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Abstract: Suppressing shock-induced flow separation has been a long-standing problem in the design
of supersonic vehicles. To reduce the structural and design complexity of control devices, a passive
control technique based on micro-serrations is proposed and its controlling effects are preliminarily
investigated under test conditions in which the Mach number is 2.5 and the ramp creating an incident
shock is 15 deg. Meanwhile, a vorticity-based criterion for assessing separation scales is developed
to resolve the inapplicability of the zero skin friction criterion caused by wall unevenness. The
simulations demonstrate that the height of the first stair significantly influences the separation length.
Generally, the separation length is shorter at higher stairs, but when the height is greater than half of
the thickness of the incoming boundary layer, the corresponding separation point moves upstream.
A stair with a height of only 0.4 times the thickness of the boundary layer reduces the separation
length by 2.69%. Further parametric analysis reveals that while the remaining serrations have limited
effects on the flow separation, an optimization of their shape (depth and width) can create more
favorable spanwise vortices and offer a modest improvement of the overall controlling performance.
Compared to the plate case, a 9.13% reduction in the separation length can be achieved using a
slightly serrated design in which the leading stair is 0.1 high and the subsequent serrations are
0.2 deep and 0.05 wide (nondimensionalized, with the thickness of the incoming boundary layer).
Meanwhile, the micro-serration structure even brings less drag. Considering the minor modification
to the structure, the proposed method has the potential for use in conjunction with other techniques
to exert enhanced control on separations.

Keywords: micro-serration; separation control; shock wave/boundary layer interaction

1. Introduction

The shock wave/boundary layer interaction (SWBLI) is a fundamental flow phe-
nomenon involving the complex shock–shock and shock–boundary layer interactions that
are common in both external and internal flows, such as flows at external surfaces, the
intake and isolators of supersonic and hypersonic vehicles, transonic airfoil surfaces, and
other positions. With a strong adverse pressure gradient, the boundary layer in the inter-
action region will inevitably separate, resulting in a significant energy loss and a lower
total pressure recovery [1–3]. At the same time, separation can cause flow oscillations [4,5],
excessive thermal loads [6–8], and other dangerous situations. Furthermore, SWBLI can
also lead to a thickening of the boundary layer and even prevent the start in the intake of a
scramjet engine [9,10]. SWBLI must be considered in aircraft design, and control of SWBLI
is conducive to the safe and stable operation of aircraft.

Although significant progress has been achieved in SWBLIs in recent decades, since
Ferri [11] first discovered this phenomenon experimentally, SWBLI control, particularly the
control of separation, is still a hot topic in the field of aerodynamics. Several techniques have
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been used for separation control [12]: decrease in the imposed adverse pressure gradient,
removal of the low-momentum near-wall flow, or addition of the momentum of the near-
wall flow. The specific flow control methods can be categorized into passive control methods
and active control methods. Passive control includes the use of a micro-vortex generator
(MVG) [13–15], a local wall modification in the form of a bump [16,17], and a backward
facing step [18,19]. Active control includes the application of boundary layer bleed/suction
ahead of the shock-induced interaction [20,21], steady microjets [22,23], plasma jets [24,25],
and spark jets [26]. Active control has a range of advantages, and researchers also prefer
complex flow control systems that can be actively controlled with feedback. For example,
boundary layer bleed/suction is an effective method of suppressing the separation in both
laminar and turbulent boundary layers. However, the bleed system simultaneously dumps
considerable amounts of captured airflow to obtain an acceptable control effect, which
may lead to the poor aerodynamic performance and reduced propulsion efficiency of the
aircraft. For example, engines equipped with active control may result in an intake with
increased weight and aerodynamic drag [27] that cannot compensate for the induced loss.
Thus, the current economical, structurally simple, and safe method for practical use is still
based on passive control.

To date, the micro-vortex generator (MVG) has been widely used for passive control; it
can reduce the size of the separation zone by 10~30% after design optimization [28,29]. The
height of the MVG is approximately 10~70% of the boundary layer. The streamwise vortex
pair generated by the wake of the MVG transports the high-energy airflow in the upper
boundary layer into the bottom layer and mixes it with the low-energy airflow to increase
the momentum of the low-velocity region near the wall, enhancing its resistance to the
adverse pressure gradient and realizing the control of the separation of the boundary layer.
Even though the vortices induced by the MVG can reconfigure the downstream boundary
layer and the downstream shock wave shows clear deformation or even degeneration
under the action of the vortices, the separation of the boundary layer remains severe at
other locations in the spanwise direction due to the limited influence range of the vortices
induced by MVGs. In addition, the MVG is far from capable of controlling the strong
SWBLIs that occur in a finite-width channel [30]. To maximize the performance of the
MVG, it is usually necessary to combine and rearrange a series of MVGs [29,31] and place
them in suitable positions [32]. Because MVGs must be designed carefully for different
configurations with different sizes, arrangements, and mounting positions, an alternative
passive control method should be developed.

In this paper, a new technique using micro-surface serrations is developed to weaken
shock-induced separations. This approach uses a simple structure and does not make any
special demands on installation space. The primary objective of this work is to examine
the effectiveness of this concept and to determine the basic effects of the key geometric
parameters. The rest of the paper is organized as follows. First, the numerical method and
its validation are introduced in Section 2. Then, some details about the control effect of the
micro-serrations are described, including an alternative method to determine the location
of the separation zone, the influence of the first windward stair, and the influence of the
subsequent micro-serrations. A concise conclusion is provided in the final section.

2. Methodology
2.1. Description of the Computational Domain and Boundary Conditions

In this study, the wall micro-serration configuration is composed of a windward stair
and subsequent micro-serrations. To capture the main flow characteristics, the compu-
tational domain for the numerical simulation is simplified to a two-dimensional case, as
shown in Figure 1. The entire domain is filled with a structured mesh. The micro-serrations
start at x = 0 and are arranged in a rectangular concave–convex shape with a length of
100, as illustrated in Figure 2. In addition, to eliminate the influence of the first windward
stair on the incoming flow, a smooth plate with a length of 10 is set before the initial
position. The height of the computational domain is 25. All the variables related to length
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are dimensionless and are given in terms of the thickness of the incoming boundary layer,
except where specifically noted otherwise. The thickness of boundary layer used in the
study is 2 mm.
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As micro-serrations are described by many parameters, Table 1 provides a summary
description of the relevant symbols. For example, hU0 represents a smooth plate, and hU0.1
is a small stair of height 0.1. Without loss of generality, if either w or h are equal to zero,
these parameters are not labeled when naming the simulation case.

Table 1. Some parameters related to SWBLIs in this study.

Parameters Explanations

M0 Incoming Mach number
hU Dimensionless height of the first windward stair at x = 0
w Dimensionless width of the micro-serration
h Dimensionless depth of the micro-serration
α The deflection angle of incident shock (deg.)

IP
The impinging point of the inviscid incident shock at the bottom wall

(x = IP, y = 0)

Prior to the simulation, the flow field of a smooth plate is calculated with the same
settings, and the corresponding boundary layer thickness section is taken from the plate
case as the inlet boundary condition of the subsequent cases so that the initial flow field
is obtained. The outlet is set as the pressure outlet condition, the upper boundary is set
as the pressure far field condition, and the lower boundary is set as an adiabatic no-slip
wall. For all cases, the incoming stagnation pressure pt0 is 101,325 Pa, and the stagnation
temperature Tt0 is 300 K.

Instead of a traditional geometric shock generator, the incident shock is generated
by setting discontinuous aerodynamics parameters upstream and downstream of point I
on the upper pressure far field boundary [33–35]. Specifically, the conditions upstream of
point I are set as the incoming flow parameters, i.e., M0, p0, and T0, and the conditions
downstream of point I are set as the post-shock parameters with a deflection angle α. In this
way, based on the initial flow field, the airflow can be deflected from the upper boundary,
thus achieving the purpose, which is to generate an incident shock. Compared to the
physical geometric shock generator, the use of this pneumatic shock generator prevents
the separation shock of the large-scale separation zone from impinging on the wedge
surface of the geometric generator and reflecting. This reflected shock may act on the
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separation zone on the lower wall again, thus destroying the main flow structure of the
SWBLIs [35]. In addition, it can also reduce the complexity of the mesh and improve the
computational efficiency.

2.2. Numerical Method

All the calculations in this study are based on the two-dimensional Reynolds-averaged
Navier–Stokes (RANS) solver. For the calculation of the flow field, the turbulence model
is k-ω shear stress transport (SST), which has been successfully applied to supersonic
flows [36–39]. The fluid is an ideal gas model and is processed as calorically perfect air.
Meanwhile, the viscosity coefficient is calculated according to the Sutherland formula. The
Roe FDS scheme is utilized for vector flux splitting. As for the spatial discretization, a
second-order upwind scheme is used for the gradient term, the flow term, the turbulent
kinetic energy term, and the specific dissipation rate term.

The equations to be solved are as follows:
Continuity equation:

∂(ρui)

∂xi
= 0. (1)

Momentum equation:
∂
(
ρuiuj

)
∂xj

= − ∂p
∂xi

+
∂τij

∂xj
, (2)

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
µ

∂ui
∂xi

δij. (3)

Energy equation:

∂
[
uj(ρE + p)

]
∂xj

=
∂
(

kt
∂T
∂xj

)
∂xj

+
∂
(
τijui

)
∂xj

, (4)

where ρ is the density, ui and uj are velocity components, p is the pressure, T is the
temperature, E is the total energy per unit mass of fluid, τij is the viscous stress tensor, and
kt is the heat conduction coefficient. The Einstein summation convention and Kronecker
operator δij are used in the above equations.

Menter improved the standard k-ω model and first proposed the SST turbulence
model [40]. The SST model combines the k-ω turbulence model and the k-ε turbulence
model, which are suitable for solving the turbulence near the wall and the free-shear
turbulence far away from the wall, respectively. SST realizes a more accurate prediction of
the separated flow and the boundary layer flow under the adverse pressure gradient. The
SST turbulence model is given by

∂
(
ρujk

)
∂xj

=
∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk − ρβ∗ fβ∗kω, (5)

and
∂
(
ρujω

)
∂xj

=
∂

∂xj

(
Γω

∂ω

∂xj

)
+ Dω + Gω − ρβ fβω2. (6)

In these equations, Gk represents the generated turbulence kinetic energy due to mean
velocity gradients, Gω represents the generation of ω, and Γk and Γω represent the effective
diffusivity of k and ω, respectively. The last terms in Equations (5) and (6) represent the
dissipation of k and ω due to turbulence. Dω represents the cross-diffusion term which is
defined as

Dω = 2(1 − F1)ρσω2
1
ω

∂k
∂xj

∂ω

∂xj
. (7)
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The effective diffusivities for the k-ω model are given by

Γk = µ + µt
σk

,

Γω = µ + µt
σω

,

 (8)

where σk and σω are the turbulent Prandtl numbers for k and ω, respectively, which are
defined as follows:

σk =
1

F1/σk1+(1−F1)/σk2
,

σω = 1
F1/σω1+(1−F1)/σω2

,

 (9)

where
F1 = tanh

(
Φ4

1

)
, (10)

Φ1 = min

[
max

( √
k

0.09ωy
,

500µ

ρy2ω

)
,

4ρσω2k
D+

w y2

]
, (11)

D+
w = max

(
2ρσω2

1
ω

∂k
∂xj

∂ω

∂xj
, 10−20

)
. (12)

The turbulent viscosity µt is computed using k and ω as follows:

µt =
ρk
ω

1

max
(

1
a∗ , SF2

a1ω

) , (13)

F2 = tanh
(

Φ2
2

)
, (14)

Φ2 = max

(
2

√
k

0.09ωy
,

500µ

ρy2ω

)
, (15)

where S is the vorticity magnitude.
The corresponding generation of k and ω is described by

Gk = µtS2,
Gω = a ω

k Gk.

}
(16)

The coefficient a is given by

a =
a∞

a∗

(
a0 + Ret/Rω

1 + Ret/Rω

)
, (17)

where
Ret =

ρk
µω

. (18)

In the dissipative terms of k and ω,

fβ∗ =


1, χk ≤ 0,

1+680χ2
k

1+400χ2
k
, χk ≥ 0,

(19)

fβ =
1 + 70χω

1 + 80χω
, (20)

χk ≡ 1
ω3

∂k
∂xj

∂ω
∂xj

,

χω =

∣∣∣∣ Ωij

(0.09ω)3

∣∣∣∣,
 (21)
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Ωij =
1
2

(
∂ui
∂xj

−
∂uj

∂xi

)
, (22)

β∗ = β∗
i [1 + 1.5F(Mt)],

β∗
i = β∗

∞
4

15+(Ret/8)4

1+(Ret/8)4 ,

 (23)

β = βi

[
1 − 1.5 β∗i

βi
F(Mt)

]
,

βi = F1βi,1 + (1 − F1)βi,2.

}
(24)

The compressibility function F(Mt) improves the applicability of the model in free-
shear flow at high Mach numbers, and the expressions are given by

F(Mt) =

{
0, Mt ≤ Mt0,
M2

t − M2
t0, Mt ≥ Mt0,

(25)

M2
t ≡ 2k

c2 ,

c =
√

γRT.

}
(26)

The constants in the above expressions are [40,41]: a∗ = 1, a∞ = 0.52, a0 = 1/9, a1 = 0.34,
Rω = 2.95, Mt0 = 0.3, βi,1 = 0.075, βi,2 = 0.0828, β∗

∞ = 0.09, σk1 = 1.176, σω1 = 2.0, σk2 = 1.0,
and σω2 = 1.168. More details can be found in References [40,41].

2.3. Code Validation

Code validation is conducted by comparison with the experimental results obtained by
Grossman and Bruce [42]. The simulations match the experimental free-stream conditions
with an incoming Mach number of 2.0 and a unit Reynolds number of approximately
2.0 × 107 m−1. The deflection angle of the oblique incident shock is 12◦. Figure 3 presents
the comparison between the experimental and numerical surface pressure distributions,
where the zero of the x-axis, named “CoordinateX”, is the impinging point of the inviscid
shock wave and the y-axis is the surface pressure ratio based on the incoming static pressure.
The curve obtained by simulation is essentially in agreement with the experimental results,
including the starting point of the pressure jump, which suggests the initial position of the
separation. It should be noted that the pneumatic shock generator, as mentioned above, is
used to generate the incident shock. Therefore, the expansion wave emitting from the end
of the wedge shock generator is not considered in this validation; it is also possible that,
due to this reason, the pressure obtained from the simulation differs from the experimental
results near the reattachment point.
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Due to the complexity of the micro-serrations of the lower wall of the computational
domain and to save computing resources, we adopted automatic mesh adaptation to
capture as much of the flow information as possible. After a certain number of iterations,
the cells, whose density gradient is larger than dρ0, will be refined once. In our study,
dρ0 is 0.002 with an incoming Mach number of 2.5. Figure 4 shows the surface pressure
distributions near the separation point with different refinement levels. The corresponding
refinement levels are 0, 2, 4, and 5 and are called the original grid, level 2, level 4, and level
5, respectively. A total of 1000 × 400 grids are used originally. The curves from level 4 and
level 5 overlap, suggesting that the simulation converges after four refinements. Under
these circumstances, the streamwise size of the refined cells is less than 1.5 × 10−4 m. All
of the other cases meet this cell size limitation after refining, and the final number of grid
points is approximately 2 × 106. In addition, a slat with a length of 0.1 mm has 7 grid
points, and there are more grid points when the slat size is larger.
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3. Results and Discussion
3.1. Vorticity-Based Criterion for Separation Assessment

For conventional configurations, i.e., plate or curved surfaces, the skin friction co-
efficient C f can be utilized to determine the separation and reattachment point of the
separation zone [43–45]. However, the wall surface with micro-serrations is not geomet-
rically continuous; therefore, the method based on C f is no longer applicable, and a new
basis for determining the separation zone must be considered. The analysis of the flow
field of SWBLI with micro-serrations found that a sign inversion of the vorticity magnitude
gradient appears near the separation point and reattachment point, and this parameter
does not depend on the wall profile. Therefore, it can be inferred that the location of the
separation zone can be determined by the vorticity magnitude along a line close to the wall.

To test the applicability of vorticity magnitude in determining the location of the
separation, the obtained results are compared to the numerical results for a typical smooth
plate (M0 = 2.5, hU = 0, α = 15◦, IP = 65). It is observed from the vorticity magnitude
contours shown in Figure 5 that when the near-wall streamline is deflected, particularly
in the case when the streamline is perpendicular to the wall, the vorticity magnitude is
exactly near the extreme point, and this trend is synchronized, providing a preliminary
verification of the feasibility of the new method. For a further quantitative evaluation, the
C f along the lower wall is compared in Figure 6 with the vorticity magnitude distribution
curve. It is easy to find that the vorticity magnitude takes the minimum value which has
an essentially one-to-one correspondence with the location of the zero position of C f ; the
resulting difference in the length of the separation zone is only approximately 1.14%, as
shown in Table 2. This indicates that the minimum value of the vorticity magnitude can be
used as an alternative method to determine the location of the separation zone in this study.
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Figure 6. Comparison of surface C f and vorticity magnitude distribution (M0 = 2.5, hU = 0, α = 15◦,
IP = 65).

Table 2. Comparison of the separation zone determined by C f and vorticity magnitude.

Separation Point Reattachment Point Separation Length

C f 5.32 82.53 77.21
Vorticity magnitude 5.69 82.02 76.33

3.2. Effects of a Single Stair on Shock-Induced Separation

The wall profile shown in Figure 2 contains a series of convex structures, of which the
first stair has the most direct effect on the flow. Because several geometrical parameters
describe the micro-serration, the purely stair configurations, i.e., the cases where both w
and h are 0, are first studied in detail to obtain preliminary information about the effect of
the micro-serration on the separation.

Figure 7 illustrates the numerical results for several stair configurations, with the hU
values of 0, 0.1, 0.2, 0.4, 0.7, 1.0, 2.0, and 4.0. The left y-axis is the separation length (Ls),
and the right y-axis represents the position of the separation point compared to that in the
plate case (∆xs). It should be noted that Ls and ∆xs are given relative to the thickness of
the incoming boundary layer and are therefore dimensionless. It is observed from Figure 7
that when the height of the small stair is hU < 0.4, the separation length decreases rapidly
and reaches a minimum at hU = 0.4, which is approximately half of the thickness of the
incoming boundary layer, and the separation point moves downstream in this range. Then,
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with increasing hU , the separation length first increases slightly and then decreases. At
the same time, the separation point starts to move upstream. Interestingly, the separation
length does not vary much when the height of the first stair is close to the thickness of the
incoming boundary layer, that is, 0.5 < hU < 2.0.
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Figure 8a,b show the typical flow field of a pure stair configuration. A small separation
that is similar to a pneumatic wedge is generated at the front of the stair. Due to the
compression of this small pneumatic wedge, a weak shock wave is formed at the stair and
intersects with the incident oblique shock, weakening the intensity of the incident shock to
some extent. Additionally, it is also observed from Figure 8c that the local adverse pressure
gradient near the separation point is reduced due to the pre-pressurization effect of the
compression surface on the windward side. These two effects result in a reduction in the
separation length under the influence of the stair. The height of the initial point of the
streamlines in Figure 8a,b is equal to the thickness of the incoming boundary layer. After
passing through the stair, the height of this streamline in hU1.0 increases by 9.5% compared
to hU0.4, which can also be considered as an increase in the thickness of the boundary
layer in front of the separation point. The thicker boundary layer attenuates the above
two beneficial effects of separation control to some extent. Therefore, the separation length
increases from hU = 0.4 to hU = 1.0 and the separation point moves upstream. However,
the length of the separation zone of the stair configuration is generally smaller than that of
the smooth plate.
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3.3. Effects of Serration Size on Shock-Induced Separation

The above results indicate that the windward stair has a nonnegligible influence on
the separation length, particularly for relatively large stair heights. Thereafter, based on
the different effects of the size of hU on the separation length, the control effect of the wall
micro-serration on the separation is investigated by taking hU equal to 0.1, 0.4, 1.0, and 4.0
as examples for the three typical cases in which hU is less than, equal to, and greater than
the thickness of the incoming boundary layer, respectively.

Figure 9 shows the pressure distributions for the different heights of the windward
stair and the corresponding micro-serration configurations of equal size under an incoming
Mach number of 2.5. The pressure value is taken from the line that is adjacent to the upper
surface of the micro-serration, i.e., y = hU . For comparison, the pressure of the plate is also
shown in the figure. It is observed that the onset of the pressure disturbance in the pressure
distribution curve of the micro-serration configuration at hU = 0.1 clearly lags behind those
of the plate and the pure stair. For hU = 0.4, 1.0, or 4.0, if the pressure fluctuation generated
by the successive serrations of the wall microstructure is ignored, the pressure distribution
curves basically coincide with that of the pure stair, and the pressure is slightly higher
than that of the plate. In addition, a significant drop in the pressure for the micro-serration
configuration at x = 4 is observed in Figure 9d, which is due to the end of the plateau
at x = 4 and the subsequent larger notch. Furthermore, Figure 10 presents the pressure
distributions of the micro-serration configurations with different depths and widths at
hU = 0.4. The pressure profiles of the micro-serration configurations strongly resemble
the pressure profile of the pure stair, indicating the negligible influence from subsequent
micro-serrations on the separation length when the height of the first stair is approximately
half of the thickness of the incoming boundary layer.
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The above results suggest that micro-serration plays a certain role in the control of
separation length. On the one hand, from the point of view of the pressure distribution, the
large-scale micro-serration configuration is indistinguishable from that of the pure stair.
On the other hand, the small-scale micro-serration configuration, although close to the
effect of the pure stair, still produces a visible improvement in the control effect, indicating
that, with the exception of the first stair, the subsequent micro-serrations still contribute to
the flow control. Therefore, the influence laws of other parameters of micro-serrations are
further investigated for small scales.

First, the influence of the depth of the micro-serrations in small-scale configurations is
examined. Taking hU = 0.1 as an example, Figure 7 shows that this height of the stair has a
slight influence on the separation length and the incoming boundary layer. The pressure
distributions are shown in Figure 11a, with w = 0.1 unchanged and h = 0.1, 0.2, 0.3, and
1.0. As shown in the locally enlarged figure, the separation length, Ls, is the smallest at
h = 0.2, which is reduced by 4.56% compared with the smooth plate. As h continues to
increase, the onset of pressure disturbance moves upstream, and Ls increases concurrently.
The comparison of this series of cases, which is summarized in Figure 11b, verifies that Ls
decreases as h increases within a specific range, beyond which the micro-serrations become
less effective in controlling the separation length.
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Next, based on the results of Figure 11, the pressure distributions for the depth h = 0.2
and the widths w of 0.025, 0.05, 0.1, and 0.2, are shown in Figure 12a. For comparison,
the pressure curve of hU0.1 is also shown in Figure 12a. The locally enlarged figure
demonstrates that the onset of pressure disturbance for w = 0.05 is clearly located further
downstream, where it exhibits better control of Ls than w = 0.025, 0.1, and 0.2, resulting in a
reduction of 9.13% compared to the smooth plate. Even taking into account the 2.69% error
mentioned above, this reduction is still appreciable when compared to the original scale of
the entire separation zone. To summarize, there exists an optimal width of micro-serrations
that yields the best effect on the control of the separation length, and deviations from this
optimal width that make it either too large or too small will tend towards the effect of the
windward stair of the corresponding size.

Aerospace 2024, 11, x FOR PEER REVIEW 12 of 16 
 

 

at ℎ = 0.2, which is reduced by 4.56% compared with the smooth plate. As ℎ continues 
to increase, the onset of pressure disturbance moves upstream, and 𝐿௦ increases concur-
rently. The comparison of this series of cases, which is summarized in Figure 11b, verifies 
that 𝐿௦ decreases as ℎ increases within a specific range, beyond which the micro-serra-
tions become less effective in controlling the separation length. 

 
Figure 11. (a) Pressure distributions and (b) separation length of micro-serration configurations 
with different depths at ℎ௎ = 0.1 (𝑀଴ = 2.5, 𝛼 = 15°, 𝐼௉ = 65). 

Next, based on the results of Figure 11, the pressure distributions for the depth ℎ = 
0.2 and the widths 𝑤 of 0.025, 0.05, 0.1, and 0.2, are shown in Figure 12a. For comparison, 
the pressure curve of ℎ௎ 0.1 is also shown in Figure 12a. The locally enlarged figure 
demonstrates that the onset of pressure disturbance for 𝑤 = 0.05 is clearly located further 
downstream, where it exhibits better control of 𝐿௦ than 𝑤 = 0.025, 0.1, and 0.2, resulting 
in a reduction of 9.13% compared to the smooth plate. Even taking into account the 2.69% 
error mentioned above, this reduction is still appreciable when compared to the original 
scale of the entire separation zone. To summarize, there exists an optimal width of micro-
serrations that yields the best effect on the control of the separation length, and deviations 
from this optimal width that make it either too large or too small will tend towards the 
effect of the windward stair of the corresponding size. 

 
Figure 12. (a) Pressure distributions and (b) separation length of micro-serration configurations 
with different widths at ℎ௎ = 0.1 (𝑀଴ = 2.5, 𝛼 = 15°, 𝐼௉ = 65). 

The drag is also evaluated for the two-dimensional (2D) cases with a default 
spanwise distance of 1 m. Taking the plate and ℎ௎0.1-𝑤0.05-ℎ0.2 as examples, it is as-
sumed that there is an incoming flow condition on the other side of the wall (plate or 

Figure 12. (a) Pressure distributions and (b) separation length of micro-serration configurations with
different widths at hU = 0.1 (M0 = 2.5, α = 15◦, IP = 65).

The drag is also evaluated for the two-dimensional (2D) cases with a default spanwise
distance of 1 m. Taking the plate and hU0.1-w0.05-h0.2 as examples, it is assumed that
there is an incoming flow condition on the other side of the wall (plate or micro-serration
configuration), which is closer to the actual situation. Compared with 1.859 N for the plate,
the drag of the micro-serration is reduced to 1.503 N. It follows that the micro-serration
configuration does not introduce additional resistance.

To further explore the role of micro-serrations in separation control, some typical flow
fields from the above cases are investigated. Figure 13a displays the flow image near the
first stair, revealing a series of vortices formed within the micro-serration. The presence
of these vortices entrains high-momentum fluid, locally increasing the velocity near the
wall, which is advantageous for separation control, as shown in Figure 13b. Interestingly,
the vortices detach from the micro-serration before the separation point (Figure 14). These
detaching vortices may increase the capability of the configuration to resist an adverse
pressure gradient, as demonstrated in Figure 13c. In addition, as mentioned in the previous
section, the effect of these micro-serrations is limited, and the thickening of the boundary
layer brought about by the increase in hU will counteract the factors that are beneficial for
separation control.
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Figure 13. Role of vortices in separation control. (a) The vortices in the micro-serrations. (b) Comparison
of velocity profiles upstream of the separation point. (c) Pressure distributions before the first pressure
plateau (M0 = 2.5, α = 15◦, IP = 65).
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Figure 14. Vortices upstream of the separation point with different widths of the micro-serration:
(a) w = 0.05, (b) w = 0.1 (M0 = 2.5, α = 15◦, IP = 65).

Finally, some speculations are made regarding the origins of the influence of the depth
and width of the micro-serration. The impact of the depth of the micro-serration is mainly
reflected in the position of the vortex within the micro-serration, as shown in Figure 15.
The vortex develops in different locations for different h. A shallower position of the vortex,
that is, a vortex that is in closer proximity to the upper surface of the micro-serration, is
detached more easily. However, when the vortex is in a deep position, it cannot directly act
on the boundary to bring high-momentum fluid. The development in both directions of h
results in an optimal depth of the micro-serration. The width of the micro-serration exhibits
a similar behavior, as depicted in Figure 14. The width directly determines the number
of detaching vortices in front of the separation point, which to some extent represents the
resistance that these vortices can provide to the adverse pressure gradient. The vortices
in the micro-serration cannot be fully developed when w is too small, and the wall profile
tends towards that of the plate when w is too large, which is also reflected in the pressure
distributions in Figure 12a.
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4. Conclusions

A new separation control method is proposed based on a square-shaped micro-
serration configuration, and its control effects are examined in a preliminary investigation.
Due to the geometrical discontinuity of the micro-serration, it is imperative to establish
a new criterion for the determination of the separation zone. The differences between
the separation zone determined by C f and the vorticity magnitude in the plate case are
compared, and it is observed that both the separation point and the reattachment point cor-
respond to the minimum vorticity magnitude. The separation length, which is determined
by the vorticity magnitude, aligns closely with the separation location found by C f = 0 and
can thus serve as a reliable basis for the subsequent quantification of the separation zone.
First, the impact of the windward stair on the separation length is investigated; then, three
representative sizes are chosen based on the findings from the small stairs to examine the
controlling effects of micro-serration with varying sizes. The results show that the height of
the stair significantly affects the separation length due to the pre-pressurization effect and
the weak shock caused by the windward stair. Generally, the separation length is shorter
with high stairs, whereas when the height of the stair exceeds a specific range, the sepa-
ration point moves upstream, which is unfavorable for separation control. Additionally,
when the height of the stair is less than half of the thickness of the incoming boundary
layer, the micro-serration plays the dominant role in determining the separation control.
However, when the height of the stair is large, the micro-serration becomes essentially
ineffective. It is observed from the pressure distributions that the pressure curves of the
micro-serration configurations coincide with that of the stair with the corresponding size.
Based on this premise, a further investigation is conducted into the potential impacts of
other parameters associated with micro-serrations in small-scale configurations. It is found
that both the depth and width of the micro-serration exhibit significant effects arising from
variations in the vortex positioning and the number of detached vortices. Relative to the
plate, the separation length can be reduced by 9.13% using a slightly serrated design with
less influence on the incoming boundary layer. In future applications that consider the
minor modification of the structure, the micro-serration can be employed together with
other techniques, such as MVG, to achieve better control.
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