficient of each order of the characteristic equation,
expressed as follows:

a1 = (C · L2 + I · V · L1)/(I · L2)
a2 = (V · C · L1 + Kφ · L2 + I · V2 + Kλ · e2 · L2)/(I · L2)
a3 = (V · e · Kφ + V2 · C + V · Kλ · e2 · L1)/(I · L2)
a4 = (V2 · Kλ · e · L1 + V2 · Kφ)/(I · L2)

(15)

When calculating the linear critical speed of the landing gear system, there are typically
two methods available: the root trajectory method and the Hurwitz stability criterion
method. In comparison to the root locus method, the Hurwitz stability criterion method
eliminates the need to solve the characteristic roots of the system equation. Instead, it
solely relies on determining the system motion stability based on the coefficients within the
characteristic equation [21]. The Liénard–Chipart stability criterion adopted in this paper
further simplifies the calculation process based on Hurwitz [22].

The Hurwitz matrix is as follows:

∆4 =

∣∣∣∣∣∣∣∣
a1 1 0 0
a3 a2 a1 1
0 a4 a3 a2
0 0 0 a4

∣∣∣∣∣∣∣∣ (16)

According to the Liénard–Chipart stability criterion, the necessary and sufficient
conditions for the characteristic equation to have a pair of pure imaginary roots and the
other two roots to have negative real parts are:{

a1∼4 > 0,
∆1 > 0, ∆3 ≥ 0

(17)

When ∆3 = 0, the system is in a critical stable state, and when ∆3 > 0, the system is in
a convergence state.

3.2. Hopf Bifurcation Theory

According to the Hopf bifurcation criterion, the necessary conditions for Hopf bifurca-
tion are as follows:

∆3 =

∣∣∣∣∣∣
a1 1 0
a3 a2 a1
0 a4 a3

∣∣∣∣∣∣ = a1a2a3 − a2
3 − a2

1a4 = 0 (18)

According to the practical significance of the structural parameters of the landing gear,
it is easy to verify a1∼4 > 0; from this, it can be seen that when ∆3 = 0 is satisfied, it is
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the critical state of landing gear system equilibrium point instability, and the univariate
quantic equation of speed can be obtained:

b0v5 + b1v4 + b2v3 + b3v2 + b4v1 + b5 = 0 (19)

where b0∼5 is the coefficient of each order, and the expression is as follows:



b0 = I2 · C · L1/(I3 · L3
2)

b1 = (I · C2 · L2
1 + I2 · L1 · e · Kφ + I2 · Kλ · e2 · L2

1 − I2 · e · Kλ · L3
1 − I2 · Kφ · L2

1)/(I3 · L3
2)

b2 = (C3 · L1 · L2 + I · C · Kφ · L1 · L2 − I · e · C · Kφ · L2 + I · C · e · Kφ · L2
1 + I · C · e2 · Kλ · L3

1
−I · 2 · e · C · Kλ · L2

1 · L2 − I · 2 · C · Kφ · L1 · L2)/(I3 · L3
2)

b3 = (C2 · Kφ · L2
2 + C2 · e2 · Kλ · L2

2 + (e · Kφ + e2 · Kλ · L1) · (I · Kφ · L1 · L2 + C2 · L1 · L2 − I · e · Kφ · L2)
−C2 · L2

2 · (Kλ · e · L1 + Kφ))/(I3 · L3
2)

b4 = (e · Kφ + e2 · Kλ · L1) · (C · Kφ · L2
2 + C · Kλ · e2 · L2

2)/(I3 · L3
2)

b5 = 0

(20)

The smallest positive real root of all solutions of the equation is the linear critical speed
of the landing gear system. At the Hopf bifurcation point of the nose landing gear system,
the characteristic equation has a pair of pure imaginary roots λ1,2 = ±iω0, where ω0 > 0,
because λ1,2 = ±iω0 is the root of the characteristic equation. We bring λ1,2 = ±iω0 into
the characteristic equation to obtain:(

ω4
0 − a2ω2

0 + a4

)
− i

(
a1ω3

0 − a3ω0

)
= 0 (21)

Since the real part is zero, we have:

ω2
0 =

a3

a1
=

V2 · C + V · Kφ · e + V · Kλ · e2 · L1

V · I · L1 + C · L2
(22)

So, the characteristic equation is decomposed into:(
λ2 + ω2

0

)(
λ2 + pλ + q

)
= 0 (23)

According to the equal coefficient of the same term:

p = a1, q =
a1a4

a3
(24)

When the discriminant satisfies ∆ = p2 − 4q < 0, a pair of eigenvalues with negative
real parts of the characteristic equation can be obtained, λ3,4 = α ± iω1, where ω1 > 0. The
specific expression is as follows:

α = −p/2, ω1 =

√
4q − p2

2
(25)

When the discriminant satisfies ∆ = p2 − 4q ≥ 0, a pair of real root eigenvalues of the

characteristic equation can be obtained: λ3,4 = −p±
√

∆
2 .

3.3. Dimension Reduction in the Central Manifold Theorem

If the bifurcation characteristics of the high-dimensional system are directly analyzed,
the process is cumbersome, and the dimensions of the high-dimensional system can be
reduced to the plane system using the central manifold theorem [23]. Then, the analysis
method of the plane system is used to complete the research on the high-dimensional
system. When the current landing gear equation is at a critical speed, let β1 ∈ C4 be the
eigenvector of matrix A corresponding to eigenvalue iω0. Take two eigenvalues containing
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imaginary parts as an example: let β2 ∈ C4 be the eigenvector of matrix A corresponding
to eigenvalue α ± iω1. Then, β1, β2 satisfies the following equation:{

Aβ1 = iω0β1
Aβ2 = (α + iω1)β2

(26)

where the expression of Bij is as follows:

B31 = (−K2
φ · e · ω2

0 + Kλ · Kφ · V2 · e − C · Kφ · V · ω2
0 − Kλ · I · V2 · e · ω2

0)/(K
2
λ · V2 · e2 + K2

φ · ω2
0)

B41 = (−K2
λ · V2 · e2 + C · Kλ · V · e · ω2

0 + Kφ · Kλ · e2 · ω2
0 − Kφ · I · ω4

0)/(K
2
λ · V2 · e2 + K2

λ · ω2
0)

B32 = (K2
φ · V · ω0 + Kλ · Kφ · V · e2 · ω0 − I · Kφ · V · ω3

0 + C · Kλ · V2 · e · ω0)/(K2
λ · V2 · e2 + K2

φ · ω2
0)

B42 = (−K2
λ · V · e3 · ω0 + I · Kλ · V · e · ω3

0 − Kφ · Kλ · V · e · ω0 + C · Kφ · ω3
0)/(K

2
λ · V2 · e2 + K2

φ · ω2
0)

B33 = (−K2
φ · V · a − K2

φ · a2 · e − K2
φ · e · ω2

1 + Kλ · Kφ · V2 · e − I · Kφ · V · a3 − C · Kφ · V · a2 + Kλ · Kφ · V · a · e2

−I · Kφ · V · a · ω2
1 − C · Kφ · V · ω2

1 + Kλ · I · V2 · a2 · e + C · Kλ · V2 · a · e − Kλ · I · V2 · e · ω2
1)/(K

2
λ · V2 · e2−

2 · Kλ · Kφ · V · a · e + K2
φ · a2 + K2

φ · ω2
1)

B43 = (K2
φ · V · ω1 − I · Kφ · V · a2 · ω1 + Kλ · Kφ · V · e2 · ω1 − I · Kφ · V · ω3

1+

Kλ · I · V2 · a · e · ω1 · 2 + C · Kλ · V2 · e · ω1)/(K2
λ · V2 · e2 − 2 · Kc · Kφ · V · a · e + K2

φ · a2 + K2
φ · ω2

1)

B34 = (−K2
λ · V2 · e2 − K2

λ · V · a · e3 − I · Kλ · V · a3 · e − C · Kλ · V · a2 · e + 3 · I · Kλ · V · a · e · ω2
1+

Kφ · Kλ · V · a · e + C · Kλ · V · e · ω2
1 + Kφ · Kc · a2 · e2 + Kφ · Kλ · e2 · ω2

1 + Kφ · I · a4 + C · Kφ · a3+
C · Kφ · a · ω2

1 − Kφ · I · ω4
1)/(K

2
c · V2 · e2 − 2 · Kλ · Kφ · V · a · e + K2

φ · a2 + K2
φ · ω2

1)

B44 = (−K2
λ · V · e3 · ω1 − I · Kλ · V · a2 · e · ω1 · 3 − C · Kλ · V · a · e · ω1 · 2 + I · Kλ · V · e · ω3

1 − Kφ · Kλ · V · e · ω1+
Kφ · I · a3 · ω1 · 2 + C · Kφ · a2 · ω1 + Kφ · I · a · ω3

1 · 2 + C · Kφ · ω3
1)/(K

2
λ · V2 · e2 − 2 · Kλ · Kφ · V · a · e + K2

φ · a2+

K2
φ · ω2

1)

(27)

Before applying the central manifold theorem, first, the real eigenbasis matrix B
is constructed by using the eigenvector β1, β2, and then the landing gear equation is
transformed into the Jordan canonical form using matrix B. Matrix B is as follows:

B = [Reβ1,−Imβ1, Reβ2,−Imβ2] (28)

For the convenience of symbol derivation, matrix B is recorded as:

B =


1 0 1 0
0 −ω0 α −ω1

B31 B32 B33 B34
B41 B42 B43 B44

 (29)

Let y = [y1, y2, y3, y4]
T ∈ C4 where x = By be substituted into the landing gear

equation and finally transformed into the Jordan standard:
.
y1.
y2.
y3.
y4

 =


0 −ω0 0 0

ω0 0 0 0
0 0 α −ω1
0 0 ω1 α1




y1
y2
y3
y4

+


b12 f (By)
b22 f (By)
b32 f (By)
b42 f (By)

 (30)

Including:

|B| = a · B34 · B42 − a · B32 · B44 + ω0 · B34 · B41 − ω0 · B34 · B43
−ω0 · B31 · B44 + ω0 · B33 · B44 − ω1 · B32 · B41
+ω4 · B34 · B45 − ω1 · B33 · B42 + ω1 · B32 · B43

(31)


b12 = (−B34 · B42 + B32 · B44)/|B|
b22 = (−B34 · B41 + B34 · B43 + B31 · B44 − B33 · B44)/|B|
b32 = (B34 · B42 − B32 · B44)/|B|
b42 = (B32 · B41 − B31 · B42 + B33 · B42 − B32 · B43)/|B|

(32)

For the critical point of Hopf bifurcation, there are two eigenvalues of the Jordan type
matrix with zero real parts and one with negative real parts.
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And because f (By) ∈ C2, then there is a central manifold y3 = h1(y1, y2),
y4 = h2(y1, y2), h(0, 0) = Dh(0, 0) = 0, and we define the operator:

N(h(y1, y2)) = h′(y1, y2)[A(y1, y2) + f (y1, y2 + h(y1, y2))]
−Bh(y1, y2)− g(y1, y2, h(y1, y2))]

(33)

It can be seen from f (By) = −C3(−ω0y2 + αy3 − ω1y4)
3 that h(y1, y2) is a nonlinear

function of no less than order 3, and the Taylor expansion of the central manifold is as follows:

h1(y1, y2) = k30y3
1 + k21y2

1y2 + k12y1y2
2 + k03y3

2 + O
(
∥y∥4

)
h2(y1, y2) = l30y3

1 + l21y2
1y2 + l12y1y2

2 + l03y3
2 + O

(
∥y∥4

) (34)

We bring the equation into the operator and merge the terms with the same degree.
Since the coefficient is 0, eight equations and eight unknowns are obtained, which can be
solved into the h(y1, y2) coefficient. Considering that only quadratic and cubic terms of the
state variables are needed to calculate the first Lyapunov coefficient, the higher-order term
system of the central manifold is ignored, and the final dimension reduction is as follows:[ .

y1.
y2

]
=

[
0 −ω0

ω0 0

][
y1
y2

]
+

[
ω3

0b12C3y2
3

ω3
0b22C3y2

3

]
(35)

In order to judge the Hopf bifurcation type of the shimmy system and investigate the
limit cycle stability of the system, the stability parameter of the central manifold is introduced:

∂ = 1
16

(
∂3 f1
∂y3

1
+ ∂3 f1

∂y1∂y2
2
+ ∂3 f2

∂y2
1∂y2

+ ∂3 f2
∂y3

2

)
+ 1

16ω0

[
∂2 f1

∂y1∂y2

(
∂2 f1
∂y2

1
+ ∂2 f1

∂y2
2

)
− ∂2 f2

∂y1∂y2

(
∂2 f2
∂y2

1
+ ∂2 f2

∂y2
2

)
− ∂2 f1

∂y2
1

∂2 f2
∂y2

1
+ ∂2 f1

∂y2
2

∂2 f2
∂y2

2

] (36)

The central popular stability parameter is obtained as ∂ = 3
8 ω3

0C3b22.

3.4. Analysis of the Time-Delay Effect under Linear Damping

Hopf bifurcation refers to the phenomenon of periodic motion that arises from the
equilibrium state when the bifurcation parameters cross the bifurcation point. In order to
distinguish the type of Hopf bifurcation in the landing gear system, this section utilizes
canonical theory to derive the discriminant for identifying the type of Hopf bifurcation in
the landing gear system [24].

When Hopf bifurcation occurs in the landing gear system, there is a pair of pure
imaginary roots in the equation ±iω0. Let q, p ∈ C2 be the right and left eigenvectors of
matrix Jc: then, q, p satisfies the following equation:{

Jcq = iω0q
JT

c p = −iω0p
(37)

Normalize p to q; then, at this time:{
⟨p, q⟩ = 1
⟨p, q⟩ = 0

(38)

Among them,
< p, q >= p · q = p1q1 + p2q2 (39)

By solving the above equations together, it can be obtained that:

q =

[
1
2

,− i
2

]T
, p = [1,−i]T (40)
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Introducing complex variables z, any vector in the equation yc ∈ C2 can be uniquely
represented as yc = zq + z q: we bring it into the available:

z = iωz + g(z, z, vc) (41)

Among them,

g(z, z, vc) = ⟨p, Γc(zq + z q, vc)⟩ = −C3(b22 + ib12)(z + z)3

2
(42)

g(z, z, vc) is expressed in the Taylor series form of conjugate complex variable (z, z)
as follows:  g(z, z, vc) = g2(z, z, vc) + g3(z, z, vc) + O(|z|4)

gr(z, z, vc) = ∑
k+l=i

1
k!l! gklzkzl , (k, l = 0, 1, · · · ·) (43)

From the equality of the power coefficients of the same degree, it can be concluded
that:

g11 = 0, g20 = 0, g21 =
3
4

ω3
0C3(b22 + ib12) (44)

The first-order fine focus c1 of the system is as follows:

c1 =
1
2

g̃21 =
i

2ω0
(g20g11 − 2|g11|2 −

1
3
|g02|2) +

1
2

g21 (45)

The first Lyapunov coefficient can be obtained as:

l1(0) =
Rec1

ω0
=

1
2ω0

Re(
3
4

ω3
0C3(b22 + ib12)) =

3
8

ω2
0C3b22 (46)

When l1(0) < 0, supercritical Hopf bifurcation occurs in the landing gear system.
When l1(0) > 0, the undercarriage system undergoes subcritical Hopf bifurcation. When
l1(0) = 0, the first Lyapunov coefficient degenerates, and the landing gear system de-
generates the Hopf bifurcation. Since it is greater than zero, the central popular stability
parameter and Lyapunov coefficient have the same sign, so it is accurate to judge the type
of Hopf bifurcation.

4. Stability Analysis of Oscillation System
4.1. Numerical Verification of the Theoretical Results

To verify the accuracy of all the derived formulas, given the parameter values, in
addition to the parameters in Table 1, we set the linear damping coefficient C = 10 Nms,
substitute it into the formula, and calculate it to obtain b0 = 1.2375 × 107, b1 = −1.0603 × 109,
b2 = −2.6470 × 106, b3 = 4.8429 × 1010, and b4 = 2.5335 × 1011. By simplifying the equation,
it can be concluded that:

v(b0v4 + b1v3 + b2v2 + b3v1 + b4) = 0 (47)

Taking the roots of the equation yields the following five roots: 85.1091 + 0.0000i,
8.9839 + 0.0000i, −4.2065 + 3.0134i, −4.2065 − 3.0134i, 0. The smallest positive real roots
8.9839 and 85.1091 in the solution are the linear critical speeds of the landing gear system.
We select speed points near the speed for analysis as follows:

The stability analysis of time-delay systems, similar to their non-time-delay counter-
parts, can be primarily categorized into two methods: time-domain and frequency-domain
approaches. The key advantage of the time-domain analysis method lies in its ability to
effectively handle system nonlinearity and uncertainty. By setting the time delay as 0 ms,
3 ms, and 4 ms, the simulation results are depicted in the Figures 3 and 4 below.
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At the critical speed point, the swing angle of the landing gear exhibits constant
amplitude vibration. When the speed value is slightly changed, the system’s state either
becomes divergent or convergent, thus verifying the accuracy of the derived formula.

Shimmy primarily involves the stability and frequency of a system, with stability
being just one factor in determining the criticality of the system. Consistency in frequency
can ensure the accuracy of the theoretical results. According to the analysis in the previous
section, the frequency expression of oscillation is as follows:

f =
ω0

2π
=

1
2π

√
V2 · C + V · Kφ · e + V · Kλ · e2 · L1

V · I · L1 + C · L2
(48)

Therefore, the relationship between frequency and speed is shown in the following
Figure 5:

According to the calculations, the oscillation frequencies corresponding to the two critical
speeds are 18.483 Hz and 28.266 Hz, respectively.

The FFT algorithm is a fast algorithm for the discrete Fourier transform, which trans-
forms the time-domain signals into frequency-domain signals. By analyzing the frequencies
of time-domain, it can be observed that the frequencies of the two are 18.5 Hz and 28.3 Hz,
respectively. It can be seen that the values of the two are similar. In summary, the nu-
merical analysis results are consistent with the aforementioned analytical analysis results,
confirming the accuracy of the model and the effectiveness of the analytical method.
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4.2. The Influence of the Stability Distance on the Stability of Shimmy

The landing gear, being a complex mechanical dynamic system, exhibits significant
coupling effects among its various components and subsystems. Consequently, there
exist numerous factors that influence the aircraft shimmy, along with diverse engineering
approaches to mitigating landing gear shimmy. However, parameters such as the tire
radius, lateral stiffness, and equivalent mass of the entire nose landing gear pose challenges
in terms of adjustment and optimization within engineering practice. The stability distance
holds paramount importance in shimmy analysis as it plays a crucial role in suppressing
shimmy by generating a restoring torque on the landing gear strut through the lateral force
exerted on the tire due to its stable distance from the ground. In light of this significance,
this article primarily focuses on investigating the geometric stability distance of the landing
gear, which can be easily adjusted. The objective is to provide technical guidance for
enhancing anti-shimmy design in engineering practice.

Due to the large overall mass of the tire, changes in the stability distance can lead to
changes in the inertia around the axis. Assuming a wheel and axle mass of 10 kg, the total
rotational inertia of the piston rod, torsion arm, and other rotating components around the
pillar I0 = 0.186 kgm2, and we have:

I = I0 + Mw · e2 (49)

When the damping of the anti-swing damper and the structural damping are not
considered, then b0 = b2 = b4 = b5 = 0. Therefore, it can be obtained that:

b1v4 + b3v2 = 0 (50)

In addition to having two zero roots in the speed, there are also two other ones:

v = ±
√
− b3

b1
= ±

√
(e·Kφ+e2·Kλ·L1)·(Kφ·L1·L2−e·Kφ·L2)

I·L1(e·Kλ·L2
1+Kφ·L1−e·Kφ−Kλ·e2·L1)

= ±
√

e·Kφ·L2
I·L1

(e·Kλ·L1+Kφ)
(e·Kλ·L1+Kφ)

(L1−e)
(L1−e) = ±

√
e·Kφ·L2

I·L1

(51)

Due to all the parameters being greater than zero, there is a constant critical velocity
in the system without considering damping dissipation, which stabilizes the system. We
name the sum of the half length of the tire touching the ground and the slack length as
the critical stable distance or climbing distance. When the stable distance is less than the
crawling distance, we have b1 = (L1 − e)(Kφ + e · Kλ · L1)/(I · L2

1) > 0, and the stability

interval of the system is 0 < vcr ≤
√

e · Kφ · L2/(I · L1); when the stable distance is equal

to the creep distance, we have b1 = (L1 − e)(Kφ + e · Kλ · L1)/(I · L2
1) = 0, and the stability
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interval of the system is v ∈ R; and when the stable distance is less than the crawling
distance, we have b1 = (L1 − e)(Kφ + e · Kλ · L1)/(I · L2

1) < 0, and the stability interval of

the system is vcr ≥
√

e · Kφ · L2/(I · L1). Therefore, it is possible to draw a stability zone
map corresponding to the landing gear stability distance and speed.

From Figure 6, it can be observed that the aircraft remains stable during taxiing at
a certain speed when the distance between the tires is greater than the combined length
of half of the tire in contact with the ground and the slack length. Therefore, when the
problem of aircraft shimmy is extremely prominent, lengthening the landing gear stability
distance or switching to smaller-sized tires can be considered.
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4.3. Analysis of Shimmy Stability

After the completion of a general landing gear design, modifying its structure poses
significant challenges. This modification process entails addressing various aspects, includ-
ing the dynamic stability performance, static strength concerns, retraction and extension
issues, as well as the spatial and fuselage layout of the landing gear cabin. To effectively
resolve nose landing gear shimmy while minimizing any impact on the other components,
the installation of anti-shimmy dampers is deemed the most efficient approach.

In order to determine the maximum critical damping coefficient, Shen Tianheng was
inspired by the formula for finding the root of a one-dimensional quartic equation. He
simplified the formula and provided a more convenient criterion for determining the
number of real number solutions and the case of multiple roots of the equation. Moreover,
Tianheng’s formula does not involve imaginary number square roots, which simplifies the
operation and makes it more convenient. This also allows for simplification of the code in
computer root-finding tools. For equations b0v4 + b1v3 + b2v2 + b3v1 + b4 = 0, the double
root discriminant is:

D = 3b2
1 − 8b0b2

E = −b3
1 + 4b0b1b2 − 8b2

0b3
F = 3b4

1 + 16b2
0b2

2 − 16b0b2
1b2 + 16b2

0b1b3 − 64b3
0b4

A = D2 − 3F
B = DF − 9E2

C = F2 − 3DE2

∆ = B2 − 4AC

(52)

When ABC ̸= 0, ∆ = 0, the equation has a pair of double real roots; if AB < 0, the

other two are conjugate imaginary roots, x1 = x2 =
−b1− 2AE

B
4b0

and x3,4 =
−b1+

2AE
B ±i

√
− 2B

A
4b0

.
∆ is a complex expression containing the damping coefficient C, which contains the

high-order coefficient. In order to obtain the critical value concisely and quickly, the
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dichotomy method is used to change the damping coefficient value. By judging the sign
of ∆, the critical damping coefficient is obtained. Finally, after iteration, C is 19.8389 Nms.
Substituting this value into the characteristic equation, its root can be calculated as
y = 21.4322 + 0.0000i, 21.3154 + 0.0000i, −5.4031 + 3.9523i, −5.4031 − 3.9523i. Therefore,
in the full speed domain, the maximum required damping corresponds to a speed of
approximately 21.4 m/s. As long as the damping coefficient of the stabilizer is greater
than 19.8389 Nms, the landing gear oscillation is stable.

To validate the aforementioned conclusion, it is imperative to initially perform a dual
parameter analysis of the critical stable state of the landing gear system in order to conduct
linear stability analysis of the shimmy. This analytical process entails modifying the values
of both the speed and damping coefficient within the system. By means of time-domain
analysis and numerical computation, the following can be deduced.

As shown in Figure 7, the analysis reveals that the required anti-swing damping force
of the system initially increases and subsequently decreases as the speed escalates. Notably,
at a velocity of 21.4 m/s, the maximum damping is achieved with an anti-swing damping
value of 19.9 Nms, which aligns consistently with the previous findings. Consequently, it
can be inferred that this velocity damping coefficient curve represents the critical damping
coefficient essential for ensuring the landing gear’s oscillation stability. Remarkably, the
peak critical damping value corresponds to the minimum requirement for overall system
stability across all speeds.
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4.4. Hopf Bifurcation Analysis

The forward taxiing speed of an aircraft is also an important factor affecting shimmy.
Usually, the landing gear system is prone to inducing shimmy within a certain speed
range during forward sliding, known as shimmy speed. According to the critical speeds of
8.9839 m/s and 85.1091 m/s calculated in the previous section, the two parameters are sub-
stituted into the nonlinear analysis: for the critical speed of 8.9839 m/s, their corresponding
eigenvalues are λ1,2 = ±116.13i and λ3,4 = −120.41 ± 96.86i. The calculated b22 is −0.0077.
We obtain the first Lyapunov coefficient of the landing gear system according to the for-
mula l1(0) = −39.0325 < 0; from this, it can be determined that when the speed exceeds
8.9839 m/s, the landing gear system undergoes supercritical Hopf bifurcation. Similarly,
for speeds of 85.1091 m/s, their corresponding characteristic values are λ1,2 = ±177.6i,
λ3,4 = −80.79,−113.46, and the calculated b22 is −0.0061. We obtain the first Lyapunov
coefficient of the landing gear system according to the formula l1(0) = −71.6482 < 0, and
from this, it can be determined that a supercritical Hopf bifurcation occurs in the landing
gear system when the speed is below 85.1091 m/s. In order to verify the correctness of
the theoretical calculation results, the differential equation of the landing gear system was
numerically solved to obtain the curve of the maximum real part of the eigenvalues of the
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landing gear system under the parameters in Table 1 as a function of the sliding speed, as
shown in the Figure 8:
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From the Figure 8, it can be observed that the maximum real part of the eigenvalues
initially decreases as the sliding speed increases. It reaches the minimum value at a speed
of 4.65 m/s. Then, it starts to increase again. At a speed of 8.9839 m/s, the maximum real
part of the characteristic value of the landing gear system crosses the zero point, changing
the stability of the equilibrium point of the landing gear system. This indicates that the
minimum critical speed of the landing gear system is 8.9839 m/s. As the speed further
increases to 23.95 m/s, the maximum value is reached. Finally, the real part of the system’s
eigenvalues gradually decreases. At a speed of 85.1091 m/s, the maximum real part of the
eigenvalues of the landing gear system crosses the zero point again, this time from positive
to negative, indicating another change. In terms of the stability of the landing gear system,
the maximum critical speed is determined to be 8.9839 m/s. The simulation results align
with the theoretical calculations, thus confirming the accuracy of the theoretical analysis
method presented in this paper.

During the forward taxiing process of an aircraft, shimmy occurs when the parameter
values are located at the Hopf bifurcation point of the shimmy dynamics equation. Strictly
speaking, it must be a supercritical Hopf bifurcation. In this case, any minor external
excitation or disturbance can cause the system to oscillate.

We set the sliding speed to 30 m/s, the linear damping coefficient C = 10 Nms, the
nonlinear damping coefficient C3 = 1 Nms3, and the initial swing angle to 0.001 rad. The
following curve can be obtained using numerical simulation:

As can be seen in Figure 9, at the current parameter value, the system will gradually
approach a state of constant amplitude vibration due to the non-zero initial conditions,
leading to the loss of stability in the original neutral equilibrium state. The axes in the
phase space represent different state parameters of the system. A point in the phase space
signifies the system’s state, while its trajectory forms a phase orbit depicting the evolution
of the system’s state over time. Drawing a phase diagram involves representing spatial
coordinates for each degree of freedom at a specific time point, enabling analysis of the
dynamic motion trends across different spatial states.

Based on the phase diagram of Figure 10, it is evident that the incorporation of non-
linear damping into the system results in the convergence of the landing gear swing
angle’s amplitude to a constant value during motion progression, irrespective of the initial
conditions. Furthermore, all the trajectories depicted in the system phase diagram gradually
approach a limit cycle. The presence of nonlinear damping in the landing gear system can
induce limit cycles, consequently leading to sustained oscillation.
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4.5. The Influence of Parameters on Amplitude

When the system undergoes Hopf bifurcation and generates limit cycles, it is neces-
sary to restrict the range of the oscillation amplitude in order to mitigate aircraft sliding
accidents. Theoretically, small constant amplitude vibrations can be effectively suppressed
by Coulomb friction. Furthermore, considering the significant influence of the parameters
on the limit cycle, it becomes imperative to investigate how parameter variations affect the
amplitude of the limit cycle. Firstly, let us examine the impact of the aircraft taxiing speed
on the limit cycle.

Observation Figure 11, in systems that are unstable or potentially divergent, the
occurrence of a stable limit cycle during motion is expected, as it helps maintain the system
stability through constant oscillations. The bifurcation diagram reveals two supercritical
Hopf bifurcations, but in opposite directions. Specifically, as the speed increases, a limit
cycle begins to emerge, and its amplitude gradually increases until reaching its maximum
value. However, with a further increase in speed, the amplitude of the limit cycle starts to
decrease until it eventually disappears. Notably, for the first bifurcation value, the stable
limit cycle appears on the right side, while for the second bifurcation value, it appears on
the left side. These findings align with previous theoretical analysis.

From the bifurcation diagram of Figure 12, it can be seen that as the linear damping
increases, the amplitude of the limit cycle begins to decrease. At a linear damping value of
19 Nms, the limit cycle disappears, and the system tends to stabilize. By comparing the
results of the linear analysis, it can be observed that when the speed is 30 m/s and the
damping coefficient is 19 Nms, all the real parts of the eigenvalues are negative, indicating
that the system is stable and convergent.



Aerospace 2024, 11, 104 17 of 20Aerospace 2024, 11, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 11. Hopf bifurcation diagram of sliding speed. 

From the bifurcation diagram of Figure 12, it can be seen that as the linear damping 
increases, the amplitude of the limit cycle begins to decrease. At a linear damping value 
of 19 Nms, the limit cycle disappears, and the system tends to stabilize. By comparing the 
results of the linear analysis, it can be observed that when the speed is 30 m/s and the 
damping coefficient is 19 Nms, all the real parts of the eigenvalues are negative, indicating 
that the system is stable and convergent. 

 
Figure 12. Hopf bifurcation diagram of linear damping coefficient. 

The primary factor leading to limit cycles in landing gear systems is the magnitude 
of the nonlinear damping coefficient. In the absence of nonlinear damping, linearly unsta-
ble systems would result in an unbounded increase in the landing gear swing angle, which 
contradicts the current scenario. However, it is observed that many landing gears experi-
ence structural damage or even aircraft instability due to excessive torsional deformation. 
Hence, a comprehensive investigation into the nonlinear damping coefficient across the 
entire amplitude range of oscillation limit cycle becomes imperative. 

As illustrated in the Figure 13, an increase in the nonlinear damping coefficient leads 
to a gradual reduction in the amplitude of the limit cycle within the system, thereby main-
taining the stable state of the limit cycle. When the nonlinear damping coefficient is small, 
the amplitude of the limit cycle becomes significantly large. However, as the nonlinear 
damping increases, there is no direct proportionality between its increment and a decrease 
in amplitude of the limit cycle. Hence, it can be inferred that the presence of nonlinear 
damping alone ensures sustained low-amplitude vibration without necessitating deliber-
ate adjustment of its coefficient. 

Figure 11. Hopf bifurcation diagram of sliding speed.

Aerospace 2024, 11, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 11. Hopf bifurcation diagram of sliding speed. 

From the bifurcation diagram of Figure 12, it can be seen that as the linear damping 
increases, the amplitude of the limit cycle begins to decrease. At a linear damping value 
of 19 Nms, the limit cycle disappears, and the system tends to stabilize. By comparing the 
results of the linear analysis, it can be observed that when the speed is 30 m/s and the 
damping coefficient is 19 Nms, all the real parts of the eigenvalues are negative, indicating 
that the system is stable and convergent. 

 
Figure 12. Hopf bifurcation diagram of linear damping coefficient. 

The primary factor leading to limit cycles in landing gear systems is the magnitude 
of the nonlinear damping coefficient. In the absence of nonlinear damping, linearly unsta-
ble systems would result in an unbounded increase in the landing gear swing angle, which 
contradicts the current scenario. However, it is observed that many landing gears experi-
ence structural damage or even aircraft instability due to excessive torsional deformation. 
Hence, a comprehensive investigation into the nonlinear damping coefficient across the 
entire amplitude range of oscillation limit cycle becomes imperative. 

As illustrated in the Figure 13, an increase in the nonlinear damping coefficient leads 
to a gradual reduction in the amplitude of the limit cycle within the system, thereby main-
taining the stable state of the limit cycle. When the nonlinear damping coefficient is small, 
the amplitude of the limit cycle becomes significantly large. However, as the nonlinear 
damping increases, there is no direct proportionality between its increment and a decrease 
in amplitude of the limit cycle. Hence, it can be inferred that the presence of nonlinear 
damping alone ensures sustained low-amplitude vibration without necessitating deliber-
ate adjustment of its coefficient. 

Figure 12. Hopf bifurcation diagram of linear damping coefficient.

The primary factor leading to limit cycles in landing gear systems is the magnitude of
the nonlinear damping coefficient. In the absence of nonlinear damping, linearly unstable
systems would result in an unbounded increase in the landing gear swing angle, which
contradicts the current scenario. However, it is observed that many landing gears experi-
ence structural damage or even aircraft instability due to excessive torsional deformation.
Hence, a comprehensive investigation into the nonlinear damping coefficient across the
entire amplitude range of oscillation limit cycle becomes imperative.

As illustrated in the Figure 13, an increase in the nonlinear damping coefficient leads
to a gradual reduction in the amplitude of the limit cycle within the system, thereby
maintaining the stable state of the limit cycle. When the nonlinear damping coefficient
is small, the amplitude of the limit cycle becomes significantly large. However, as the
nonlinear damping increases, there is no direct proportionality between its increment and
a decrease in amplitude of the limit cycle. Hence, it can be inferred that the presence of
nonlinear damping alone ensures sustained low-amplitude vibration without necessitating
deliberate adjustment of its coefficient.

We distribute the nonlinear damping coefficient and linear damping coefficient within
a specified range and analyze their impact on the amplitude of the limit cycle, as illustrated
in the three-dimensional diagram above Figure 14. The system can only stabilize and
converge by increasing the linear damping coefficient. Moreover, during Hopf bifurcation,
the amplitude of the limit cycle remains relatively small. In terms of nonlinear coefficients, a
limit cycle is always generated when there is linear instability; however, this helps mitigate
the aircraft sliding risks caused by continuous divergence of the system. Therefore, during
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the stabilizer design stage, it is crucial to consider both the existence and significance of the
damping coefficients.
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5. Conclusions

The focus of this article lies in investigating the nose landing gear system of an aircraft.
It examines the influence of nonlinear damping, establishes the dynamic equation for the
model of the aircraft’s nose landing gear, simplifies the landing gear model using both
the central manifold theorem and canonical method, and conducts theoretical analysis on
the shimmy stability and Hopf bifurcation characteristics. The following conclusions have
been derived.

1. Using theoretical analysis and numerical simulation, the accuracy of the derived
formula has been validated for linear systems. When the stability distance exceeds
the combined length of half of the tire in contact with the ground and the relaxation
length, the stable shimmy performance is maintained by the aircraft while sliding at a
specific speed. However, when the stability distance is small, only a limited portion
of the speed range exhibits stability. Therefore, adjusting either the stability distance
or the tire size can alter the stability performance of aircraft shimmy.

2. The critical speed of the landing gear system’s linear oscillation was determined based
on the stability criterion. Furthermore, a theoretical derivation was conducted to
obtain the expression for the first Lyapunov coefficient of the landing gear system.
By analyzing its sign, the first Lyapunov coefficient can determine the type of Hopf
bifurcation that will occur in the landing gear system without requiring a solution
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for its bifurcation diagram. It has been demonstrated that higher-order nonlinear
damping leads to supercritical Hopf bifurcation in the landing gear system.

3. Using quantitative analysis of the parameters’ influence on the limit cycle, the research
findings indicate that an increase in velocity induces shimmy motion in the landing
gear system through Hopf bifurcation from its equilibrium point. Initially, the ampli-
tude of the limit cycle increases and subsequently decreases, ultimately converging to
the equilibrium point via Hopf bifurcation, resulting in cessation of shimmy motion.
To mitigate undesired oscillations, it is recommended to enhance the linear damping
coefficient within a stability margin range. Similarly, for reducing the limit cycle
amplitude, designing the nonlinear damping coefficient within a reasonable range
is advisable.
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