
Citation: Lee, J.; Park, C. Modelling

Rigid Body Potential of Small

Celestial Bodies for Analyzing

Orbit–Attitude Coupled Motions of

Spacecraft. Aerospace 2024, 11, 364.

https://doi.org/10.3390/

aerospace11050364

Academic Editors: Shuang Li, M.

Reza Emami, Pierre Rochus and

Hongwei Yang

Received: 10 April 2024

Revised: 30 April 2024

Accepted: 1 May 2024

Published: 5 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Modelling Rigid Body Potential of Small Celestial Bodies for
Analyzing Orbit–Attitude Coupled Motions of Spacecraft
Jinah Lee and Chandeok Park *

Department of Astronomy, Yonsei University, Seoul 03722, Republic of Korea; hasperk@yonsei.ac.kr
* Correspondence: park.chandeok@yonsei.ac.kr

Abstract: The present study aims to propose a general framework of modeling rigid body potentials
(RBPs) suitable for analyzing the orbit–attitude coupled motion of a spacecraft (S/C) near small
celestial bodies, regardless of gravity estimation models. Here, ‘rigid body potential’ refers to the
potential of a small celestial body integrated across the finite volume of an S/C, assuming that the
mass of the S/C has no influence on the motion of the small celestial body. First proposed is a
comprehensive formulation for modeling the RBP including its associated force, torque, and Hessian
matrix, which is then applied to three gravity estimation models. The Hessian of potential plays a
crucial role in calculating the RBP. This study assesses the RBP via numerical simulations for the
purpose of determining proper gravity estimation models and seeking modeling conditions. The
gravity estimation models and the associated RBP are tested for eight small celestial bodies. In this
study, we utilize distance units (DUs) instead of SI units, where the DU is defined as the mean radius
of the given small celestial body. For a given specific distance in Dus, the relative error of the gravity
estimation model at this distance has a similar value regardless of the small celestial body. However,
the difference value between the potential and RBP depends on the DU; in other words, it depends
on the size of the small celestial body. This implies that accurate gravity estimation models are
imperative for conducting RBP analysis. The overall results can help develop a propagation system
for orbit–attitude coupled motions of an S/C in the vicinity of small celestial bodies.

Keywords: gravity estimation; orbit–attitude coupled motion; rigid body potential; small celestial
body; direct integration

1. Introduction

After the initial success of the Hayabusa mission, most deep space missions explor-
ing small celestial bodies have opted to include proximity operations [1–8]. Given the
distinctive dynamical characteristics of small celestial bodies due to their light masses,
irregular shapes, and potentially variable spin axes/rates, proximity operations necessi-
tate a meticulous analysis of the dynamical environment near small celestial bodies for
successful missions.

Among a variety of dynamic characteristics, particularly noteworthy are the orbit–
attitude interactions pertinent to gravity. The interaction caused by gravity becomes more
influential as the orbital radius becomes smaller and the size of the spacecraft (S/C) becomes
larger [9]. Given that more than 95% of these asteroids have diameters less than 1 km [10,11],
these interactions are not only conspicuous but also substantially significant. Hence, this
study primarily addresses the interaction between the orbit and attitude motions of an S/C
induced by gravity.

When modeling the orbit–attitude coupled motion of an S/C, many studies have
separately modeled orbit and attitude dynamics and combined them for simplicity of
analysis, or they have employed mutual potentials. Most common is the former approach,
which does not require any attitude information for analyzing S/C orbital motion but does
require S/C positions to calculate gravitational torques [12]. This approach is applicable
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when the primary body significantly outweighs the S/C, as the contribution of the S/C
volume to the gravitational force is negligible. Given the diminutive size of small celestial
bodies, the contribution of S/C volume often becomes non-negligible. Though some recent
studies discussed the influences of S/C attitude on orbital motions [13,14], they do not
ensure that the total energy of the orbit–attitude coupled motions remain constant, since
orbit and attitude motions are developed separately. As this study also aims to formulate
the orbit–attitude coupled dynamics that naturally conserve total energy and momentum.
The former approach is not suitable for our purposes. In contrast to the former approach,
the latter employs the full two-body problem with mutual potential [15–17]. It addresses the
orbit–attitude motions of both the primary body and the S/C, enabling the conservation of
total energy within the entire system. Unnecessary computations arise, however, when the
motion of small celestial bodies is not of primary concern. The present study focuses on the
orbit–attitude coupled motions of an ‘S/C’ in proximity to small celestial bodies. In this context,
it is important to differentiate between the ‘rigid body potential (RBP)’ and the ‘mutual
potential’. Any motions of small celestial bodies themselves are not of our concern. The
S/C is assumed to be an extended rigid body with finite volume; the ‘restricted’ assumption
holds, i.e., the S/C does not exert any gravitational force on the small celestial body. With
these assumptions, the interplay between the orbit and attitude of an S/C can be modeled
through the process of volume integration using the gravity estimation model.

A multitude of research has been carried out with regard to RBP estimations in
the vicinity of small celestial bodies. These studies are differentiated based on how to
approximate the body of an S/C and how to estimate gravity. With regard to the methods
for approximating the S/C body, some studies have developed higher-order integrations
for the S/C body [18], while others rely on using the moment of inertia (MOI) for extended
bodies [19]. In this study, the latter approach is selected, wherein the S/C is treated as an
extended body. This choice is made to leverage its extensive applicability within dynamic
and control systems.

The main contributions of our present study can be summarized as follows: (1) We
present a comprehensive formulation of the RBP, including its associated force and torque
components. The proposed framework of the RBP is applicable regardless of the gravity
estimation models. (2) We apply this comprehensive formulation to three gravity estimation
models, which can be naturally extended into other gravity estimation models. The
estimation process of the RBP and its resultant force/torque requires the Hessian matrix
of potential to be derived through each gravity estimation model. (3) This study assesses
the RBP calculated using the three gravity estimation models. The primary objectives of
this assessment are to determine the most suitable model for proximity operations in the
vicinity of small celestial bodies and to determine conditions of applicability such as small
body size. The numerical simulation reveals that the efficacy and precision of the RBP are
contingent upon the chosen gravity estimation models, in addition to the accuracy of the
Hessian calculations.

The remaining discussion is composed of five main sections. Section 2 introduces
the background of this study and three gravity estimation models. Section 3 presents
two propositions, encompassing a comprehensive formulation for the RBP, along with
the related force and torque, and the second partial derivatives of the RBP concerning
position. By amalgamating the contents from Sections 2 and 3, Section 4 furnishes the RBP,
accompanied by its corresponding force and torque, with three distinct gravity estimation
models. Section 5 evaluates the associated potentials and RBPs. Section 6 summarizes and
concludes the overall discussion.

2. Background and Gravity Estimation Models
2.1. Background

This study focuses on analyzing the orbit and attitude motions of an S/C orbiting
small celestial bodies. If the masses/sizes of both the S/C and a small celestial body are
similar to each other, the motions of both of them should be analyzed. In this case, it
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is convenient to select their barycenter as the coordinate origin. However, if the S/C is
significantly smaller and lighter than a small celestial body, the gravitational influences
of the S/C on the small celestial body is negligible. In such instances, selecting the center
of the small celestial body as the coordinate origin becomes more convenient. This study
considers the ‘in-between’ of two aforementioned cases; it is assumed that the mass of the
S/C is considerably light, but its size is not negligibly small, compared to the small celestial
body. There is typically an increase in the masses of small celestial bodies as their sizes
grow, while the exact values vary based on their density [20]. In this section, it is confirmed
that the ‘restricted’ assumption still holds, i.e., the S/C does not exert any gravitational
force on the small celestial body based on existing exploration missions.

Table 1 lists the physical properties of exploration/flyby missions targeting small
celestial bodies [21–26]. The third, fourth, and fifth columns indicate the semi-major
axis a, the eccentricity e, and the mean radius RS of a small celestial body, respectively.
MS/C and MS denote the masses of the S/C and small celestial body, respectively. The
third column from the right side of Table 1 shows the ratio of the S/C mass to that of
the asteroid. The second column from the right side indicates the distance between the
barycenter xB and the center xS of the small celestial bodies when the distance between
the S/C and the small celestial body is 3RS. The maximum and minimum distances are
1.03 × 10−4 m and 3.69 × 10−12 m, respectively. These maximum and minimum values
are 1.01 × 10−7 times and 1.28 × 10−17 times the average radius of the target bodies RS,
respectively. Even the maximum value is negligibly small when considering the difference
in orders of magnitude between this value and the position values of the S/C. The first
column from the right indicates the magnitude ratio of the acceleration aS/C caused by the
S/C to the acceleration a⊙ caused by the Sun when the small celestial bodies are located
at their apoapsis. The maximum ratio is 2.30 × 10−11, indicating that the gravitational
force of the Sun predominates over the motions of small celestial bodies, rather than the
gravitational force of the S/C.

Table 1. The ratio of the masses of the S/C to the asteroid, the distance between the barycenter and
the center of small celestial bodies, and the ratio of the acceleration caused by the S/C to that caused
by the Sun [21–26].

Index # Name a (AU) e RS (m) MS/C (kg) MS/C/MS ∥xB−xS∥ (m) ∥aS/C∥/∥a⊙∥
4 Vesta 2.36 0.089 2.88 × 105 1108 4.28 × 10−18 3.69 × 10−12 9.95 × 10−16

243 Ida 2.86 0.043 2.76 × 104 2717 2.72 × 10−14 2.25 × 10−9 3.57 × 10−13

433 Eros 1.46 0.22 1.60 × 104 805 1.20 × 10−13 5.78 × 10−9 1.12 × 10−13

951 Gaspra 2.21 0.17 1.08 × 104 2717 7.60 × 10−13 2.45 × 10−8 1.76 × 10−12

1036 Ganymed 2.67 0.53 3.43 × 104 3000 * 1.80 × 10−14 1.85 × 10−9 4.81 × 10−13

1620 Geographos 1.24 0.34 3.13 × 103 805 2.01 × 10−10 1.89 × 10−6 2.55 × 10−12

4179 Toutatis 2.54 0.63 2.54 × 103 1750 3.50 × 10−11 2.67 × 10−7 5.23 × 10−11

4769 Castalia 1.06 0.48 9.85 × 102 805 5.75 × 10−10 1.70 × 10−6 2.30 × 10−11

25143 Itokawa 1.32 0.28 4.37 × 102 510 1.45 × 10−8 1.91 × 10−5 8.57 × 10−11

99942 Apophis 0.92 0.19 9.96 × 102 2110 3.46 × 10−8 1.03 × 10−4 2.88 × 10−11

* The selection of this value is arbitrary.

2.2. Gravity Estimation Models

This section introduces three gravity estimation models used in this study: the Point
Mass (PM) model, Extended Body (EB) model [27], and Triaxial Ellipsoid (TE) model [28].
All gravity estimation models are built upon the shape model of a small celestial body.
Although these three models offer rather simple representations of the dynamical envi-
ronments surrounding small celestial bodies, they still serve as valuable examples for
elucidating the application of the RBP.



Aerospace 2024, 11, 364 4 of 26

2.2.1. Point Mass Model

The PM model characterizes small celestial bodies as point masses, effectively repre-
senting restricted two-body motion. Let

→
x ∈ R3 be a position vector of a S/C. The potential

VPM ∈ R of a small body, its gradient
→
V

PM

x ∈ R3, and Hessian matrix VPM
xx ∈ R3×3 are

expressed as

VPM =
µs∥∥∥→x ∥∥∥ ,

→
V

PM

x = − µs∥∥∥→x ∥∥∥3
→
x =

→
f

PM

V , (1)

VPM
xx =

µs∥∥∥→x ∥∥∥3

(
3x̂x̂T − I3

)
(2)

where µs ∈ R and I3 ∈ R3×3 are a standard gravitational parameter and the identity matrix,
respectively. x̂ and

∥∥∥→x ∥∥∥ denote a unit vector and the Euclidian norm for a given vector
→
x ,

respectively. The gravitational torque
→
τ

PM
V is given by

→
τ

PM
V = 3

µs∥∥∥→x ∥∥∥3

(
RT x̂

)×
J RT x̂

whereJ ∈ R3×3 and R ∈ SO(3) are the MOI and attitude of S/C, respectively. (·)× : R3 → R3×3

is a skew-symmetry operator and (·)T : R3×3 → R3×3 is a transpose operator.

2.2.2. Extended Body Model

The EB model utilizes the MOI associated with a small celestial body to depict its
geometric characteristics [27]. It is not universally embraced for estimating the gravity
of small bodies. Let J s ∈ R3×3 and G ∈ R be the MOI of a small celestial body and the
gravitational constant, respectively. The potential VEB ∈ R pertaining to the small celestial
body is expressed as

VEB =
µs∥∥∥→x ∥∥∥ +

G

2
∥∥∥→x ∥∥∥3

(
tr[J s]− 3x̂TJ sx̂

)
,

where tr[·] : R3×3 → R is a trace operator. The successive derivatives of VEB with respect

to
→
x yield both its gradient

→
V

EB

x ∈ R3, and its Hessian matrix VEB
xx ∈ R3×3 are formulated as

→
V

EB

x = − µs∥∥∥→x ∥∥∥3
→
x − 3

2
G∥∥∥→x ∥∥∥5

{
tr[J s]I3 + 2J s − 5x̂TJ sx̂

}→
x =

→
f

EB

V ,

VEB
xx = 3

µs∥∥∥→x ∥∥∥7

{∥∥∥→x ∥∥∥2
I3 +

5
2

G
Ms

(
tr[J s]I3 + 4J s − 7x̂TJ sx̂I3

)}→
x
→
x

T

− µs∥∥∥→x ∥∥∥5

{∥∥∥→x ∥∥∥2
I3 −

3
2

G
Ms

(
tr[J s]I3 + 2J s − 5x̂TJ sx̂I3

)}

where Ms = µs/G is the mass of the small body.
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2.2.3. Triaxial Ellipsoid Model

The TE model approximates a small celestial body as a triaxial ellipsoid, characterized
by dimensions of 2α × 2β × 2γ (α ≥ β ≥ γ). Here, the dimensional parameters α, β, and
γ are the semi-major, intermediate, and semi-minor axes of the approximated ellipsoid,
respectively. The potential is constructed to account for a triaxial ellipsoidal body with
uniform density [28]. Given specific values for α, β, γ, and Ms, the potential VTE ∈ R, its

gradient
→
V

TE

x ∈ R3, and its Hessian matrix VTE
xx ∈ R3×3 are formulated as

VTE =
3µs

4

∫ ∞

u′(
→
x )

ϕ
(→

x ; u
) du

∆(u)
,

→
V

TE

x =
3µs

4

∫ ∞

u′(
→
x )

→
ϕx

(→
x ; u

) du
∆(u)

=
→
f

TB

V , (3)

VTE
xx =

3µs

4

∫ ∞

u′(
→
x )

ϕxx

(→
x ; u

) du
∆(u)

− ψ
(→

x ; u′
)→

ϕ
′
x

(→
x ; u′

)→
ϕ
′
x

T(→
x ; u′

)
where

ϕ
(→

x ; u
)
=

x2
1

α2 + u
+

x2
2

β2 + u
+

x2
3

γ2 + u
− 1, (4)

→
ϕx

(→
x ; u

)
= 2

[
x1

α2 + u
,

x2

β2 + u
,

x3

γ2 + u

]T
≡ 2

→
ϕ
′
x

(→
x ; u

)
,

ϕxx

(→
x ; u

)
= 2


(
α2 + u

)−1 0 0
0

(
β2 + u

)−1 0
0 0

(
γ2 + u

)−1

 ≡ 2ϕ′
xx

(→
x ; u

)
,

ψ
(→

x ; u′
)
=

3µs

∆(u′)

{
x2

1

(α2 + u′)2 +
x2

2

(β2 + u′)2 +
x2

3

(γ2 + u′)2

}−1

=
3µs

∆(u′)

∥∥∥∥→ϕ′
x

(→
x ; u′

)∥∥∥∥2 ,

∆(u) =
√
(α2 + u)(β2 + u)(γ2 + u).

3. Rigid Body Potential

‘Rigid body potential’ is defined as the potential of a small celestial body integrated
across the finite volume of the S/C, with the assumption that the mass of the S/C has no
influence on the motion of the small celestial body. The RBP is distinguishable from the
‘mutual potential’ in that it does not consider the motion of the small celestial body. Small
celestial bodies are approximated as polyhedrons with uniform density, and the S/C is
considered as an extended body with finite volume. This enables us to utilize a variety of
gravity estimation models for comparison. Figure 1 visualizes the coordinate system for
the RBP. In this section, the RBP is denoted as U and the subscript “x” specifically refers to
the partial derivatives with respect to the variable x.

Proposition 1. Let the potential, its gradient, and its Hessian be expressed as V ∈ R,
→
Vx ∈ R3,

and Vxx ∈ R3×3 for a given pair of position vector
→
x ∈ R3 and attitude R ∈ SO(3). Then, the

RBP U ∈ R, its force
→
f ∈ R3, its Hessian matrix Uxx, and its torque

→
τ ∈ R3 are generalized

as follows:

U = VM − 1
2∑3

n=1 λn
→
v

T
n RJ RT→

v n +
1
4

tr[J ]tr[Vxx], (5)

M
→
f = M

→
Vx +

tr[J ]

2 ∑3
n=1 Λn

→
v n − ∑3

n=1 ΛnRJ RT→
v n, (6)
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Uxx = MVxx +
tr[J ]

2 ∑3
n=1

(
un

x1 +
∂
→
v n

∂
→
x

ΛT
n

)
− ∑3

n=1

(
un

x2 +
∂
→
v n

∂
→
x

RJ RTΛT
n

)
, (7)

J→
τ = ∑3

n=1 λn

(
RT→

v n

)×
J RT→

v n. (8)

Λn = λn

(
∂
→
v n

∂
→
x

)
+ 1

2

(
∂λn
∂
→
x

)→
v

T
n where λn ∈ R and

→
v n ∈ R3 are the nth eigenvalue of Vxx and

its associated eigenvector, respectively. un
xm =

[
→
u

1n
xm,

→
u

2n
xm,

→
u

3n
xm

]T
∈ R3×3 for m = 1, 2.

Here,
→
u

in
x1 = ∂Λn

∂xi

→
v n ∈ R3 and

→
u

in
x2 = ∂Λn

∂xi
RJ RT→

v n ∈ R3 where

∂Λn

∂xi
=

3
2

∂λn

∂xi

∂
→
v n

∂
→
x

+ λn
∂2→v n

∂xi∂
→
x
+

1
2

∂2λn

∂xi∂
→
x

→
v

T
n (9)

for i = 1, 2, 3. M ∈ R+ is the total mass of the S/C.

Proof of Proposition 1. Volume integration of the S/C body B yields U as

U =
∫
B

V
(→

x + R
→
ρ
)

dm
(→

ρ
)

where
→
ρ ∈ R3 indicates the position of the mass element dm in the body-fixed frame of

the S/C as in Figure 1. It is assumed that
∥∥∥→ρ∥∥∥ ≪

∥∥∥→x ∥∥∥. Let ϵ and κ be defined such that

ϵ =
∥∥∥→ρ∥∥∥/

∥∥∥→x ∥∥∥ and cos κ = x̂ · Rρ̂, respectively.
∥∥∥→x + R

→
ρ
∥∥∥ is rewritten as

∥∥∥→x + R
→
ρ
∥∥∥ =

∥∥∥→x ∥∥∥(1 + 2ϵcos κ + ϵ2
) 1

2 .

Then, it is possible to approximate the potential V at
→
x up to the second order as

V(xϵ) = V
(→

x
)
+ ϵ

[
∂V
∂ϵ

]
ϵ=0

+
ϵ2

2

[
∂2V
∂ϵ2

]
ϵ=0

+O(ϵ)

= V
(→

x
)
+
(

R
→
ρ
)T→

Vx +
1
2

(
R
→
ρ
)T

VxxR
→
ρ +O(ϵ)

where xϵ =
∥∥∥→x ∥∥∥(1 + 2ϵcos κ + ϵ2) 1

2 and O(ϵ) contain all higher-order terms. The RBP
then becomes

U
(→

x
)
≈
∫
B

(
V
(→

x
)
+

→
ρ

T
RT→

Vx

(→
x
)
+

1
2
→
ρ

T
RTVxx

(→
x
)

R
→
ρ

)
dm
(→

ρ
)

= V
(→

x
)

M +
1
2

∫
B

→
ρ

T
RTVxx

(→
x
)

R
→
ρ dm

(→
ρ
)

. (10)

Now, the Hessian Vxx is decomposed by using scalar and vector pairs in order to
rewrite the second term in Equation (10). As the eigenvalues of a real symmetric matrix are
always real and the associated eigenvectors are orthogonal to each other [29], the Hessian
Vxx can be represented using three real eigenvalues and their associated eigenvectors. Let
λn and

→
v n be eigenvalues and the corresponding eigenvectors of Vxx for n = 1, 2, 3,

respectively. Then, Vxx is represented as

Vxx = ∑3
n=1 λn

→
v n

→
v

T
n . (11)
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Proof of Proposition 1. Volume integration of the S/C body ℬ yields 𝑈 as 𝑈 = න 𝑉ሺ𝒙ሬሬ⃗ + 𝑹𝝆ሬሬ⃗ ሻ𝑑𝑚ሺ𝝆ሬሬ⃗ ሻ 
ℬ   

where 𝝆ሬሬ⃗ ∈ ℝଷ indicates the position of the mass element 𝑑𝑚 in the body-fixed frame of 
the S/C as in Figure 1. It is assumed that ‖𝝆ሬሬ⃗ ‖ ≪ ‖𝒙ሬሬ⃗ ‖. Let 𝜖 and 𝜅 be defined such that 𝜖 = ‖𝝆ሬሬ⃗ ‖/‖𝒙ሬሬ⃗ ‖ and cos 𝜅 = 𝒙ෝ ⋅ 𝑹𝝆ෝ, respectively. ‖𝒙ሬሬ⃗ + 𝑹𝝆ሬሬ⃗ ‖ is rewritten as ‖𝒙ሬሬ⃗ + 𝑹𝝆ሬሬ⃗ ‖ = ‖𝒙ሬሬ⃗ ‖ሺ1 + 2𝜖 cos 𝜅 + 𝜖ଶሻభమ.  
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→
x belongs to the principal axis frame of the small celestial body and

the position of the S/C mass element is represented in the body-centered, body-fixed frame.

Note that the other pair
(

an,
→
x n

)
can be taken into account if Vxx can be written as

∑N
n=1 an

→
x n

→
x

T
n for n = 1, 2, · · · , N. In this study, the eigenvalues and eigenvectors are

utilized to derive the RBP without loss of generality. Introducing Equation (10) into (11)
yields the RBP as

U
(→

x
)
≈ V

(→
x
)

M +
1
2∑3

n=1 λn

∫
B

→
ρ

T
RT→

v n
→
v

T
n R

→
ρ dm

(→
ρ
)

= V
(→

x
)

M +
1
2∑3

n=1 λn
→
v

T
n R
∫
B

→
ρ
→
ρ

T
dm
(→

ρ
)

RT→
v n.

Since
∫
B
→
ρ
→
ρ

T
dm
(→

ρ
)
= 1

2 tr[J ]I3 −J , the RBP is finally expressed as

U
(→

x
)
= V

(→
x
)

M − 1
2∑3

n=1 λn
→
v

T
n RJ RT→

v n +
1
4

tr[J ]tr[Vxx]. (12)

The gravitational force
→
f is obtained by taking partial derivative of Equation (12):

M
→
f = M

→
Vx +

tr[J ]

2 ∑3
n=1

{
λn

(
∂
→
v n

∂
→
x

)
+

1
2

(
∂λn

∂
→
x

)
→
v

T
n

}
→
v n

−∑3
n=1

{
λn

(
∂
→
v n

∂
→
x

)
+

1
2

(
∂λn

∂
→
x

)
→
v

T
n

}
RJ RT→

v n

= M
→
Vx +

tr[J ]

2 ∑3
n=1 Λn

→
v n − ∑3

n=1 ΛnRJ RT→
v n.

The gravitational torque
→
τ can be derived by taking the partial derivative of Equation (12)

with respect to R:

∂U
∂R

=
∂

∂R

{
VM +

tr[J ]

4 ∑3
n=1 λn

→
v

T
n
→
v n −

1
2∑3

n=1 λn
→
v

T
n RJ RT→

v n

}

= −∑3
n=1 λn

→
v n

→
v

T
n RJ = −VxxRJ . (13)
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Substituting Equation (13) into
(
J→

τ
)×

=
(

∂U
∂R

)T
R − RT ∂U

∂R provides

(
J→

τ
)×

= ∑3
n=1 λn

{
−J RT→

v n
→
v

T
n R + RT→

v n
→
v

T
n RJ

}
.

Using yxT − xyT = (x×y)× for x, y ∈ R3, the torque due to the RBP can be given as
Equation (8).

In order to derive the Hessian matrix Uxx, start by taking partial derivatives of
→
Ux

with respect to xi as

∂

∂xi

(
∂U

∂
→
x

)
=

∂

∂xi

(
M

→
Vx +

tr[J ]

2 ∑3
n=1 Λn

→
v n − ∑3

n=1 ΛnRJ RT→
v n

)

= M
∂
→
Vx

∂xi
+

tr[J ]

2

3

∑
n=1

(
→
u

in
x1 + Λn

∂
→
v n

∂xi

)
−

3

∑
n=1

(
→
u

in
x2 + ΛnRJ RT ∂

→
v n

∂xi

)
(14)

where
→
u

in
x1 = ∂Λn

∂xi

→
v n and

→
u

in
x2 = ∂Λn

∂xi
RJ RT→

v n. The first term of Equation (14) leads to

∂
→
Vx

∂
→
x

=

∂
→
Vx

∂x1
,

∂
→
Vx

∂x2
,

∂
→
Vx

∂x3

T

= Vxx. (15)

The common term ∂Λn
∂xi

of
→
u

in
x1 and

→
u

in
x2 yields

∂Λn

∂xi
=

3
2

∂λn

∂xi

∂
→
v n

∂
→
x

+ λn
∂2→v n

∂xi∂
→
x
+

1
2

∂2λn

∂xi∂
→
x

→
v

T
n .

The second term of Equation (14) provides

∂

∂
→
x

(
∑3

n=1 Λn
→
v n

)
=

[
∑3

n=1

(
→
u

1n
x1 + Λn

∂
→
v n

∂x1

)
, ∑3

n=1

(
→
u

2n
x1 + Λn

∂
→
v n

∂x2

)
, ∑3

n=1

(
→
u

3n
x1 + Λn

∂
→
v n

∂x3

)]T

= ∑3
n=1

{[
→
u

1n
x1,

→
u

2n
x1,

→
u

3n
x1

]
+ Λn

[
∂
→
v n

∂x1
,

∂
→
v n

∂x2
,

∂
→
v n

∂x3

]}T

= ∑3
n=1

(
un

x1 +
∂
→
v n

∂
→
x

ΛT
n

)
. (16)

Similarly, the third term of Equation (14) becomes

∂

∂
→
x

{
∑3

n=1

(
→
u

in
x2 + ΛnRJ RT ∂

→
v n

∂xi

)}
= ∑3

n=1

(
un

x2 +
∂
→
v n

∂
→
x

RJ RTΛT
n

)
. (17)

Finally, the Hessian of the RBP can be obtained by combining Equations (15)–(17). □

Proposition 1 can be extended to cases where the Hessian matrix of potential Vxx is
decomposed into two distinct vectors. Refer to Appendix A for details.

4. Application of Rigid Body Potential

Section 4 presents the RBP estimated through three gravity estimation models, namely,
the PM, EB, and TE models introduced in Section 3. As stipulated by Proposition 1, the
derivation of the U and its corresponding torque necessitates both the potential V itself
and its associated Hessian Vxx. Furthermore, the calculation of the force stemming from
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the RBP mandates the partial derivatives of certain scalar quantities and vectors linked to

Vxx and requires
→
Vx. In this section, the superscript “A” indicates its computation through

the utilization of the A gravity estimation model.

4.1. Point Mass Model

This section presents the RBP, along with its gradient
→
U

PM

x and its Hessian UPM
xx when

a small celestial body is conceptualized as a PM. Although it is challenging to assert that
the PM model is accurate enough, its usefulness lies in understanding how Proposition 1
can be applied to a variety of gravity estimation models.

Example 1. The RBP UPM ∈ R with the PM model, along with its associated force
→
f

PM
∈ R3,

Hessian UPM
xx ∈ R3×3, and torque

→
τ

PM
∈ R3, is represented as

UPM =
µs∥∥∥→x ∥∥∥

M − 3
2

x̂TRJ RT x̂∥∥∥→x ∥∥∥2 +
1
2

tr[J ]∥∥∥→x ∥∥∥2

, (18)

M
→
f

PM
= − µs∥∥∥→x ∥∥∥3

MI3 −
15
2

x̂TRJ RTx̂∥∥∥→x ∥∥∥2 I3 + 3
RJ RT∥∥∥→x ∥∥∥2 +

3
2

tr[J ]∥∥∥→x ∥∥∥2 I3

→
x =

→
U

PM

x ,

UPM
xx =

µs∥∥∥→x ∥∥∥3

M
(

3x̂x̂T − I3

)
− 15

2
x̂TRJ RTx̂∥∥∥→x ∥∥∥2

(
7x̂x̂T − I3

)
+ 3

RJ RT∥∥∥→x ∥∥∥2

(
10x̂x̂T − I3

)
+

3
2

tr[J ]∥∥∥→x ∥∥∥2

(
5x̂x̂T − I3

), (19)

J→
τ

PM
= 3

µs∥∥∥→x ∥∥∥3

(
RT x̂

)×
J RT x̂.

Proof of Example 1. The initial step involves identifying scalar–vector pairs that facilitate
the representation of VPM

xx , as demonstrated in Equation (11). As evident from Equation (2),
the first term of VPM

xx already resembles the desired form of Equation (11), while the other
term is a diagonal matrix. Any diagonal matrix can be transformed into the desired form
by employing the standard basis and considering its diagonal elements as

VPM
xx =

4

∑
n=1

λPM
n

→
v

PM
n

→
v

PM
n

T
(20)

where
→
v

PM
n , for n = 1, 2, 3, represents the nth standard basis vector ên, and λPM

n corre-
sponds to its associated scalar − µS∥∥∥→x ∥∥∥3 . The scalar–vector pair that remains is

(
λ4,

→
v 4

)
=(

3 µS∥∥∥→x ∥∥∥5 ,
→
x

)
. The remaining proof involves the application of Corollary A1 from Ap-

pendix A with Equation (20), and the details are provided in Appendix B.1. □

4.2. Extended Body Model

This section presents the RBP and its associated parameters by employing the EB
model where both the S/C and small celestial body are considered as extended bodies with
finite volumes.
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Example 2. Let Ms ∈ R+ and J s ∈ R3×3 be the mass and the MOI of a small celestial body, re-

spectively. For a given VEB ∈ R, accompanied by its gradient
→
V

EB

x ∈ R3, its Hessian VEB
xx ∈ R3×3,

the RBP UEB ∈ R with the EB model, along with its corresponding
→
f

EB
∈ R3, UEB

xx ∈ R3×3, and
→
τ

EB
∈ R3, can be expressed as

UEB = VEB M − 1
2∑4

n=1
→
v

EB
2n

T
RJ RT→

v
EB
1n +

1
4

tr[J ]tr
[
VEB

xx

]
,

M
→
f

EB
= M

→
V

EB

x − 1
4∑i, j ∈ {1, 2}

i ̸= j

∑4
n=1

∂
→
v

EB
in

∂
→
x

(2J RT + tr[J ]I3

)→
v

EB
jn =

→
U

EB

x ,

UEB
xx = MVEB

xx − u4
x − u123

x − HEB, (21)

J→
τ

EB
=

4

∑
n=1

(
RT→

v
EB
1n

)×
J RT→

v
EB
2n

where

→
v

EB
1n =


3 µs∥∥∥→x ∥∥∥7 BEB

nn ên, n = 1, 2, 3

3 µs∥∥∥→x ∥∥∥9 AEB→x , n = 4
, (22)

→
v

EB
2n =

{
ên, n = 1, 2, 3
→
x , n = 4

, (23)

∂
→
v

EB
1n

∂
→
x

=


−21 µs∥∥∥→x ∥∥∥9

→
x êT

n BEB
nn + 3 µs∥∥∥→x ∥∥∥7 DEB→x êT

n , n = 1, 2, 3

3 µs∥∥∥→x ∥∥∥9 AEB + 3 µs∥∥∥→x ∥∥∥9 CEB→x
→
x

T
, n = 4

, (24)

∂
→
v

EB
2n

∂
→
x

=

{
O3, n = 1, 2, 3
I3, n = 4

, (25)

u4
x =

1
4

(
EEB→x

→
x

T
+

→
x
→
x

T
EEB

)
,

u123
x =

1
4

(
FEB→x

→
x

T
+

→
x
→
x

T
FEB + GEB

)
,

AEB =
∥∥∥→x ∥∥∥2

I3 +
5
2

G
Ms

tr[J s]I3 + 4J s − 7
→
x

T
J s

→
x∥∥∥→x ∥∥∥2 I3

,

BEB =
3
4

G
Ms

tr[J s]I3 + 2J s − 5
→
x

T
J s

→
x∥∥∥→x ∥∥∥2 I3

− 1
2

∥∥∥→x ∥∥∥2
I3,

CEB = 2I3 + 35
G

Ms

→
x

T
J s

→
x∥∥∥→x ∥∥∥4 I3 − 35

G
Ms

J s∥∥∥→x ∥∥∥2 − 9∥∥∥→x ∥∥∥2 AEB,

DEB = −1
2

15
G

Ms

J s∥∥∥→x ∥∥∥2 − 15
G

Ms

→
x

T
J s

→
x∥∥∥→x ∥∥∥4 I3 + I3

,
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EEB =
3
2

µs∥∥∥→x ∥∥∥9

8I3 − 10CEB +
∥∥∥→x ∥∥∥2

CEB + 9AEB − 70
G

Ms

J s∥∥∥→x ∥∥∥2

,

FEB =
9
2

µs∥∥∥→x ∥∥∥10

 21∥∥∥→x ∥∥∥2 tr
[
BEB

]
I3 − 14DEB +

15
2

G
Ms

1∥∥∥→x ∥∥∥2

(
2J s − x̂TJ sx̂I3

),

GEB = 9
µs∥∥∥→x ∥∥∥7

DEB − 7∥∥∥→x ∥∥∥2 tr
[
BEB

]
I3

,

HEB =
1
4


∂

→
v

EB
14

∂
→
x

(2J RT + tr[J ]I3

)
+
(

2J RT + tr[J ]I3

)∂
→
v

EB
14

∂
→
x

T
.

Proof of Example 2. Refer to Appendix B.2. □

4.3. Triaxial Ellipsoidal Model

This section presents the RBP UTE obtained using the TE model, together with its

associated force
→
f

TE
, torque

→
τ

TE
, and Hessian UTE

xx .

Example 3. Let the potential with the TE model, its corresponding gradient, and its Hessian matrix

be denoted as VTE ∈ R,
→
V

TE

x ∈ R3, and VTE
xx ∈ R3×3, respectively. Then, the RBP UTE ∈ R,

along with
→
f

TE
∈ R3, UEB

xx ∈ R3×3, and
→
τ

TE
∈ R3, can be expressed as

UTE = MVTE − 3µ

4

∫ ∞

u′

[
tr
[
J ϕ′

xx
]
− 1

4
tr[J ]tr

[
ϕ′

xx
]] du

∆(u)
+ ψ

→
ϕ
′
x

T(
I3 −

1
2

RJ RT
)
→
ϕ
′
x ,

M
→
f

TE
= M

→
V

TE

x − ψ

4
tr[J ]

(
ϕ′

xx + tr
[
ϕ′

xx
]
I3
)→

ϕ
′
x + ATE =

→
U

TE

x , (26)

UTE
xx = MVTE

xx +

(
tr[J ]

2
− RJ RT

)
BTE +

tr[J ]

2
uTE

x1 − uTE
x2 , (27)

J→
τ

TE
= ψ

(
RT→

ϕ
′
x

)×
J RT→

ϕ
′
x

where
ATE =

ψ

2

{
2ϕ′

xx

(
I3 − ϕ̂′

xϕ̂′
x

T
)
− tr

[
ϕ′

xx
]
ϕ̂′

xϕ̂′
x

T
}

RJ RT→
ϕ
′
x,

BTE = ϕ′
xx

{
ψ
(
I3 − ϕ̂′

xϕ̂′
x

T
)

ϕ′
xx −

1
2

ψtr
[
ϕ′

xx
]
ϕ̂′

xϕ̂′
x

T
}

,

uTE
x1 =

1
2

ψ
(
tr
[
ϕ′

xx
]
I3 + 2ϕ′

xx
)(

tr
[
ϕ′

xx
]
I3 + 3ϕ′

xx
)
ϕ̂′xϕ̂′Tx − 1

2
ψϕ′2

xx,

uTE
x2 =

1
2

ψ(tr[ϕ′xx]I3 + 2ϕ′xx)
(

tr
[
ϕ′

xx
]
RJ RT + tr[J ]ϕ′

xx

)
ϕ̂′xϕ̂′Tx − 1

2
ψtr[J ]ϕ′2

xx.

Proof of Example 3. Refer to Appendix B.3. □

5. Numerical Simulations

Section 5 presents numerical analyses of the RBP V and its associated Hessian U with
three aforementioned gravity estimation models. The direct integration model is chosen as
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a reference for comparison, since it is the most accurate for a given polyhedral body [30,31].
Refer to Appendix C for details on the direct integration model. Eight small celestial
bodies, i.e., 4 Vesta, 243 Ida, 951 Gaspra, 1036 Ganymed, 2063 Bacchus, 4769 Castalia,
25143 Itokawa, and 99942 Apophis, have been chosen for evaluating/testing the gravity
estimation models. Their masses range from 1010 kg to 1020 kg, while the number of faces
is distributed across a spectrum from 2024 to 32040. The outcomes related to three pairs of
small bodies characterized by similar masses, i.e., (253 Ida, 1036 Ganymed), (2163 Bacchus,
4769 Castalia), and (26,143 Itokawa, 99942 Apophis), serve to demonstrate the impact
of both the number of faces and the shape of these celestial bodies. Table 2 shows the
physical/modelling properties of eight small celestial bodies. 1RS is selected as 1 distance
unit (DU). The MOI and mass of the S/C are selected as diag([200, 500, 300])kg · m2 and
600 kg, respectively.

Table 2. Mass and 1 DU values for small celestial bodies.

Small Body Mass (1015 kg) 1 DU (km) Number of Faces

4 Vesta 2.59 × 105 287.7538 5040
243 Ida 100 27.5884 32,040

951 Gaspra 3.57 10.7637 32,040
1036 Ganymed 167 34.28 2040
2063 Bacchus 0.0033 0.6617 4092
4769 Castalia 0.0014 0.9849 4092

25143 Itokawa 3.5 × 10−5 0.4373 12,192
99942 Apophis 2.70 × 10−5 0.9957 2024

5.1. Analysis on Gravity Estimation Models

The aforementioned gravity estimation models are numerically analyzed first, fol-
lowed by analysis of the RBP. Each gravity estimation model is assessed based on criteria
that include potential accuracy. Accuracy evaluations are performed with respect to the
radial distance along the x-, y-, and z-axes. Figure 2 shows the relative errors of the poten-
tial attributed to each gravity estimation model when applied to the eight small celestial
bodies. The left and right illustrate the relative errors of the potential at 1DU and at
3DU, respectively. The outcomes pertaining to the x-, y-, and z-axes are denoted as circle,
square, and triangle markers, respectively. Blue, red, and yellow markers indicate results
calculated using the PM, EB, and TE models, respectively. In the left figure, the relative
errors tend to be larger compared to those in the right figure, and the accuracy order for
each small celestial body is usually consistent regardless of the radial distance. The TE
model generally yields the smallest errors in most cases, except for the results at 3DU for
99942 Apophis. The PM model gives relatively accurate results when applied to spherical
bodies (i.e., 4 Vesta and 1036 Ganymed), similar to the EB model. Although the results
are ordered based on the mass of small celestial bodies, it is unclear to identify any clear
tendency with respect to mass. The relative errors associated with heavier bodies decrease
at a slower rate compared to those of lighter bodies, with respect to radial distance, if 1DU
is considered to be a significant magnitude for heavier bodies. These results will be further
discussed in terms of the conditions suitable for the utilization of RBP, in conjunction with
the analysis of RBP. Figure 3 presents the relative errors, mean, and standard deviation for
each gravity estimation models in a single plot, without distinguishing between the small
celestial bodies. Blue, red, and yellow markers denote the relative errors at 1DU, 2DU, and
3DU, respectively. The relative errors of all gravity estimation models decrease in relation
to radial distance, regardless of the small celestial bodies and evaluation directions. The
TE model exhibits the best performance among the three gravity estimation models, as
evidenced by its smallest mean and standard deviation. The observed trend, where the PM
model exhibits the largest relative errors, suggests that its accuracy is mainly reliant on the
shape of the small celestial bodies. This is because the PM model considers a small celestial
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body as a sphere, regardless of its actual shape. Thus, the PM model provides the most
accurate results when a sphere with uniform density is employed as a small celestial body.
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5.2. Analysis on Rigid Body Potential

The RBP is composed of the potential V and additional terms Ua. Here, we focus on
evaluating Ua. Seven different types of attitudes are considered for evaluating the RBP, as
outlined in Table 3, where q̂ denotes the quaternion. Different colors distinguish the gravity
estimation models from each other. Blue-based, red-based, and yellow-based colors indicate
the results calculating using the PM, EB, and TE models, respectively. Outcomes related to
the x-, y-, and z-axes are represented with circle, square, and triangle markers, respectively.

Table 3. Seven types of the fixed attitude of S/C.

Case 1 2 3 4 5 6 7

q̂


1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1

 1√
2


1
1
0
0

 1√
2


1
0
1
0

 1√
2


1
0
0
1


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It can be seen from Proposition 1 that U is calculated by combining eigenvalues and
their corresponding eigenvectors, with the MOI of the S/C also being one of the parameters.
Figure 4 shows the almost proportional relationship between Ua and the magnitude of
Vxx. All results are represented, irrespective of small celestial bodies and the attitudes of
S/C. The maximum eigenvalues are used as the magnitude of Vxx. The left figure depicts
Ua = a|Vxx|b, where a and b > 0 are real numbers. Both the x- and y-axes are displayed
on a logarithmic scale to clearly visualize the tendency. On the right, it is evident that b is
nearly 1, indicating an almost proportional tendency between Ua and the magnitude of
Vxx. Figure 5 presents the relative Ua and relative errors of V for 25143 Itokawa, in a single
plot. The relative Ua represents the magnitude of Ua over V for each gravity estimation
model, and it is denoted as a lighter color. The relative error of V is the absolute error of
the given gravity estimation model with respect to its potential value. The standard value
for the absolute error is the potential calculated using the direct integration model. The
relative error of V is represented in a darker color. The attitude of the S/C is specified
as q̂ = [1, 1, 0, 0]T/

√
2. Unfortunately, the relative errors of the three gravity estimation

models surpass the magnitude of Ua. This indicates that inaccurate gravity estimation
models are unsuitable not only for potential estimation but also for estimating the RBP.
Figure 6 illustrates the ratio of Ua to V (left) and the relative error of V (right), with respect
to radial distance in kilometers. All results from the three gravity estimation models are
depicted in the same colors, with color variations denoting different small celestial bodies.
Ua is derived from Vxx, which decreases as the radial distance increases. Consequently,
the Ua ratio diminishes with increasing radial distance, irrespective of any specific gravity
estimation models, as evident in Figure 6. On the other hand, as depicted on the right,
the relative error values of V estimated using each gravity estimation model are similar.
Although the three gravity estimation models utilized in this study may not be adequate
for the analysis on RBP, other models exhibiting relative errors below 10−5 are deemed
suitable for analyzing the RBP near relatively small bodies, such as 99942 Apophis.
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The propagated trajectories of the S/C with three different types of potentials are
compared with each other to validate the proposed RBP. As all gravity estimation models
considered in this study are rather limited in accuracy, a uniform sphere is chosen as an
artificial small celestial body. This allows us to observe the effects of the additional terms
in the RBP on the motion of the S/C, even when the PM model is adopted, as discussed
in Section 5.1. The mass, radius, spin rate, and spin axis of the artificial/spherical small
celestial body are selected as 4.19 × 109 kg, 1.2 km, 1.13 × 10−5 rad, and the z-axis, respec-
tively. The initial position and velocity are chosen as [1.30, 0, 0] km and [0, 0, 0] km/s in
the principal axis frame, respectively, which correspond to a geosynchronous orbit in the
restricted two-body context. The initial attitude of the S/C is case 7 in Table 3, and the
initial angular velocity is set to be the same as the angular velocity of the artificial small
celestial body, which ensures that the S/C maintains a consistent orientation relative to
the artificial small celestial body. These initial conditions are suitable for observing the
influence of additional terms in the RBP, i.e., the second and third terms in Equation (18).
Now compared are three dynamic models: the orbital motion in the restricted two-body
problem, the orbit–attitude coupled motion with the RBP, and the orbit–attitude coupled
motion with the mutual potential. Figure 7 illustrates the deviations from the prescribed
initial positions of the S/C in the principal axis frame and displays trajectories for 500 days
in the xy-plane. The blue solid, red dashed, and yellow solid lines show the propagations
with the RBP, the mutual potential, and the potential V, respectively. Since the initial condi-
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tion is set to form a geosynchronous orbit, the propagated position with the potential V
remains in its initial position after 500 days. The propagation with the RBP shows a bigger
difference between the initial and final positions than the propagation with the mutual
potential. This is because the propagation with the RBP does not consider the gravitational
influence of the S/C on the motion of the artificial small celestial body. Additionally, both
images in Figure 7 illustrate that the propagation with the mutual potential (rather than the
propagation with the potential) shows a similar tendency to the propagation with the RBP.
This implies that the analysis of orbit–attitude coupled motion with the RBP is a reasonable
approximation and efficient alternative, when the mass of the S/C is considerably light but
its size is not negligibly small, compared with the small celestial body.
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6. Conclusions

This study has established a comprehensive framework for calculating the RBP, along
with its first and second derivatives. The overall analysis does not take into account the
motion of the small celestial body itself. The terminology ‘rigid body potential’ is defined to
distinguish it from the mutual potential. S/Cs are assumed to be extended rigid bodies with
finite volume to ensure their applicability within dynamic and control systems. The mass
ratio between a S/C and a small celestial body ensures that their barycenter can be located
at the center of the small celestial body. Additionally, the ‘restricted’ assumption, which
stipulates that the S/C does not exert any gravitational force on the small celestial body,
has been numerically validated to be reasonable by comparing the propagated trajectories
with three different types of potentials (i.e., potential V, rigid body potential (RBP) U, and
mutual potential) with each other. Three gravity estimation models based on the shape
model of the small celestial body have been introduced: the PM, EB, and TE models. The
formulations of the RBP, along with its first and second order derivatives are proposed and
are implemented in conjunction with the three gravity estimation models. The Hessian
matrix of the potential plays a crucial role in constructing the RBP. Analyses of the gravity
estimation models and the RBP were conducted and numerically tested for eight small
celestial bodies, chosen arbitrarily. The relative error of the potential decreases as the radial
distance increases, irrespective of the gravity estimation model. However, when the radial
distance in DU is similar, the relative error of the same gravity estimation model is also
similar, regardless of the choice of small celestial body. On the other hand, the additional
terms of the RBP decrease as the DU increases, which indicates dependence on the size of
the small celestial body. This implies that accurate gravity estimation models are imperative
for conducting RBP analysis. Nevertheless, the comparative analysis of the propagated
trajectories with a uniform sphere as a small celestial body suggests that the RBP should
be a reasonable approximation and an efficient alternative to the mutual potential for
analyzing the orbit–attitude coupled motion of S/C ‘only’. This observation motivates us
to further apply the proposed framework of RBP to other gravity estimation models, such
as the mass concentration model, spherical harmonics model, and direct integration model.
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Appendix A. Corollary A1: General Framework of Rigid Body Potential

Corollary A1. If there exist a finite number of vector pairs to represent Vxx, the RBP U, its force
→
f ∈ R3, its Hessian matrix Uxx ∈ R3×3, and its torque

→
τ ∈ R3 can be expressed as

U = VM − 1
2

N

∑
n=1

→
v

T
2nRJ RT→

v 1n +
1
4

tr[J ]tr[Vxx], (A1)

→
f = M

→
Vx −

1
4 ∑

i, j ∈ {1, 2}
i ̸= j

N

∑
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(
∂
→
v in

∂
→
x

)(
2J RT + tr[J ]I3
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v jn, (A2)
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where N is the number of vector pairs to express Vxx.

Appendix B. Derivation of Rigid Body Potential

Appendix B.1. Proof of Example 1 (Point Mass Model)

Substituting Equation (20) into Equation (A1) provides UPM:

UPM = VPM M − 1
2

4

∑
n=1

λPM
n

→
v

PM
n

T
RJ RT→

v
PM
n +

1
4

tr[J ]tr
[
VPM

xx

]
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=
µs∥∥∥→x ∥∥∥
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x̂TRJ RT x̂∥∥∥→x ∥∥∥2 +
1
2

tr[J ]∥∥∥→x ∥∥∥2
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Calculating
→
f

PM
necessitates an additional step to compute ΛPM

n by combining the

partial derivatives of λPM
n and

→
v

PM
n . The partial derivatives of λPM

n and
→
v

PM
n with respect

to
→
x are expressed as

∂λPM
n

∂
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x

=
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where O3 is the zero matrix of order 3. Introducing Equations (A7) and (A8) into the
definition of ΛPM

n leads to

ΛPM
n =
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The force
→
f

PM
and the associated torque

→
τ

PM
arising from the RBP can be obtained

by substituting
→
v

PM
n and Equations (1) and (A9) into Equations (A2) and (A4), respectively.

In order to derive UPM
xx , proceed to compute the second-order partial derivatives of

λPM
n and

→
v

PM
n with respect to xi, i = 1, 2, 3:
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Substituting Equations (6), (7), (A10), and (A11) into Equation (9) yields

∂ΛPM
n

∂xi
=


3
2

µs∥∥∥→x ∥∥∥5

(
I3 − 5x̂x̂T)êiêT

n , n = 1, 2, 3

15
2

µs∥∥∥→x ∥∥∥6

(
7x̂T êix̂x̂T − êix̂T − 3x̂T êiI3

)
, n = 4

. (A12)

Hence, un,P
x1 and un,P

x2 are obtained by using Equations (6), (7) and (A12) as

un,P
x1 =


3
2

µs∥∥∥→x ∥∥∥5

(
I3 − 5x̂x̂T), n = 1, 2, 3

15
2

µs∥∥∥→x ∥∥∥5

(
4x̂x̂T − I3

)
, n = 4

, (A13)

un,P
x2 =


3
2

µs∥∥∥→x ∥∥∥5

(
I3 − 5x̂x̂T)êT

n RJ RT ên, n = 1, 2, 3

15
2

µs∥∥∥→x ∥∥∥5

{
x̂TRJ RT x̂

(
7x̂x̂T − I3

)
− 3x̂x̂TRJ RT}, n = 4

(A14)
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where

→
u

in,P
x1 =


3
2

µs∥∥∥→x ∥∥∥5

(
I3 − 5x̂x̂T)êi, n = 1, 2, 3

15
2

µs∥∥∥→x ∥∥∥5

(
4x̂T êix̂ − êi

)
, n = 4

,

→
u

in,P
x2 =


3
2

µs∥∥∥→x ∥∥∥5

(
I3 − 5x̂x̂T)êT

n RJ RT ênêi, n = 1, 2, 3

15
2

µs∥∥∥→x ∥∥∥6

(
7x̂T êix̂x̂T − êix̂T − 3x̂T êiI3

)
RJ RT x̂, n = 4

.

Substituting Equations (A8), (A9), (A13) and (A14) into Equation (7) gives Equation (19).

Appendix B.2. Proof of Example 2 (Extended Body Model)

Rearranging VEB
xx as Equation (A5) enables us to utilize the vector pairs of Corollary A1:

VEB
xx = 3

µs∥∥∥→x ∥∥∥7 AEBx̂x̂T + 3
µs∥∥∥→x ∥∥∥7

3

∑
n=1

BEB
nn ênêT

n .

Note that BEB is a diagonal matrix. Now, we can define
→
v

EB
1n and

→
v

EB
2n as follows:

→
v

EB
1n =


3 µs∥∥∥→x ∥∥∥7 BEB

nn ên, n = 1, 2, 3

3 µs∥∥∥→x ∥∥∥9 AEB→x , n = 4
,

→
v

EB
2n =

{
ên, n = 1, 2, 3
→
x , n = 4

.

In order to obtain the partial derivatives of Equations (22) and (23), it is necessary to
calculate the partial derivatives of AEB and BEB

nn concerning the variable
→
x as follows:

∂AEB

∂
→
x

=

2I3 + 35
G

Ms

→
x

T
J s

→
x∥∥∥→x ∥∥∥4 I3 − 35

G
Ms

J s∥∥∥→x ∥∥∥2

→
x = CEB

1
→
x , (A15)

∂BEB
nn

∂
→
x

= −1
2

15
G

Ms

J s∥∥∥→x ∥∥∥2 − 15
G

Ms

→
x

T
J s

→
x∥∥∥→x ∥∥∥4 + I3

→
x = DEB→x (A16)

where n = 1, 2, 3. Taking the partial derivatives of
→
v

EB
1n and substituting Equations (A15)

and (A16) into the results provide Equation (24):

∂
→
v

EB
1n

∂
→
x

= 3
∂

∂
→
x

 µs∥∥∥→x ∥∥∥7 BEB
nn ên

 = −21
µs∥∥∥→x ∥∥∥9

→
x êT

n BEB
nn + 3

µs∥∥∥→x ∥∥∥7 DEB→x êT
n ,

∂
→
v

EB
14

∂
→
x

= 3
∂

∂
→
x

 µs∥∥∥→x ∥∥∥9 AEB→x

 = 3
µs∥∥∥→x ∥∥∥9 CEB→x

→
x

T
+ 3

µs∥∥∥→x ∥∥∥9 AEB.

The partial derivatives of
→
v

EB
2n , which give Equation (25), are easily yielded as follows:

∂
→
v

EB
2n

∂
→
x

=

{
O3, n = 1, 2, 3
I3, n = 4

.
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Since ∑4
n=1 un,21

x = O3 because of Equation (25), rearranging Equation (A3) provides
as follows:

UEB
xx = MVEB

xx − 1
4 ∑

i, j ∈ {1, 2}
i ̸= j

4

∑
n=1

un,ij
x +

∂
→
v

EB
in

∂
→
x

(2J RT + tr[J ]I3

)∂
→
v

EB
jn

∂
→
x

T


= MVEB
xx − 1

4
u4,12

x − 1
4

3

∑
n=1

un,12
x − 1

4 ∑
i, j ∈ {1, 2}

i ̸= j

∂
→
v

EB
i4

∂
→
x

(2J RT + tr[J ]I3

)∂
→
v

EB
j4

∂
→
x

T

.

Define u4
x = 1

4 u4,12
x , u123

x = 1
4 ∑3

n=1 un,12
x , and

HEB =
1
4


∂

→
v

EB
14

∂
→
x

(2J RT + tr[J ]I3

)
+
(

2J RT + tr[J ]I3

)∂
→
v

EB
14

∂
→
x

T
.

Then, UEB
xx can be represented as Equation (21). HEB can be calculated by taking

Equation (24), thus we can then yield u4,12
x and ∑3

n=1 un,12
x . Taking the partial derivatives of

∂
→
v

EB
14 /∂

→
x with respect to the mth element xm of

→
x gives

∂

∂xm

 ∂
→
v

EB
14

∂
→
x

 = 3

−9
µs∥∥∥→x∥∥∥11

(
AEB + CEB→

x
→
x

T
)

xm +
µs∥∥∥→x∥∥∥9

∂AEB

∂xm
+

µs∥∥∥→x∥∥∥9
∂CEB

∂xm

→
x
→
x

T
+

µs∥∥∥→x∥∥∥9 CEB
(

êm
→
x

T
+

→
x êT

m

). (A17)

∂AEB/∂xm is given in Equation (A15) and ∂CEB/∂xm is calculated as

∂CEB

∂xm
= 70

G
Ms

→
x

T
J sêm∥∥∥→x ∥∥∥4 I3 + 35

G
Ms

CEB
2 xm + 2xmI3 (A18)

where

∂CEB
1

∂xm
= 70

G
Ms


→
x

T
J sêm∥∥∥→x ∥∥∥4 I3 +

 J s∥∥∥→x ∥∥∥2 − 2
→
x

T
J s

→
x∥∥∥→x ∥∥∥6 I3

xm

,

CEB
2 =

1∥∥∥→x ∥∥∥2

J s − 4
→
x

T
J s

→
x∥∥∥→x ∥∥∥4 I3 +

→
x

T
J s

→
x∥∥∥→x ∥∥∥2 I3

.

Substituting Equation (A18) into Equation (A17) gives

∂

∂xm

 ∂
→
v

EB
14

∂
→
x

 = 3


CEB +

35
G

Ms
CEB

2 − 9
1∥∥∥→x∥∥∥2 CEB + 2I3

→
x
→
x

T

xm +70
G

Ms

→
x

T
J s êm∥∥∥→x∥∥∥4

→
x
→
x

T
+ CEB

(
êm

→
x

T
+

→
x êT

m

)
= EEB

1 xm +
→
E

EB

2

T

êmx̂x̂T + EEB
3

(
êm

→
x

T
+

→
x êT

m

)
(A19)

where

EEB
1 = 3

µs∥∥∥→x ∥∥∥9

CEB +

35
G

Ms
CEB

2 − 9
1∥∥∥→x ∥∥∥2 CEB + 2I3

→
x
→
x

T

,

→
E

EB

2 = 210
µs∥∥∥→x ∥∥∥13

G
Ms

J s
→
x ,
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EEB
3 = 3

µs∥∥∥→x ∥∥∥9 CEB.

Taking Equation (A19) into (A6) provides u4,12
x :

u4,12
x

T
=

[
∂

∂x1

(
∂
→
v

EB
14

∂
→
x

)
→
v 2n, ∂

∂x2

(
∂
→
v

EB
14

∂
→
x

)
→
v 2n, ∂

∂x3

(
∂
→
v

EB
14

∂
→
x

)
→
v 2n

]
= EEB

1
→
x
→
x

T
+

→
x
→
E

EB

2

T

+
→
x

T→
x EEB

3 + EEB
3

→
x
→
x

T

= 3 µs∥∥∥→x ∥∥∥9

{
8I3 − 10CEB +

∥∥∥→x ∥∥∥2
CEB + 9AEB − 70 G

Ms
J s∥∥∥→x ∥∥∥2

}
→
x
→
x

T

≡ 2EEB→x
→
x

T
= EEB→x

→
x

T
+

→
x
→
x

T
EEB.

Please note that EEB is a diagonal matrix. Now, let us derive ∑3
n=1 un,12

x . For n = 1, 2, 3
and m = 1, 2, 3,

∂BEB
nn

∂xm
= êT

mDEB→x , (A20)

∂DEB

∂xm
=

15
2

G
Ms

1

∥ →
x ∥4

J sxm − 2
→
x

T
J s

→
x

∥ →
x ∥2

xm +
→
e

T
mJ s

→
x

. (A21)

Taking the partial derivatives of ∂
→
v

EB
1n /∂

→
x with respect to the mth element xm of

→
x

and substituting Equations (A20) and (A21) into the results yields

∂

∂xm

∂
→
v

EB
1n

∂
→
x

 = FEB
n xm + GEB

n êmêT
n +

(
FEB

t2

)
mm

x̂êT
n xm (A22)

where

FEB
n = 3

µs∥∥∥→x ∥∥∥9

 63∥∥∥→x ∥∥∥2 BEB
nn I3 − 7DEB +

15
2

G
Ms

1∥∥∥→x ∥∥∥2

J s −
→
x

T
J s

→
x∥∥∥→x ∥∥∥2


→

x êT
n ,

GEB
n = 3

µs∥∥∥→x ∥∥∥7

DEB − 7∥∥∥→x ∥∥∥2 BEB
nn I3

,

FEB
t2 = 3

µs∥∥∥→x ∥∥∥9

15
2

G
Ms

J s∥∥∥→x ∥∥∥2 − 7DEB

.

Employing Equation (A22) into Equation (A6) leads to

un,12
x

T
= FEB

n ên
→
x

T
+ x̂êT

n
→
v 2n

(
FEB

t2
→
x
)T

+ GEB
n .

Therefore, ∑3
n=1 un,12

x can be organized as

3

∑
n=1

un,12
x =

3

∑
n=1

FEB
n ên

→
x

T
+

3

∑
n=1

x̂
(

FEB
t2

→
x
)T

+
3

∑
n=1

GEB
n

= FEB→x
→
x

T
+

→
x
→
x

T
FEB + GEB
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where

FEB =
9
2

µs∥∥∥→x ∥∥∥10

 21∥∥∥→x ∥∥∥2 tr
[
BEB

]
I3 − 14DEB +

15
2

G
Ms

1∥∥∥→x ∥∥∥2

2J s −
→
x

T
J s

→
x∥∥∥→x ∥∥∥2 I3


.

Appendix B.3. Proof of Example 3 (Triaxial Ellipsoidal Model)

In Equation (3), the first term constitutes a diagonal matrix, and the second term is

presented in the λn
→
v n

→
v

T
n form of Equation (11). Thus, VTE

xx can be rewritten as

VTE
xx =

4

∑
n=1

λTE
n

→
v

TE
n

→
v

TE
n

T

where

λTE
n =

{
3µs

4

∫ ∞
u′ (ϕxx)nn

du
∆(u) , n = 1, 2, 3

ψ n = 4
, (A23)

→
v

TE
n =

{
ên, n = 1, 2, 3
→
ϕ
′
x n = 4

. (A24)

Substituting Equations (A23) and (A24) into Equations (5) and (8) provides UTE and

J→
τ

TE
. Let us yield du′/d

→
x in order to obtain the partial derivatives of Equation (9) with

respect to
→
x . By differentiating both sides of Equation (4) with respect to

→
x , we obtain

2∥∥∥∥→ϕ′
x

∥∥∥∥2

→
ϕ
′
x =

du′

d
→
x

. (A25)

For n = 1, · · · , 4, using the Leibniz integral rule gives Equation (A25) and dλTE
n /d

→
x :

∂λTE
n

∂
→
x

= −ψϕ′
xx

→
ϕ
′
x,

∂λTE
4

∂
→
x

= −ψ
(
tr
[
ϕ′

xx
]
I3 + 2ϕ′

xx
)∥∥∥∥→ϕ′

x

∥∥∥∥−2 →
ϕ′

x.

Hence, the partial derivatives of Equations (A23) and (A24) are written as

∂λTE
n

∂
→
x

=


−ψϕ′xx

→
ϕ
′
x, n = 1, 2, 3

−ψ(tr[ϕ′
xx]I3 + 2ϕ′

xx)

∥∥∥∥→ϕ′
x

∥∥∥∥−2 →
ϕ′x, n = 4

, (A26)

∂
→
v

TE
n

∂
→
x

=

{
O3, n = 1, 2, 3
ϕ′

xx, n = 4
. (A27)

Substituting Equations (A26) and (A27) into the definition of ΛTE
n provides ΛTE

n
→
v

TE
n

and ΛTE
4

→
v

TE
4 for n = 1, 2, 3, expressed as

ΛTE
n

→
v

TE
n = −1

2
ψϕ′

xx
→
ϕ
′
x êT

n ên = −1
2

ψϕ′
xx

→
ϕ
′
x, (A28)

ΛTE
4

→
v

TE
4 = −1

2
ψtr
[
ϕ′

xx
]→
ϕ
′
x. (A29)
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Similarly, ΛTE
n RJ RT→

v
TE
n and ΛTE

4 RJ RT→
v

TE
4 can be written as

ΛTE
n RJ RT→

v
TE
n = −1

2
ψ
(

RJ RT
)

nn
ϕ′

xx
→
ϕ
′
x, (A30)

ΛTE
4 RJ RT→

v
TE
4 =

ψ

2

{
2ϕ′

xx

(
I3 − ϕ̂′

xϕ̂′
x

T
)
− tr

[
ϕ′

xx
]
ϕ̂′

xϕ̂′
x

T
}

RJ RT→
ϕ
′
x ≡ ATE. (A31)

Substituting Equations (A26)–(A31) into Equation (6) provides (26). Now, we can
rephrase Equation (7) as

UTE
xx = MVTE

xx +
∂
→
v

TE
4

∂
→
x

(
tr[J ]

2
− RJ RT

)
ΛTE

4
T
+

tr[J ]

2

4

∑
n=1

un,T
x1 −

4

∑
n=1

un,T
x2 (A32)

where, for n = 1, 2, 3,

∂
→
v

TE
n

∂
→
x

ΛTE
n

T
= O3,

∂
→
v

TE
n

∂
→
x

RJ RTΛTE
n

T
= O3.

Utilization of Equations (A26) and (A27) offers the following:

∂
→
v

TE
4

∂
→
x

ΛTE
4

T = ϕ′
xx

{
ψ
(
I3 − ϕ̂′

xϕ̂′
x

T
)

ϕ′
xx −

1
2

ψtr
[
ϕ′

xx
]
ϕ̂′

xϕ̂′
x

T
}

≡ BTE,

∂
→
v

TE
4

∂
→
x

RJ RTΛTE
4

T
= RJ RTBTE.

Therefore, Equation (A32) can be rewritten as

UTE
xx = MVTE

xx +

(
tr[J ]

2
− RJ RT

)
BTE +

tr[J ]

2

4

∑
n=1

un,T
x1 −

4

∑
n=1

un,T
x2 . (A33)

For the derivation of the second and third terms of Equation (A33), let us calculate the
partial derivatives of ΛTE

n with respect to element xi of the position, for n = 1, 2, 3, 4 and
i = 1, 2, 3:

∂ΛTE
n

∂xi
= −1

2
∂λTE

n
∂xi

ϕ′
xx

→
ϕ
′
x êT

n − 1
2

ψϕ′2
xx êiêT

n , (A34)

∂ΛTE
4

∂xi
=

3
2

∂λTE
4

∂xi
ϕ′

xx +
1
2

∂2λTE
4

∂xi∂
→
x

→
ϕ
′
x

T
=

1
2

∂λTE
4

∂xi

(
3ϕ′

xx −
→
C

TE

1
→
ϕ
′
x

T
)
+

1
2

→
C

TE

2
→
ϕ
′
x êT

i (A35)

where
∂2λTE

4

∂xi∂
→
x

= −
∂λTE

4
∂xi

→
C

TE

1 +
→
C

TE

2 êi.

Substituting Equations (A34) and (A35) into un,T
x1 provides

un,T
x1 = −1

2
ϕ′

xx
→
ϕ
′
x

(
∂λTE

4

∂
→
x

)T

− 1
2

ψϕ′2
xx,

u4,T
x1 =

1
2

(
3ϕ′

xx −
→
C

TE

1
→
ϕ
′
x

T
)

→
ϕ
′
x

(
∂λTE

4

∂
→
x

)T

+
1
2

→
C

TE

2
→
ϕ
′
x
→
ϕ
′
x

T
.
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Thus, the second term of Equation (A33) can be rewritten as follows:

uTE
x1 ≡ ∑4

n=1 un,T
x1

= 1
2 ψ(tr[ϕ′

xx]I3 + 2ϕ′
xx)(tr[ϕ

′
xx]I3 + 3ϕ′

xx)ϕ̂′xϕ̂′Tx − 1
2 ψϕ′2

xx.
(A36)

Like the second term, the third terms is organized as

uTE
x2 ≡ ∑4

n=1 un,T
x2

= 1
2 ψ(tr[ϕ′xx]I3 + 2ϕ′xx)

(
tr[ϕ′

xx]RJ RT + tr[J ]ϕ′
xx
)
ϕ̂′xϕ̂′Tx − 1

2 ψtr[J ]ϕ′2
xx

(A37)

where
un,T

x2 = êT
n RJ RT ênun,T

x1 ,

u4,T
x2 =

1
2

(
3ϕ′

xx −
→
C

TE

1
→
ϕ
′
x

T
)

RJ RT→
ϕ
′
x

(
∂λTE

4

∂
→
x

)T

+
1
2

→
C

TE

2
→
ϕ
′
x
→
ϕ
′
x

T
RJ RT .

Finally, substituting Equations (A36) and (A37) into Equation (A33) gives Equation (27).

Appendix C. Direct Integration Model

Let ρs ∈ R+ represent the density of a given polyhedral shape model and n̂ f denote
the normal vector of face f directed outward from the polyhedron. For each edge e of the
polyhedron, we can index the two endpoints as 1 and 2. Here, re

i represents the distance

of the endpoint i (i = 1, 2) from the origin,
→
x

e
i means the vector from the endpoint 1 to

endpoint 2, and le denotes the length of edge e. Likewise, the vertices of each face f can be

numbered from 1 to 3, and
→
x

f
i represents the position of the ith vertex of face f from the

center of the polyhedron where i = 1, 2, 3.

The potential VDI ∈ R, its associated gradient
→
V

DI

x ∈ R3, and the Hessian matrix
VDI

xx ∈ R3×3 are displayed as [31]

VDI =
1
2

Gsρs

{
∑

e∈edges

(
→
x

T
e Ee

→
x e

)
Le − ∑

f∈ f aces

(
→
x

T
f F f

→
x f

)
ω f

}
,

→
V

DI

x = Gsρs

{
∑

e∈edges

(
Ee

→
x e

)
Le − ∑

f∈ f aces

(
F f

→
x f

)
ω f

}
=

→
f

DI

V ,

VDI
xx = Gsρs

{
∑

e∈edges
EeLe − ∑

f∈ f aces
F f ω f

}
where, for i, j, k ∈ {1, 2, 3},

→
x e =

→
x

e
1 −

→
x ,

→
x f =

→
x

f
1 −

→
x ,

Ee = n̂ f1 n̂ f1
12

T + n̂ f2 n̂ f2
21

T ,

Le = ln
re

1 + re
2 + le

re
1 + re

2 − le
,

F f = n̂ f n̂T
f ,

ω f =


2arctan

(
D f −run|ω f |

rise|ω f |

)
, x3 > 0

0, x3 = 0

2arctan
(

run|ω f |−D f

−rise|ω f |

)
, x3 < 0

,
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D f =

√(
run
∣∣∣ω f

∣∣∣)2
+

(
rise
∣∣∣ω f

∣∣∣)2
,

run
∣∣∣ω f

∣∣∣
rise
∣∣∣ω f

∣∣∣
 =

[
−sunS3 riseS3
−riseS3 sunS3

][
−sunS2 riseS2
−riseS2 sunS2

][
−sunS1
−riseS1

]
,

sunSj =

(
→
x

f
i

T→
x

f
k

)∥∥∥∥→x f
j

∥∥∥∥2
−
(
→
x

f
i

T→
x

f
j

)(
→
x

f
k

T→
x

f
j

)
,

riseSj =
→
x

f
i

T(→
x

f
j

×→
x

f
k

)∥∥∥∥→x f
j

∥∥∥∥
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