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Abstract: The effect of crosswinds on paired approach (PA) procedures for Closely Spaced Parallel
Runways (CSPR) is investigated in this paper by fully utilizing the crosswind environment to
implement a more efficient PA and increase runway capacity. An improved wake dissipation
model is used to quickly predict the change in the wake velocity field for the PA procedures. The
change in the width of the hazard zone is explored in detail using the roll moment coefficient as a
determination index. The calculation method for the hazard zone of a wake encounter in a PA is
designed considering the influence of crosswind, turbulence, and ground effect. The results show
the diffusion rate of the hazard zone and a decrease in the width of the maximum hazard zone
under a breezeless environment with increases in the turbulence intensity. The maximum hazard
zone width decreases with an increase in crosswind speed. Favorable crosswinds can reduce wake
separation and improve the efficiency of a PA. Lower turbulence intensity has a better crosswind
effect under a normal PA. The 3-degree offset PA can accommodate larger unfavorable crosswinds,
with a higher turbulence intensity having a better crosswind effect. The 3-degree offset PA can
substantially increase the proportion of time when no wake affects the PA procedure.

Keywords: aircraft wake encounter; paired approach; wake separation; crosswinds

1. Introduction

The wake vortex is a consequence of the lift generated during aircraft flight and
is a significant factor influencing aircraft safety [1]. Air circulates around the wingtip,
creating a potent vortex known as the ‘wingtip vortex’ as it moves from the lower to
the upper surface [2]. The intensity decay of the wake vortex is mainly divided into the
diffusion phase and the fast decay phase [3]. Moreover, a fast decay of the wake vortex is
closely related to the instability of long and short waves [4]. Over the past three decades,
the widespread use of pulsed laser radar and computational fluid dynamics has led to
extensive wake data collection and analysis [5]. These investigations have resulted in
the development and implementation of systems for the wake evolution and control of
wake separation in terminal environments [6]. Despite considerable understanding of
aircraft wake, further research is required to address numerous wake-related issues and
their impact on aircraft operations.

The Closely Spaced Parallel Runways (CSPR) are parallel runways where the centerline
separation between the runways is between 2500 feet and 700 feet [7]. It is difficult for CSPR
to implement independent parallel approaches due to the aviation safety hazards associated
with aircraft collisions and wake turbulence encounters [2]. When CSPR implements the
relevant approach, most countries adopt the segregated parallel operation mode of “one
aircraft take-off, one aircraft descent” in the operation mode. According to some advanced
airports, it is possible to operate a “one aircraft take-off, two aircraft descents” correlation
operation mode on CSPR [8]. Paired approach (PA) in aviation refers to the simultaneous
or closely timed arrival and landing of two aircraft on parallel or closely spaced runways at
an airport. The PA procedure is used as the mode of operation of CSPR to avoid the effects
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of wake turbulence and to increase the capacity of CSPR under Instrument Meteorological
Conditions (IMC) [9]. The PA separation standard comprises a collision safety limit (CSL)
and a wake turbulence safety limit (WSL), as shown in Figure 1. The safety zone for the PA
usually consists of an NOZ (normal operating zone) zone and two NTZs (non-transgression
zones, areas where controller action may be required to maintain separation) [10].
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Aircraft wake safety separation is being developed in the direction of different flight
phases and “pairwise separation”. Speijker et al. [11] were the first to propose using roll
angular velocity to measure the severity when following aircraft encounters and the wake
of preceding aircraft, laying the foundation of the subsequent wake separation reduction
research. Holzäpfel et al. [12] conducted field detection of aircraft wake by LiDAR. More-
over, the authors performed a safety assessment of wake encounters using the lateral sway
control ratio (SSCR) and calculated the critical value of the hazardous SSCR. The WSVS
(WirbelSchleppenVorhersageSystem) [13], a wake vortex prediction system developed in
Europe, can dynamically adjust the aircraft separation without compromising safety. NASA
developed an AVOSS (Aircraft Wake Vortex Spacing System) prediction algorithm that de-
termines wake separation by combining weather information, aircraft wake motion, wake
decay models, and real-time detection data of aircraft wakes [14,15]. Different PA proce-
dures can be implemented on CSPR to avoid the hazard of wake encounters depending on
runway conditions. The sinking characteristics of aircraft wakes can be used in staggered
CSPR to avoid the wake hazards by descending in a “low track in front, high track behind”
manner [16]. The same slip angle procedure can be implemented for the aligned CSPR
with the high accuracy features of satellite-based navigation. In the case of San Francisco
Airport in the United States, the 150 m spaced CSPR capacity was approximately doubled
by the simultaneous closed parallel PRM (Precision Runway Monitor surveillance system)
approach [17]. However, this method requires high weather standards and navigation
facilities. High-precision PA can be achieved by fusing real-time weather and navigation
information, and fully utilizing the airport airspace resources.

Crosswind is an essential factor of the PA procedure [18]. If the crosswind is large
enough, the following aircraft will not be affected by the wake of the preceding aircraft
during PA implementation, and the WSL will not restrict the PA safety zone. In addition,
the influence of the ground effect on the aircraft wake during the approach process cannot
be neglected.

In this paper, the effects of ground effect, crosswind, and turbulence will be combined
to develop a PA wake separation study based on crosswind. The hazard zone diffusion
model under the influence of crosswind is established by analyzing the hazard zone based
on the following aircraft rolling moment. The Shanghai Hongqiao International Airport
case study summarizes each environmental condition’s influence on PA operation. The
critical values of favorable crosswinds for PA under different combinations of following
and preceding aircraft are also calculated to provide some reference for actual operation.
The safety of a 3-degree offset PA under different crosswind conditions is analyzed to
explore the advantages of advanced PA procedure.
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2. Wake Vortex Model and Wake Vortex Dissipation Model
2.1. Wake Vortex Model

Aircraft wake is a pair of counter-rotating vortices formed by the pressure difference
between the upper and lower surfaces of the wing, as shown in Figure 2. In Figure 2, Bl
represents the wingspan of the preceding aircraft. The wake vortex of an aircraft is usually
described using three basic parameters: the initial vortex circulation Γ0, the radius of the
initial vortex nucleus r0, and the spacing between the initial vortex nuclei b0 [19]. The Γ0 is
obtained as follows:

Γ0 =
Mg

Vlb0ρ∞
(1)

where M and Vl are the mass and the airspeed of the preceding aircraft, g is the gravitational
acceleration, and ρ is the atmospheric density. The initial vortex core spacing b0 is obtained
as follows [20]:

b0 = πBl/4 (2)

where the lateral vortex spacing of π/4 is linked to an elliptical circulation distribution.
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Klaus-UweHahn [20] et al. have derived r0 ≈ 0.035Bl by analyzing aircraft flight data.
The characteristic velocity v0 and the characteristic time t0 of the wake vortex are defined
as follows:

v0 =
Γ0

2πb0
, t0 =

b0

v0
t (3)

The distribution of the circulation and tangential velocity field of the twin vortices of
an aircraft can be derived using the Burnham–Hallock (B–H) vortex model [3].

vθ = (
Γlrl

r2
l + r2

0
+

Γrrr

r2
r + r2

0
)/2π (4)

where vθ denotes the tangential velocity of the wake vortex; Γl and Γr are the initial
circulation of the left and right vortices, whose magnitude is equal to Γ0; and rl and rr are
the distances from a point in the flow field to the centers of the left and right vortices.

2.2. Wake Vortex Dissipation Model

The Aircraft Wake Vortex Spacing System (AVOSS) has divided the wake vortex
dissipation into a near vortex phase (wake vortex roll-up phase) and a far vortex phase
(fast dissipation phase) [21]. The near vortex phase equation is as follows:

Γ(t) = Γ0(1.1 − 10.0−5t0/t+5t0) (5)
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The intensity of the vortex in the far vortex phase decays exponentially with time.

Γ(t) = Γ0(1.1 − 10.0−5t0/t′+5t0) exp
(
−
[
0.452 + 0.25

(
N∗

t0

)2
](t−t′)/t′

)
(6)

where t′ denotes the near vortex duration [22] and N∗
t0

denotes the buoyancy frequency.
The t′ is calculated as follows:

t′ = t0(0.7475/ε′)0.75
ε′ ≥ 0.2535

t′ = t0(ε
′/e−0.7t′/t0)

4
0.2535 >ε′ ≥ 0.0121

t′ = t0(9.18 − 180ε′) 0.0121 > ε′ ≥ 0.0010
t′ = 9t0 0.0010 > ε′

(7)

where ε′ is the eddy dissipation rate.

ε′ =
(εb0)

1/3

v0
=

π2ρ∞Vbb2/3
0 ε1/3

2mg
(8)

where ε denotes the atmospheric turbulent dissipation rate.
The ground effects accelerate the intensity decay of the far vortex phase [23]. The

strength of the wake vortex is expressed as:

Γ(t) = Γ0(1.1 − 10.0−5t0/t′+5t0) exp

(
−
[

C
(

1 +
y3

z3

)
+ 0.25

(
N∗

t0

)2
](t−t′)/t′)

(9)

where e is the natural constant; C is a constant [22], usually taken as 0.4525; and the nor-
malized buoyancy frequency N∗

t0
= Nt0 denotes the effect of the atmospheric stratification

on the dissipation of the wake vortex. In addition, the time at which the wake vortex enters
into the rapid dissipation phase should be corrected [24].

t′ = t′z2/
(

y2 + z2
)

(10)

A388, B744, A333, and B763 are selected as the preceding aircraft, and the relevant
parameter models and wake parameters are shown in Table 1. M is the maximum landing
weight (MLW) and S is the wingspan area. ICAO RECAT represents the results of ICAO’s
reclassification of aircraft wake classes.

Table 1. Wake parameters and aircraft parameters of the preceding aircraft.

Aircraft ICAO RECAT Bl (m) V (m/s) S (m2) M (kg) Γ0 (m2/s) b0 (m) r0 (m) t0 (s) v0 (m/s)

A388 J 79.8 71.0 845 386,000 689.56 62.64 2.19 35.29 1.78
B744 B 64.9 74.6 542 285,800 604.88 50.97 1.78 26.99 1.89
A333 B 60.3 72.0 362 187,000 441.18 47.36 1.66 31.94 1.48
B763 C 47.6 72.0 283 148,000 442.61 37.36 1.31 19.82 1.89

B738, E190, ARJ21, and CRJ9 are selected as the following aircraft to carry out a
4 × 4 pairwise type combination PA study. Table 2 demonstrates the aircraft parameters of
the following aircraft.
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Table 2. Aircraft parameters for the following aircraft.

Aircraft ICAO RECAT Bf (m) V (m/s) S (m2) M (kg)

B738 D 34.3 72.0 125 66,400
E190 E 28.7 67.4 93 43,000

ARJ21 F 27.3 74.6 80 40,500
CRJ9 F 24.9 69.5 71 34,100

3. Hazard Zones for Wake Encounter

The wake (encounter) hazard zone is defined as the area of the atmosphere that must be
avoided by the following aircraft, where there are vortex pairs induced by the lift generated
by the front aircraft and the hazards posed by the vortex pairs. RECAT-PWS-EU (RECAT
European pairwise concept) is a one-to-one aircraft type matching concept developed by
EUROCONTROL. It performs a safety assessment through RMC as the indicator expressing
the degree of wake encounter [25]. RMC is defined as:

RMC =
2Mx

ρV2
f S f B f

(11)

where Mx is the rolling moment induced by the wake vortex on the encountering aircraft;
Vf , S f , and B f , respectively, are the true airspeed, wing area, and wingspan of the follower
aircraft. A larger value of RMC indicates a stronger degree of induced roll when the
following aircraft encounters wake. In this paper, the selected RMC values for the B737,
E190, ARJ21, and CRJ9 are 0.046, 0.051, 0.055, and 0.057, respectively.

When a civil aircraft encounters wake turbulence, its roll force can be decomposed
into three parts: fuselage, wing, and engine and tail wing, as shown in Figure 3.
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Figure 3. Strip method to compute vortex-induced aircraft disturbances from velocity field.

Assume that the changed wake velocity profile due to crosswind and ground effect
is the same. Calculation of wake-induced forces and moments on encountered aircraft
can be conducted using the strip method to conserve CPU resources and fast predictive
analyses [26–28]. At the same time, it guarantees comparable computational results to
other complex methods (e.g., the lifting surface method). The rolling moment of each part
is calculated as follows:

Mw =
ρ∞Vf

2

∫ B f
2

−
B f
2

C(y)VZ(y)CL(y)ydy (12)

Mb = ρ∞V2
f

∫ Bb
2

− Bb
2

VZ(y)√
V2

f + V2
Z

l(y)ydy+ρ∞

∫ Bb
2

− Bb
2

V3
Z(y)√

V2
f + V2

Z

l(y)ydy (13)
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Me = ρ∞Vf

n

∑
j=1

VjSjyj (14)

where y is the spanwise coordinate of a point on the wing, C(y) is the chord length, and
CL(y) is the amount of lift coefficient variation. Mb is the roll moment of the fuselage, and
Me is the rolling moments of the engine and tail wing. Sb is the fuselage projected area; Bb
is the fuselage projected width; and l(y) is the length of the strip at y. Vj is the induced
velocity of the wake vortex on strip j, and Sj is the strip length.

4. Spreading and Movement of Wake Hazard Zones
4.1. Size of the Wake Hazard Zones

Figure 4 shows the hazard zone where the B738 encounters the initial wake of the
B744 (the area within red coils 1–6, judgment criterion |RMC| = 0.046). A negative RMC
in the hazard zone means that the B738 will roll clockwise if the B738 encounters the wake
of the B744. Conversely, a counterclockwise roll will occur. As the wake vortex dissipates,
hazard zones 3 and 4 are the first to disappear. Hazard zones 1 and 6 will exist for some
time t1 before disappearing. Hazard zones 2 and 5 will be present for longer periods of
time and will disappear at the same time as the final time tend of the wake hazard zone [29].
dS is defined as the width of hazard zones 1 and 6, and dP is defined as the width of hazard
zones 2 and 5.
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Figure 4. B744 − B738 initial hazard zone (B738 encounters initial wake of the B744).

Table 3 shows the initial hazard zone width dP and dS for each combination of preced-
ing and following aircraft based on the strip method.

Table 3. Initial hazard zone width.

Following Aircraft

Preceding
Aircraft A388 B744 A333 B763

dS dP dS dP dS dP dS dP
B738 60.19 44.03 52.89 37.88 48.25 35.64 43.12 30.81

ARJ21 55.67 41.68 48.51 35.57 44.19 33.31 39.14 28.41
E190 58.08 42.81 50.78 36.61 46.10 34.12 41.07 29.31
CRJ9 53.56 40.85 46.59 34.70 42.45 32.44 37.50 27.55

Figure 5 illustrates the RMC safety values for some of the airplanes in the RECAT-PWS-
EU and ICAO interval calculations [25]. If an aircraft experiences an RMC value greater
than 0.08, it is at a serious risk of losing control, making recovery almost impossible [28]. In
consideration of the Reasonable Worst-Case (RWC) scenario, the RMC values specified in
the ICAO wake separation scheme were adopted for the study calculations [25].
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Figure 6 shows the RMC values for ε = 0.02, B738 encountering B744 wake. As the
age of the wake vortex increases, the wake vortex core spreads outwards. The |RMC|
peak decreases as the width of the hazard zone increases. t1 denotes the moment when
the following aircraft can withstand exactly the wake hazard zones 1 and 6. At t = t1, the
width of the hazard zone dW decreases abruptly for some distance. dW can be denoted as

dW =

{
dS , t < t1
dP , t ≥ t1

(15)
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As the vortex ages, the boundary of hazard zones 1 and 6 spreads outward. At the
end of the development of the hazard zone, the boundary gradually shrinks to the wake
vortex core.

ξ ≈ 0.1Bl/(B f t1), ζ ≈ 0.5(dP0 − b0)/(tend − t2) (16)

where ξ denotes the diffusion rate; ζ denotes the shrinkage rate; and t2 denotes the shrink-
age onset time.
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4.2. Turbulence-Induced Spreading of Hazard Zone

In the actual operational environment, the aircraft wake dissipation will be subjected
to turbulent flow resulting in changes in the motion of the hazard zone [25]. At the early
stage of wake vortex diffusion, when the turbulence level is high, the wake vortex moves
outward under the influence of turbulence.

dm1 = 2εmaxVlt (17)

As the wake vortex propagates, the Crow instability occurs. The wake vortex begins to
experience vortex entanglement when the amplitude expands to approximately 1 b0 width,
prompting the wake vortex to form an irregular vortex ring. The relationship between time
and amplitude is

alw = 0.04776Bl exp
[(

Γ f ilV2
l t
)

/B2
l

]1.5
(18)

where alw is the peak long-wave amplitude and Γ f il is the intensity of the vortex in the
irregular vortex ring phase defined by Crow [26]. The lateral shift distance of the hazard
zone due to Crow instability can be expressed as

dApl =
[
(dAlw/dt)/

√
2 + 2εmax

]
dτ, Alw = alw/Bl , τ = tVl/Bl (19)

where dApl is the total offset in the y-direction. When the turbulence level is high, the
amplitude horizontal offset is approximately equal to

Aplmax = dm2 ≈ 2ετlnk, τlnk = π/8ε (20)

where τlnk is the initial connection time of the wake vortex. The motion of the wake vortex
accelerates after the formation of the irregular vortex ring, and this phase is primarily
governed by long-term spontaneous diffusion induced by turbulence [30]. The lateral
distance of the wake vortex with time is

dm3 ≈ 0.5Bl

√
(t − tbias) (21)

where tbias is the bias time and represents the moment when the longwave instability
reaches the point of maximum amplitude.

4.3. Hazard Zone Movements Due to Wind and Ground Effects

As shown in Figure 7, the ground effect causes the wake vortex to rise and facilitates its
outward spreading. This increases the width of the hazard zone and raises the occupation
of airport airspace resources by aircraft [31]. The spreading of the hazard zone due to the
ground effect can be expressed as dground =

∫ t
0 Vgrounddt.
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Figure 7. Breezeless movement of the wake hazard zone underground effects (B744 − B738).

A crosswind that blows the aircraft wake vortex towards the adjacent runway is
defined as an unfavorable crosswind, and vice versa as an favorable crosswind. When
affected by crosswinds, the upwind vortex and downwind vortex move at different speeds
in the direction of the downwind vortex, with the downwind vortex generally moving
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further away [32]. The equation for the effect of crosswinds on the wake vortex hazard
zone were fitted using the LiDAR detection data [33].

dcrosswind =
∫ t

0
δVφ

crosswinddt (22)

where δ and φ are wind speed correction factors. When calculating the upwind vortex, δ
take 0.85, φ take 1; When calculating the downwind vortex, δ take 1.49, φ take 0.55.

Define des as the sum of the position error resulting from aircraft navigation accuracy,
pilot operation, and other factors. The distance of the hazard zone boundary from the flight
path of the preceding aircraft can be calculated as

dB =


dS0/2 + des + dm + dground + dcrosswind + ξt, t < t1

dP0/2 + des + dm + dground + dcrosswind, t2 > t ≥ t1

dP0/2 + des + dm + dground + dcrosswind − ζt, t ≥ t2

(23)

where dB = dW/2 when there is no breeze.

5. Experimental Results and Analysis

Calculations of t1 and tend for hazard zone dispersion for two atmospheric turbulence
conditions (ε = 0.05 and ε = 0.01) were carried out and the results are shown in Figure 8
(different colored areas represent different calculation conditions). It can be concluded that,
as the turbulence intensity decreases and the wake vortex dissipation rate slows down,
the wake time separation increases. The lower the turbulence intensity, the smaller the
separation between the distributions of t1 and tend between the same preceding aircraft
and different following aircraft. Taking the preceding aircraft as A388, as an example,
the difference between different tend is within 23 s at ε = 0.05; at ε = 0.01, the difference
between different tend is within 8 s.
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Figure 8. t1 and tend for different turbulence intensities.

The length of the hazard zone is associated with the flight speed of the preceding
aircraft and can be expressed as dL =

∫ tRMC
0 Vldt. For any side of the hazard zone, dground is

always greater than zero. Unlike the role of ground effects, if the contribution of crosswinds
to the change in width on the right side of the hazard zone is positive |dcrosswind| > 0,
the contribution to the change in width on the left side of the hazard zone is negative
|dcrosswind| < 0.

Flight accident statistics show that wake encounter accidents typically occur in envi-
ronments with crosswinds of 1–5 m/s [34]. When the crosswind is less than 1 m/s, the
lateral motion of the caused wake vortex is negligible. In this study, the variation of the
hazard zone for PA with crosswind speeds of 0 m/s and 3 m/s was investigated under two
atmospheric turbulence conditions (ε = 0.01 and ε = 0.05).
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The simulation results of the hazard zone are presented in Figure 9, illustrating the
impact of favorable and unfavorable wind directions on the offset of the hazard zone for
the same wind speed. The rate of hazard zone dispersion in ε = 0.05 (especially before tbias)
is higher than that in ε = 0.01. However, due to the slower reduction of the wake vortex
circulation in ε = 0.01, the hazard zone persists for a longer duration and covers a more
extensive area. Crosswinds inhibit the spreading of the upwind vortex while promoting
the spreading of the downwind vortex, and the growth of the overall hazard zone width is
inhibited. A comparison of Figure 9b,d shows that the weaker the turbulence intensity, the
longer the favorable crosswinds act and the greater the space advantage they bring. The
boundary of the upwind vortex hazard zone in ε = 0.05 is between 183.88 and 293.74 m
and the boundary of the upwind vortex hazard zone in ε = 0.01 is between 155.16 and
237 m. When implementing PA procedures, timely adjustment of the flight parameters of
the following aircraft according to the real-time ambient crosswind speed can maximize
the utilization of the safety space provided by favorable crosswinds. The following section
will further explore the effects of different crosswinds on the spread of the hazard zone.
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Figure 10 displays seven-day wind data for Shanghai Hongqiao International Airport,
with winds blowing from runway 18L to 18R. The distance between the two runways at
Hongqiao Airport is 365 m. Crosswinds perpendicular to the CSPR were extracted and
counted in intervals of 0.5 m/s, providing a detailed percentage distribution from –5 m/s
to 5 m/s. Wind data exceeding 5 m/s are represented in the orange area of the graph.
Among the seven-day statistics, –1 m/s had the largest share at 9.73%, while 11.40% of the
time periods had crosswind components greater than 5 m/s.
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Figure 10. One-week crosswind statistics of Shanghai Hongqiao Airport.

Since the motion offset of the upwind vortex caused by crosswind is larger than the
motion offset of the downwind vortex [32], the wind speed cannot be fully transferred
to the motion of the wake vortex, as illustrated in Figure 11. The width of the maximum
hazard zone decreases as the wind speed increases. It decreases slowly from wind speeds of
0 m/s to 0.5 m/s and decreases nearly linearly from wind speeds of 0.5 m/s to 6 m/s. The
stronger the turbulence intensity, the smaller the rate of decrease in the maximum hazard
zone width with the increase in wind speed. At wind speeds from 0.5 m/s to 6 m/s, when
ε = 0.05, the width of the hazard zone for each combination of preceding and following
aircraft decreases between 262.18 m and 438.06 m; when ε = 0.01, the width of the hazard
zone decreases between 266.40 m and 553.75 m. For wind speeds above 6 m/s, which
alter the vortex ring connection time and Crow instability, expressing the change in the
width of the hazard zone becomes challenging using empirical equations. The width of the
maximum hazard zone also no longer exhibits a linear pattern of change with increasing
wind speed [34].
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The dB,Max indicates the maximum distance of the boundary of the hazard zone from
the flight path of the preceding aircraft. The dB,Max changes due to the influence of the
crosswinds. As shown in Figure 12, the magnitude of change is greater at an atmospheric
turbulence intensity of 0.01. At ε = 0.01, the dB,Max of A388–E190 decreases from 799.17 m
to 125.67 m as the crosswind speed increases from –6 m/s to 6 m/s, and the dB,Max of
B763–B738 decreases from 415.89 m to 105.46 m. At ε = 0.05, the dB,Max of A388–E190
decreases from 664.72 m to 176.23 m as the crosswind speed increases from –6 m/s to
6 m/s, and the dB,Max of B763–B738 decreases from 383.42 m to 129.61 m. The weaker the
turbulence strength, the slower the wake vortex dissipates and the longer it is disturbed
by crosswinds. With increasing wind speed, the dB,Max continually approaches half the
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width of the initial hazard zone. However, the dB,Max will not be equal to dW/2 due to the
diffusion of the wake vortex vorticity and the self-induced effect of the wake vortex [29].
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The wind speed (critical value of favorable crosswinds) sufficient to keep the following
aircraft from being disturbed by the wake of the preceding aircraft is extracted and shown
in Table 4. Table 4 shows the critical favorable crosswind values for each combination
of preceding and following aircraft for a 365 m CSPR. The favorable crosswind speeds
corresponding to different following aircraft when the preceding aircraft is A388, AB744,
or A333 are all positive, and the difference in wind speeds does not exceed 0.67 m/s.
Furthermore, the differences in favorable crosswinds at different turbulences are also small.
When the favorable crosswind is negative, the hazard zone is not sensitive to the change in
wind speed. Therefore, there are significant differences in favorable crosswinds at different
turbulences. The difference of each favorable crosswind corresponding to the different
following aircraft of the preceding aircraft B763 is large, reaching a maximum of 1.80 m/s.
Furthermore, the difference in favorable crosswinds under different turbulences is also large,
i.e., up to 3.55 m/s. The favorable crosswind for different combinations of preceding and
following aircraft must be precisely calculated according to the environmental conditions
in the wake-based PA procedure. This calculation demands the data’s detection accuracy
and computational efficiency.

Table 4. Critical values of favorable crosswinds in different environments.

Following Aircraft Preceding Aircraft ε = 0.05, Critical Values of
Favourable Crosswinds (m/s)

ε = 0.01, Critical Values of
Favourable Crosswinds (m/s)

B738 A388 1.93 1.82
ARJ21 A388 1.95 1.78
E190 A388 2.02 1.99
CRJ9 A388 1.97 1.48
B738 B744 0.91 1.18

ARJ21 B744 0.98 1.15
E190 B744 1.12 1.32
CRJ9 B744 0.91 0.83
B738 A333 0.25 0.71

ARJ21 A333 0.32 0.85
E190 A333 0.51 0.91
CRJ9 A333 0.34 0.24
B738 B763 −3.65 −0.1

ARJ21 B763 −3.2 −0.06
E190 B763 −1.85 0.11
CRJ9 B763 −3.42 −1.51
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Some airports implement a 3-degree offset to the following aircraft in the PA to better
avoid the wake of the preceding aircraft [10], as shown in Figure 13. Furthermore, the
glide angle of the preceding aircraft is slightly lower than that of the following aircraft,
i.e., it is usually taken as –0.15◦. The offset angle is canceled when the following aircraft
flies 0.5 nautical miles from the runway threshold. Once the preceding aircraft intercepts
the glide slope and performs a general approach, the following aircraft needs to adjust
its distance from the preceding aircraft according to the parameters given by the separa-
tion management system. Hence, the following aircraft will be located within the wake
safety zone.
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Figure 13. Key elements of the 3-degree offset PA.

Figure 14 shows the hazard zone for the A388–E190 using the 3-degree offset PA
procedure in a 5 m/s crosswind. The favorable crosswinds for the 3-degree offset PA
are less than −5 m/s. Unlike normal PA, the unfavorable crosswind speeds that can be
tolerated at higher turbulence intensities are smaller for 3-degree offset PA instead. This
observation can be attributed to the higher initial diffusion rate in the hazard zone caused
by the higher turbulence intensity. Favorable crosswind effects work better with a 3-degree
offset PA. In addition, a 3-degree offset PA can accommodate larger-scale unfavorable
crosswinds, avoiding excessive adjustments caused by crosswind fluctuations and reducing
the workload of controllers and pilots.
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6. Conclusions

(1) The interference of the nonlinear velocity field on the wake aircraft was calculated
by the strip method. The influences of crosswinds, turbulence, and ground effects
were integrated to analyze the changes in the hazard zone’s boundary from the wake
diffusion perspective. The hazard zone was further divided into areas with different
positional distributions and roll directions. The changes in the width of the hazard
zone were further refined, and a prediction model for developing the boundary of the
hazard zone was constructed.
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(2) The higher the turbulence intensity, the higher the hazard zone spreading rate, and the
smaller the end time tend. In a breezeless environment, the lower the turbulence inten-
sity, the greater the width of the maximum hazard zone. When the crosswind speed is
adequate, the maximum hazard zone width will be smaller at lower turbulence inten-
sity. The crosswind speed cannot be fully transferred to the displacement of the wake
vortex due to the velocity field of the wake. Furthermore, the crosswind inhibits the
upwind vortex motion more than it promotes the downwind vortex motion, reducing
the width of the maximum hazard zone. For the normal paired approach (PA), the
crosswinds are more effective in reducing the width of the maximum hazard zone.

(3) Regarding the combination of preceding and following aircraft calculated in this
paper, the PA procedure without wake separation can be implemented when the
favorable crosswind reaches 2.02 m/s. Then, the off-angle PA can accommodate more
unfavorable side winds. The off-angle PA promotes a larger percentage of time to
implement a no-wake hazard approach, enhancing the runway capacity.

In future work, the effects of dynamic winds and nonlinear crosswinds on the spread of
the hazard zone will be further calculated to optimize the Closely Spaced Parallel Runways
(CSPR) paired approach procedure.
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