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Abstract: Silage is the main feed in milk and ruminant meat production in Northern Europe. Novel
drone-based remote sensing technology could be utilized in many phases of silage production,
but advanced methods of utilizing these data are still developing. Grass swards are harvested three
times in season, and fertilizer is applied similarly three times—once for each harvest when aiming
at maximum yields. Timely information of the yield is thus necessary several times in a season for
making decisions on harvesting time and rate of fertilizer application. Our objective was to develop
and assess a novel machine learning technique for the estimation of canopy height and biomass of
grass swards utilizing multispectral photogrammetric camera data. Variation in the studied crop
stand was generated using six different nitrogen fertilizer levels and four harvesting dates. The sward
was a timothy-meadow fescue mixture dominated by timothy. We extracted various features from
the remote sensing data by combining an ultra-high resolution photogrammetric canopy height
model (CHM) with a pixel size of 1.0 cm and red, green, blue (RGB) and near-infrared range intensity
values and different vegetation indices (VI) extracted from orthophoto mosaics. We compared the
performance of multiple linear regression (MLR) and a Random Forest estimator (RF) with different
combinations of the CHM, RGB and VI features. The best estimation results with both methods
were obtained by combining CHM and VI features and all three feature classes (CHM, RGB and VI
features). Both estimators provided equally accurate results. The Pearson correlation coefficients
(PCC) and Root Mean Square Errors (RMSEs) of the estimations were at best 0.98 and 0.34 t/ha
(12.70%), respectively, for the dry matter yield (DMY) and 0.98 and 1.22 t/ha (11.05%), respectively,
for the fresh yield (FY) estimations. Our assessment of the sensitivity of the method with respect to
different development stages and different amounts of biomass showed that the use of the machine
learning technique that integrated multiple features improved the results in comparison to the simple
linear regressions. These results were extremely promising, showing that the proposed multispectral
photogrammetric approach can provide accurate biomass estimates of grass swards, and could be
developed as a low-cost tool for practical farming applications.
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1. Introduction

Silage is the main feed in ruminant meat and milk production in Northern Europe. In Finland,
23% of the cultivated area is used for silage production, which is approximately 513,500 ha. In the
silage production, grass swards are harvested three times each season, and fertilizer is applied for
each harvest. Timely information of the yield quality and quantity would be highly valuable for
decision-making on harvesting time and rate of fertilizer application for the next harvest. In grass
yield, the quantity increases rapidly in the spring growth. Simultaneously the quality decreases,
especially in grass digestibility. Harvesting time optimization entails a balance between the highest
possible yield quantity and an adequately high digestibility for feeding.

The grass biomass has a strong correlation with canopy heights [1–3]. Therefore, the grass height
is a fundamental parameter of interest when concerning precision management of grazing and silage
harvesting. Accurate estimates of grass biophysical variables are important for monitoring vegetation
growth and for analysing important physiological parameters during the grass growth cycle [4].
In practical farming—particularly in rotational grazing management—physical measurements of
grass height and biomass estimation are usually done by using devices such as the rising plate
meter, capacitance meter and meter stick [5–7]. However, these in situ physical measurements are
laborious. Furthermore, it can be difficult to characterize the spatial variability due to vegetation
growth characteristics by the physical sample collection, which limits their ability to provide robust
estimates. Several factors cause variation in the grass swards. In particular, swards are composed of
multiple species, each having different growing characteristics and variability in soil conditions and
topography within the field [8].

Remote sensing methods, including digital imaging, photogrammetry, hyperspectral imaging,
laser scanning and various sensor combinations can work as high-performance alternatives to physical
measurement methods. Remote sensing offers a potential for rapid and automatic measurement of
large areas with high spatial resolution. Several studies have investigated the use of remote sensing
techniques to calculate plant heights for estimating crop parameters. Most of those have been using
terrestrial laser scanning [9,10] and mobile laser scanning [8] due to the requirements of high spatial
resolution. However, photogrammetric imaging using unmanned aircraft vehicles (UAV or a drone),
structure from motion (SFM) techniques and dense image matching are becoming a very interesting
tool to collect 3D information of objects due their low cost, efficiency and flexibility. These methods
have already been investigated in several studies especially related to grass-to shrub transition zone [3],
crops [11], winter barley [12,13], maize [14] and moss beds [15,16]. Several studies have also utilized
vegetation indices (VI) based on multispectral data [17–20] or hyperspectral data [21–23] to estimate
the biomass and canopy height of crops.

Additionally, some studies have integrated drone-based 3D and spectral data to estimate crop
parameters. Yue et al. [24] combined crop height information and spectral data from the Cubert
UHD185 “Firefly” hyperspectral snapshot sensor (Cubert GmbH, Ulm, Germany) to estimate the
biomass of winter wheat, and Bendig et al. [25] combined drone-based 3D data with ground-measured
spectrometer data for biomass monitoring of barley. Many ground-based combinations of spectral and
3D data have also been utilized [26–28]. However, only a few studies have integrated drone-based
3D and spectral data for the estimation of grass quality and quantity. Bareth et al. [29] studied the
possibility to utilize drone-based canopy height models (CHMs) in the estimation of grass height
and biomass using linear regression. Their results showed that the photogrammetric CHM gave
accurate height estimates in the later phases of growth but were not accurate at the beginning of the
growth when the canopy was still sparse. The VIs had the opposite performance; they provided good
estimates in the early phases of growth but saturated at the later stages of growth with increasing
plant height, which is also a known behaviour from earlier studies [30,31]. Based on these findings,
Bareth et al. [29] developed a Grassland Index (GrassI) which combines the advantages of the CHM
and VIs based on RGB to provide accurate estimates for the entire growth season. Possoch et al. [32]
utilized a low-cost RGB drone system to calculate the CHM and RGB VIs for estimating biomass for
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grassland. Their results indicated that the photogrammetric CHM gave the best results for the dry
matter yield (DMY) when using linear regression models.

CHMs for the biomass estimation can be created in different ways [1,2]. Pittman et al. [8]
recommended measuring the digital terrain model (DTM) and digital surface model (DSM) using
remote sensing technologies, such as ultrasonic or laser scanner. They studied the estimation of the
biomass and canopy height of bermudagrass, alfalfa and the mix (which contained a mixture of both
bermudagrass and alfalfa) using a ground-based mobile platform—a golf cart with ultrasonic, laser
and spectral sensors. Their comparison of the performance of single-sensor and a combination of three
sensors indicated that the use of multisensory systems improved the biomass estimation accuracy
of grasslands.

Several studies have evaluated different regression techniques for biomass estimation.
Marabel et al. [33] investigated biomass estimation of grasslands using field spectrometer data.
They evaluated performance of the support vector machine (SVM) and Partial Least Squares Regression
(PLSR). The most accurate model to predict the total biomass was obtained using the PLSR and spectral
bands between 916–1120 nm and 1079–1297 nm. Yue et al. [34] compared eight different regression
techniques for winter wheat biomass using near-surface spectroscopy. The results of the study showed
that PLSR and multivariable linear regression were most suitable when high-accuracy and stable
estimates are required from relatively few samples. In addition, Random Forest (RF) introduced by
Breiman et al. [35] is highly robust against noise and is best suited to deal with repeated observations
involving remote-sensing data that are usually affected by atmosphere, clouds, observation times
and sensor noise [34]. Additionally, RF’s advantages over other methods, such as multiple linear
regression (MLR) and Artificial Neural Network (ANN), are high prediction accuracy, feature selection
is unnecessary and it is less sensitive to overfitting [36–38]. RF has shown competitive accuracy
compared to other methods estimating the biomass of forests [39–41] and agriculture [14,42,43].
The majority of biomass estimation studies have utilized other estimators such as linear models
and nearest neighbour approaches [3,41]. Most of the drone-based biomass estimation studies have
been carried out using linear models based on only a few features [18,23,25,28]. An RF was used
by Liu et al. [43] to estimate the level of rice seeds, by Li et al. [14] to estimate the biomass of maize,
and by Turner et al. [16] to predict Antarctic moss health. However, no studies have performed an RF
to determine the biomass of grasslands.

Our objective was to develop and assess a machine learning technique for the estimation of
canopy height and biomass of grass swards based on a drone-based multispectral photogrammetric
approach. In particular, our objective was to study the potential of ultra-high resolution canopy height
models (CHMs) and vegetation indices (VIs) extracted from red, green and blue (RGB) and colour
infrared (CIR) images. To generate high variation information to study swards, the Natural Resources
Institute of Finland (LUKE) established in the Jokioinen test site an experiment using six different
nitrogen fertilizer application rates and four harvesting dates. We first evaluated the feasibility of
CHMs and VIs separately in the height and biomass estimation by using a simple linear regression
technique. We then evaluated the performance of the combination of various height features and VIs
in grass quantity estimation using machine learning techniques based on MLR and RF.

2. Materials and Methods

2.1. Study Area and Reference Measurements

The experiment was conducted at the LUKE research farm, which is located in the municipality
of Jokioinen in southwest Finland (approximately 60◦48′ N, 23◦30′ E) (Figure 1). The experiment
was established on a second-year silage production field. The grass sward was established in 2015
in spring barley as a companion crop with a timothy/meadow fescue (Phleum pratense and Festuca
pratensis) seed mixture at a 25 kg ha−1 sowing rate (65% timothy and 35% meadow fescue on a weight
basis). The row width was 12.5 cm. In 2016, the field was managed as a silage production sward.
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A uniform and even site of the field was selected for the experiment. The soil type at the test site
was clay, and the soil fertility values were as follows: pH 6.2, 377 mg K L−1 soil, 6.6 mg P L−1 soil,
1101 mg Mg L−1 soil, and 2580 mg Ca L−1 soil. The size of the experimental area was approximately
50 m by 20 m. The experimental setup was a split plot design with four replicates. The fertilizer
treatment was in the 24 main plots (plot size 12 m × 3 m), and the harvesting time was in the sub-plot.
The experiment had a total of 96 plots. Four replicates, 6 nitrogen fertilizer levels (0 kg/ha, 50 kg/ha,
75 kg/ha, 100 kg/ha, 125 kg/ha and 150 kg/ha), and four harvesting/measuring dates (6 June, 15 June,
19 June and 28 June) were used in the primary growth. The fertilizer application was carried out on
10 May 2017 by an experimental surface fertilizer broadcaster (tailor-made model) with a working
width of 1.5 m. To maintain the sward free of weeds, a control spraying by Starane XL herbicide
(active ingredients: 100 g L−1 fluroxypyr + 2.5 g L−1 florasulam) at the rate of 1.5 L ha−1 was carried
out on 24 May by the farm scale sprayer Hardi twin stream 363 MA 1200 EEEC/5 15 HAL with a
12 m spraying boom (HARDI INTERNATIONAL A/S, Norre Alslev, Denmark). The borders between
the main plots (fertilizer treatments) were regularly cut by a lawn mower to make the harvesting
easy. The net size of the harvested and drone-measured plot was 1.5 m by approximately 2.6 m.
After the harvest, the actual length of each harvested plot was measured, and the hectare yield was
adjusted accordingly.
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Figure 1. Orthophoto mosaic from the Jokioinen test site from 15 June. In the first replicate (the leftmost
column), the fertilizer rates were from 0 to 150 kg/ha (indicated with N0 to N150) in order from top
to bottom in this photo. Nitrogen fertilizer application rates were randomized in Replicates 1–4 (in
Columns 2–4) as well as the location of the harvesting date for reference harvests.

Harvesting was carried out by a Haldrup forage plot harvester (Model GR, HALDRUP GmbH,
Ilshofen, Germany). The width of the cutting bar was 1.5 m. The stubble height was from 6 cm to 7 cm.
The primary growth was harvested on four dates in June: 6 June was at the very early developmental
stage for silage harvesting; 15 June was just prior and 19 June was very close to the targeted silage
production developmental stage, and heading was just starting in the swards; and 28 June was clearly
after the desired silage harvesting stage. The fresh yield (FY) was measured by the Haldrup forage
plot harvester. However, on the first harvest date, due to operation failure in Haldrup scale, the plot
yield was collected and measured by weight indoors. A sample was taken from each plot for dry
matter yield (DMY) and quality analyses. On the first harvest date, the whole harvest was taken,
and, on the later harvest dates, a 1 kg FY sample was taken from the harvest. The samples were
chopped into 3–4 cm long pieces by a Wintersteiger (Model Hege 44, Wintersteiger AG, Ried, Austria)
sample chopper, and the DMY was determined after 17 h drying at 100 ◦C in forced air drying ovens.
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On the day before each harvest, the reference canopy heights (Href) were measured with a height stick
and with a height plate on the first date.

Idea of the experimental setup was to generate great variation of DMY, FY and nitrogen amount
in the study sward. General guidelines for nitrogen fertilizer application rate is 100 kg/ha for the
primary growth in clay soil for commercial grass silage production, and harvesting is targeted at a
D-value (organic matter digestibility in dry matter) of around 690 g kg−1 which occurred on this field
in Jokioinen around 19 June in 2017.

The start of the growing season was late in 2017 (5 May), and the early summer was cool. The mean
monthly temperature was 8.9 ◦C in May and 12.9 ◦C in June 2017, while long-term averages (1980–2010)
are 9.8 ◦C and 14.0 ◦C, respectively. The rainfall figures were 13 mm and 101 mm in May and June
2017, and 40 mm and 63 mm as long-term averages (1980–2010), respectively. The development
of grass sward in the primary growth in Finland depends on the accumulated temperature sum.
The accumulated effective temperature (above + 5 ◦C) on the harvest dates were the following. 6 June:
160 (long-term average for the date (LTA): 224); 15 June: 241 (LTA: 300); 19 June: 289 (LTA: 336);
and 28 June: 347 (LTA: 425).

The sward with zero nitrogen application was sparse and weak particularly on the first observation
dates. The highest nitrogen application rates—125 and 150 kg ha−1—produced a dense sward in
mid-June which was susceptible to lodging, and this affected the growth of the stand. In addition,
the highest nitrogen application rates seemed to increase the share of meadow fescue in the sward,
particularly on the latest harvesting dates. Otherwise, the swards were predominantly of timothy.

2.2. Reference Field Data and Biomass Sampling

Devices such as the rising plate meter, capacitance meter, and meter stick are examples of devices
used for physical measurements of vegetation height and biomass estimation [5,6]. We used the height
stick to measure the Href of the grassplots on all the dates (Figure 2a). Three measurements were taken
per plot, and the mean value of the three measurements was used. Height stick measurements were
carried out according to Finnish guidelines for producing an estimate of biomass for a grass sward
parcel [44]. In that method, for each measurement a cluster of grass tillers and leaves is straightened
up and the average height of that cluster is measured with a height stick. In this method, individual
tillers that are higher than average are ignored in the measurement.
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2.3. Remote Sensing Data Acquisition 

Figure 2. In situ measurements of grass height by: (a) height stick; and (b) plate meter.

We compared the plate meter and the height stick methods in the first dataset. We made five
measurements in each fertilization level plots (12 m × 1.5 m) with the plate meter and calculated
average height for each plot. The plate meter’s bottom stick is placed on ground level but without
penetrating the ground, and the plate part free falls down to the sward. While the plate part is going
down, it compresses the sward down a few centimetres (Figure 2b). The plate meter works well when
the sward is dense and has a height of around 20–30 cm. On the other hand, the plate meter struggles
to work when the sward is high and has no flat top structure or when the grass sward is sparse and its
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growth is poor and non-uniform. In this study, sward heights were 60–70 cm during the last harvesting
dates, and the plots without nitrogen input were sparse and had low height, which was not ideal
for the plate meter. Additionally, previous studies have received worse correlations with biomass
estimation with a plate meter than the height stick [8]. The comparisons showed that the height stick
provided slightly higher height values than the plate meter; the average difference was 1.46 cm and
the RMSE was 1.82 cm.

2.3. Remote Sensing Data Acquisition

The Finnish Geospatial Research Institute’s (FGI’s) drone, a remotely piloted aircraft system
(RPAS), was utilized for collecting the remote sensing datasets. The frame of the FGI drone was the
Gryphon Dynamics quadcopter with detachable arms, and it was equipped with Pixhawk autopilot
(Computer Vision and Geometry Lab, Zurich, Switzerland) with ArduPilot APM Copter (Version 3.4,
Open-source, Raleigh, NC, USA) firmware [45]. Endurance of the drone is approximately 25 min with
a maximum payload of 2.5 kg. The drone was equipped with a positioning system consisting of an
NV08C-CSM L1 Global Navigation Satellite System (GNSS) receiver (NVS Navigation Technologies
Ltd., Montlingen, Switzerland), a Vectornav VN-200 IMU (VectorNav Technologies, Dallas, TX, USA)
and a Raspberry Pi single-board computer (Raspberry Pi Foundation, Cambridge, United Kingdom).
The drone was carrying an RGB digital camera, a Sony A7R (Sony Corporation, Minato, Tokyo, Japan)
equipped with a Sony FE 35 mm f/2.8 ZA Carl Zeiss Sonnar T* lens (Sony Corporation, Minato,
Tokyo, Japan). Sony A7R has a 35.90 mm by 24.00 mm complementary metal-oxide semiconductor
(CMOS) sensor with 36.4 megapixels. The size of raw images is 7360 pixels × 4910 pixels. The camera
is triggered to capture images in two-second intervals, and a GNSS receiver is used to record the
exact time of each triggering pulse. Furthermore, we calculated Post Processed Kinematic (PPK)
GNSS positions for each camera using National Land Survey of Finland (NLS) RINEX service, which
offers observation data from FinnRef stations [46], in RTKlib (RTKlib version 2.4.2, Open-source,
Raleigh, NC, USA) software rtkpost tool [47]. A hyperspectral camera based on a tuneable Fabry
Pérot interferometer (FPI) operating in the visible to near-infrared spectral range (500–900 nm) (VTT
Technical Research Centre of Finland Ltd, Espoo, Finland) [22] was used to collect the spectral data
cubes for each flight. The FPI camera is a lightweight, frame format hyperspectral imager operating in
the time-sequential principle collecting spectral bands with 648 by 1024 pixels. In this study, we used
it in a multispectral mode to provide multispectral bands in red (central wavelength L0 = 669.0 nm;
full width at half maximum (FWHM) of 27.0 nm) and the near infrared (NIR; L0 = 804.1 nm, FWHM:
28.3 nm) spectral range.

The flight parameters and conditions are introduced in Table 1. We used flying heights of 30 m
and 50 m and a flying speed of 2 m/s. The ground sampling distances (GSD) were 3.9 mm and 6.4 mm
for the RGB images and 30 mm and 50 mm for the FPI images with the flying heights of 30 m and 50 m,
respectively. These settings resulted in 84–87% and 65–81% forward and side overlaps, respectively,
for the RGB and FPI images, which are suitable for the photogrammetric processing of these scenes.
In the resulting photogrammetric blocks, the area of interest was captured in the block J2_F1 in more
than six images and in other blocks in more than nine images. The reason for the lower numbers of
overlapping images in the block J2_F1 was triggering problems of the RGB-camera, however, as the
overlaps were appropriate, we decided to use this data.

Five permanent ground reference points were targeted in the corners and centre of the block to
be used as the ground control points (GCPs) and checkpoints (CP). The targets were black-painted
plywood boards of size 0.5 m by 0.5 m with a white painted circle with a diameter of 0.3 m and they
were mounted on wooden pillars. The reference points were measured with the Trimble R10 RTK
DGNSS (Trimble Inc., Sunnyvale, CA, USA) with an accuracy within 0.03 m horizontally and 0.04 m
vertically [48,49]. Additionally, three reflectance panels with nominal reflectance of 0.03, 0.09 and 0.50
were installed in the area to enable transformation of the image digital number values to reflectance.
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Table 1. Datasets with their collection date, time, cloud conditions, sun azimuth, and solar elevation.
GNSS: global navigation satellite system; FH: flight height.

Dataset Date Time (GNSS) Cloud Conditions Sun Azimuth (◦) Solar Elevation (◦) FH (m)

J1_F1 6 June 11:49 to 11:59 Varying 212.51 48.80 50
J1_F2 6 June 11:59 to 12:08 Varying 215.83 48.12 30
J2_F1 15 June 08:59 to 09:14 Sunny 150.21 49.96 30
J3_F1 19 June 9:09 to 09:26 Varying 153.34 50.58 50
J4_F1 28 June 07:13 to 07:29 Sunny 117.47 40.45 50

2.4. Remote Sensing Data Processing

Agisoft Photoscan Professional (version 1.3.4, Agisoft, St. Petersburg, Russia) software was used
for the photogrammetric processing [50]. We followed similar processing workflow in Photoscan
as introduced in previous studies by several authors [3,51–53]. In the first stage, Photoscan uses
SFM to determine the interior (IOP) and exterior orientation parameters (EOP) for each image and
to calculate a sparse point cloud. We used the self-calibrating option and included the focal length,
principal point coordinates, and radial and tangential lens distortions. In the orientation processing,
the high quality setting was selected with 40,000 key points and 4000 tie points per image. In addition,
we used PPK processed GNSS coordinates, for each image to preselect image pairs for the orientation
process. The reference points (GCPs) were measured on the images manually; each of the GCPs
were measured in ten or more images. We used the accuracy settings of ±0.005 m for the GCPs and
±5 m for the camera positions coordinates of the images. All IOPs, EOPs and point coordinates
were optimized using “optimize camera alignment” tool in Photoscan [54]. After the optimization,
an automatic outlier removal was performed using the gradual selection tools of the software based
on the re-projection error and reconstruction uncertainty. Additionally, some points were manually
removed from the sparse point cloud, particularly points underground and up in the air. Overall,
approximately 10% of the worst points were removed during the gradual selection and manual point
removing for each dataset. Then the final optimization of the sparse point cloud, IOPs and EOPs was
carried out. Next, dense point cloud generation was carried out using the high quality parameter and
mild depth filtering. According to our testings and previous studies [3,51–53], these parameters are
suitable for flat areas such as grass fields to provide accurate results. The coordinate system in the
processing was the ETRS89-TM35FIN.

Even though all datasets were processed using the same parameters in Photoscan, small
differences in the flying height and overlaps between images resulted in slightly different processing
results (Table 2). In particular, the lower flying height resulted in a smaller GSD and a higher point
density. Additionally, the re-projection errors were smaller for the 30 m flights (0.534–0.589) than for
the 50 m flights (0.783–1.25). Root Mean Square Errors (RMSEs) of block adjustments were calculated
using a leave-one-out cross-validation (LOOCV) method. The LOOCV was carried out by performing
the block adjustment five times by using four reference points as GCPs and one reference point as
an independent CP. The error between the adjusted coordinate and the reference coordinate of the
CP was calculated in each adjustment and finally the LOOCV RMSE was calculated using errors
of each CP [55]. The RMSEs were 0.5–2.4 cm in the X- and Y-coordinates, and 1.0–4.8 cm in height.
These results indicated that the block adjustments were of good accuracy and the blocks were not
deformed. The flights from a 30 m flying height provided slightly better 3D RMSE (2.7–2.9 cm) than
the 50 m flying height (2.8–5.0 cm).
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Table 2. Dataset parameters: Date, FH (Flight Height), N Images (Number of Images), re-projection
error, point density, and RMSE (Root Mean Square Error) of X, Y and Z coordinates and 3D.

Dataset Date
FH N Re-Projection Point Density RMSE (cm)

(m) Images Error (pix) Points/m2 X Y Z 3D

J1_F1 6 June 50 156 0.783 5920 1.1 0.6 4.8 5.0
J1_F2 6 June 30 171 0.534 14,600 1.0 1.1 2.5 2.9
J2_F1 15 June 30 174 0.589 17,100 0.5 0.7 2.6 2.7
J3_F1 19 June 50 320 1.12 5860 1.0 2.4 1.0 2.8
J4_F1 28 June 50 350 1.25 5230 0.6 0.9 3.7 3.9

The RGB orthomosaics were calculated with a GSD of 1.0 cm in the Photoscan using the
orthomosaic blending mode. The orthomosaics of the FPI red and NIR bands were calculated with a
GSD of 5 cm using FGI in-house C++ software [22]. In this case, the orthomosaics were created using
the most nadir image parts, and no blending was performed. The orthomosaic DNs were normalized
to reflectance values using the empirical line method [56] using the three reflectance panels. We used
exponential function for the RGB dataset and linear function for the FPI dataset.

We used both automatic and manual approaches to create the DTM in the Photoscan. The DTMauto

was generated using Photoscan’s automatic ground point classification procedure. In this procedure,
the dense cloud was first divided into cells of a certain size, and the lowest point of each cell was
detected. The first approximation of the DTM was calculated using these points. After that, all points
of the dense cloud were checked, and a new point was added to the ground class if the point was
within a selected distance from the terrain model and if the angle between approximation of the
DTM and the line to connect the new point on it were less than the selected angle [3,52,54]. Based
on our preliminary testing we selected starting parameters for automatic classification of ground
points and iteratively selected the most suitable parameters for the ecosystem of this study by visually
comparing the classification results to the RGB orthomosaics. For all the datasets, a cell size of 3 m,
a maximum angle of 0.5 degree and a maximum distance of 2.0 cm were selected. These parameters are
slightly different from the parameters selected by other authors in different ecosystems, for example,
Cunliffe et al. [3] used for grass-dominated-shrubs ecosystems the cell-size of 3 m, maximum angle of
3◦ and maximum distance of 5.0 cm, and Méndez-Barroso et al. [57] used for classifying ground points
in medium density forest sites the cell-size of 10 m, maximum angle of 3◦ and maximum distance of
10 cm. The DTMmanual was generated using Photoscan’s free-form-selection tool to manually select
and classify ground points. The classified ground points were used to interpolate DTM for the whole
area. The DSM, DTMmanual and DTMauto were exported as TIFF images with a 1.0 cm resolution.
Finally, we calculated the CHM for both DTMmanual and DTMauto by subtracting DTM from DSM for
each dataset, using QGIS (version 2.18.14, Open-source, Raleigh, NC, USA) software.

2.5. Feature Extraction from the Remote Sensing Datasets

2.5.1. Height Features

We created shapefiles for each plot using a margin of 0.25 m to the plot border to exclude possible
border effects. Then, using the CHM and the border shapefile, we calculated the height features,
including average height (Hmean), median height (Hmedian), minimum height (Hmin), maximum height
(Hmax), height standard deviation (Hstd), height 50% percentile (Hp50), height 70% percentile (Hp70),
height 80% percentile (Hp80) and height 90% percentile (Hp90) (Table 3), for each plot using Matlab
(version 2016b, MathWorks, Natick, MA, USA) software.
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Table 3. Definitions and formulas of CHM metrics in this study. hi is the height of the ith height value,
N is the total number of height values in the plot, Z is the value from the standard normal distribution
for the desired percentile (1.282, the 90th percentile) and σ is the standard deviation of the variable.

Index Name Equation

Mean height Hmean
1
N (

N
∑

i=1
hi)

Median height Hmedian median(hi), 1 ≤ i ≤ N

Minimum height Hmin min(hi), 1 ≤ i ≤ N

Maximum height Hmax max(hi), 1 ≤ i ≤ N

Standard deviation height Hstd

√
N
∑

i=1
(hi− 1

N

N
∑

i=1
hi)2

N−1

90th percentile Hp90
1
N

N
∑

i=1
hi + Zσ

2.5.2. Vegetation Indices

We calculated the VIs from the orthomosaics (and, in some cases, also utilizing the CHM) using
QGIS (version 2.18.14, Open-source, Raleigh, NC, USA) software. The polygonal shapefile of each plot
was used to extract digital numbers (DN) from the red, green, blue and NIR bands and the CHM. Then
mean values for each plot were calculated by “zonal statistics” implementation in QGIS. The mean
values were used as input values in the VI equations shown in Table 4.

We also introduced a new VI for grass fields, the ExG + CHM. The idea of the index is similar to the
GrassI-Index, which aims to compensate for the weaknesses of CHM and VIs at different growth stages
of the grass [29]. The difference is that we used the ExG, while the GrassI is based on the RGBVI [25].
The ExG was introduced by Woebbecke et al. [58], and it is commonly used for vegetation greenness
identification. It has been widely used in different studies, such as maize biomass estimation [14] and
vegetation fraction mapping for wheat [59].

Table 4. Vegetation index (VI) abbreviation, name, formula and reference. * g = G/(R + G + B),
r = R/(R + G + B).

VI Name Equation Reference

GRVI Green Red Vegetation Index RG−RR
RG+RR

Tucker [60]

MGRVI Modified Green Red Vegetation Index (RG)
2−(RR)

2

(RG)
2+(RR)

2 Bendig et al. [13]

RGBVI Red Green Blue Vegetation Index (RG)
2−(RB×RR)

(RG)
2+(RB×RR)

Bendig et al. [25]

ExG Excess Green Index 2× g× r− b Woebbecke et al. [58]

ExR Excess Red Index 1.4× r− b Meyer et al. [61]

ExGR Excess GreenRed Index ExG− ExR Neto [62]

GrassI Grassland Index RGBVI + CHM Bareth et al. [29]

ExG + CHM Excess Green combined with CHM ExG + CHM Introduced here

NDVI Normalized Difference Vegetation Index R800−R670
R800+R670

Rouse et al. [63]

RVI Ratio Vegetation Index R800
R670

Pearson & Miller [64]

MSAVI Modified Soil Adjusted Vegetation Index (2×R800+1−
√

2×R800+1)2−8×(R800−R670)
2

Qi et al. [65]

OSAVI Optimization of Soil Adjusted Vegetation Index 1.16×(R800−R670)
R800+R670+0.16 Rondeaux et al. [66]
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2.6. Estimation Techniques

Estimation and validation were done using Weka software (version 3.8.1, University of Waikato,
Hamilton, New Zealand). Multiple linear regression (MLR) and Random Forest (RF) were used as
estimators. The validation of the estimators’ performance was done using the LOOCV. In this case,
the LOOCV was implemented so that one of the reference measurements was used as an independent
reference measurement, and the estimator was trained with other reference measurements. The training
and error calculation was repeated for each reference measurement and, afterwards, the statistics
were calculated.

The MLR is a regression technique which models the relationship between two or more
independent variables (which can be continuous or categorical) and a response variable by fitting a
linear equation to observed data. The regression equation is used to calculate the parameters by using
the least squares method, in which the sum of the squared errors is minimized. The model selection was
performed using backward elimination, where the attribute with the smallest standardized coefficient
was removed until no improvements were observed in the Akaike information criterion [67]. In Weka,
this attribute selection method is called “M5”.

RF regression, introduced by Breiman [35], is a data analysis and statistical method that is widely
used in machine learning and remote sensing research [37]. It is an ensemble learning method for
classification, regression and other tasks, which operates by constructing a multitude of decision
trees at training time and outputting the class that is the mode of the classes (classification) or the
mean prediction (regression) of the individual trees. RF has high accuracy, good tolerance to outliers,
and parameter selection. Furthermore, feature selection is unnecessary, and calculations include
measures of the feature in the order of importance. This makes use of the full spectral information and
combination of multiple variables such as CHM and spectral information. The default parameters of
Weka implementations were used, except the number of decision trees to be generated was set to 500,
as suggested by Belgiu and Drăguţ [37], instead of default number of 100.

We created seven different feature combinations for the MLR and RF to demonstrate different
sensor setups: (1) R, G and B intensity values (RGB); (2) VI features (VI); (3) CHM features (3D);
(4) VI and CHM features (VI + 3D); (5) VI and RGB features (VI + RGB); (6) CHM and RGB features
(3D + RGB); and (7) VI, RGB and CHM features (VI + RGB + 3D). The new ExG + CHM index and the
GrassI were included in Groups 4 and 7, which included both the VI and 3D features.

2.7. Precision Evaluation

The estimation accuracy was quantified using Pearson’s Correlation Coefficients (PCC),
Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) (Table 5).
The prediction RMSEs were calculated using the LOOCV method.

Table 5. Definitions and formulas of precision evaluation metrics used in this study. x is the estimated
value, x is the average of x, y is the reference value, y is the average of reference values, and n is the
number of samples.

Index Name Equation

Pearson correlation coefficient PCC

n
∑

i=1
(xi−x)(yi−y)√

n
∑

i=1
(xi−x)2 ∑n

i=1(yi−y)2

Root Mean Square Error RMSE

√
n
∑

i=1
(xi−yi)

2

n

Normalized Root Mean Square Error NRMSE 100%× RMSE
y
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3. Results

3.1. Mosaics and CHMs

The RGB mosaics and the CHMs of each measurement date are presented in Figure 3; the different
fertilizer levels and harvested plots for each date are presented in Figure 1. The different qualities of
the sward could be visually observed in the orthophotos. Generally, the higher the nitrogen fertilizer
level of the plots was, the greener the grass was on all dates. All plots were greenest in the last date
(28 June) and, in the middle of growing season (15 June and 19 June), the grass was overall greener
than in the first date (6 June). On the last date (28 June), all of the plots with nitrogen fertilizer levels
of 125 and 150 kg/ha and half of the plots with a fertilizer level of 100 kg/ha had vigorous stands,
and lodging could be observed (Figure 3g,h). The plots without nitrogen input had less growth on
each date and were still undergrown during the last harvesting. The plots with nitrogen fertilizer
levels of 75 kg/ha and 100 kg/ha appeared visually to have the best quality. The CHMs show that,
as the nitrogen level of the plot increases, the height of the grass increases (Figure 3).
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Figure 3. Orthophotos on left and CHMs (m) on right from different dates: (a,b) 6 June; (c,d) 15 June;
(e,f) 19 June; and (g,h) 28 June.

3.2. Comparison of Manual and Automatic DTM Extraction Methods

We used the manual DTM from the first flight date captured from the flight altitude of 30 m
(J1_F2) as the reference to the manual and automatic DTMs from other dates. The RMSEs were small,
1.05–3.28 cm, excluding the second date’s automatic DTM with the RMSE of 6.80 cm (Table 6). Other
than that different DTM extraction methods resulted in very similar outputs.

Linear regressions of the CHMs based on the manual and automatic DTM to the DMY and FY
and the physical height measurements (Href) indicated that both methods provided good correlations.
However, the manual DTM provided better PCCs of 0.92–0.94 than the automatic DTM that had PCC
of 0.88–0.92 (Table 7). For all datasets, the highest PCC of 0.92–0.94 between the CHM and physical
measurements were obtained using the manual DTM from the first date’s dataset with a 30 m flying
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height. The poorest PCC of 0.83–0.87 were obtained with the DTM from the first date with a 50 m
flying height.

Table 6. Statistics of comparison of manual and semi-automatic DTM from different dates to the
DTM30m_man. DTM30m_man/auto: DTM manually/semi-automatically extracted from the 6 June 30 m
flight; DTM50m_man/auto: DTM manually/semi-automatically extracted from the 6 June 50 m flight;
DTMman: DTM manually extracted from each date’s flight; DTMauto: DTM semi-automatically
extracted from each date’s flight. Mean: mean error; RMSE: Root Mean Square Error; median: median
error; min: minimum error; max: maximum error; std: standard deviation.

Date DTM Mean (cm) RMSE (cm) Median (cm) Min (cm) Max (cm) Std (cm)

6 June DTM30m_auto 0.39 1.05 0.37 −1.87 3.06 0.10
6 June DTM50m_auto 0.76 1.80 0.76 −3.37 4.07 0.16
6 June DTM50m_man −1.08 1.75 −0.95 −4.15 1.49 0.14

15 June DTMauto 6.12 6.80 5.95 −1.15 14.81 0.30
15 June DTMman 1.12 1.70 1.21 −2.10 3.47 0.13
19 June DTMauto 3.01 3.28 2.96 0.48 6.30 0.13
19 June DTMman 2.22 2.48 2.21 −1.01 5.25 0.11
28 June DTMauto −0.30 1.18 −0.30 −2.91 2.98 0.11
28 June DTMman −0.86 1.38 −1.04 −3.37 1.97 0.11

Table 7. Pearson correlation coefficients of the Hp90 and the physical dry and fresh biomass and height
measurements. DTM30m_man: DTM manually extracted from the 6 June 30 m flight; DTM50m_man:
DTM manually extracted from the 6 June 50 m flight; DTMman: DTM manually extracted for each date;
DTMauto: DTM semi-automatically extracted for each date; DMY: dry matter yield; FY: fresh yield; and
Href: reference height measurement.

DTM DMY FY Href

DTM30m_man 0.92 0.92 0.94
DTM50m_man 0.83 0.85 0.87

DTMman 0.92 0.92 0.94
DTMauto 0.88 0.90 0.92

3.3. Regressions Using Individual Features

When combining all the measurement data into a single regression (Figure 4 and Appendix A,
Table A4), the best performing features were the indices integrating spectral and CHM features:
GrassImax for the DMY (PCC: 0.94); ExG + CHM and GrassI VIs for the FY (PCC: 0.93); and GrassI VIs
for the Href (PCC: 0.96). When concerning the VIs without CHM features, the best performing feature
was the MSAVI, giving PCCs of 0.89 for the DMY and 0.92 for the FY; the ExG performed the best for
the Href (PCC: 0.86). Overall, the performance of the VIs utilizing the NIR spectral band were better
than the VIs based only on RGB spectral bands. The features based on the CHMs performed better
overall than the VIs based only on spectral data; the Hp90, Hp80 and Hmax were the best CHM features
with PCCs of 0.91–0.94.

In the following sections, a more detailed analysis of the CHM and VI features is performed with
respect to different measurement dates and nitrogen fertilization levels.
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Figure 4. Pearson Correlation Coefficients (PCC) for individual vegetation index (VI) and canopy
height model (CHM) features from regressions to physical measurements of the dry matter yield
(DMY), fresh yield (FY) and height (Href).

3.3.1. CHM Features

We studied the regressions between the in situ physical reference measurements, including the
Href, DMY and FY and the height features Hp90 and Hmax taken from the CHMs (Figure 5 and Table 8).
We performed the analysis in different phases of the growing season and with different nitrogen
fertilizer levels. The Hp90 and Hmax provided similar correlations to the physical measurements,
even though the Hp90 performed slightly better (Table 8 and Appendix A, Table A4). We also
presented the results of Hmean in Table 8, but we did not analyse it further because it had generally
poorer performance than the Hp90 and the Hmax. The following analysis is based on the Hp90 unless
otherwise mentioned.

The overall view of the dataset shows that the photogrammetric CHM provided lower height
values than the field measurements by the height stick (Href) (Figure 5). The underestimation of
CHMs to Href was largest on the last date; the RMSE was 16.6 cm for the Hp90 and 12.2 cm for the
Hmax. On other days, the underestimations (RMSE) varied from 11.8 cm to 13.3 cm for the Hp90 and
from 6.4 to 7.8 cm for the Hmax.
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Figure 5. Simple linear regression of (a) H90 and Href and (b) Hmax and Href for different dates. Hp90:
the 90th percentile value from the CHM; Hmax: maximum value from the CHM; and Href: reference
height measurement.
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Table 8. Pearson correlation coefficients for Hmean, Hmax, Hp90 and Href to DMY and FY, and Hmean,
Hmax and Hp90 to Href for different dates and different nitrogen fertilizer levels of 0–150 kg/ha. DMY:
the dry matter yield; FY: fresh yield; and Href: reference height measurement.

Date N-Level (kg/ha)

June 6 June 15 June 19 June 28 0 50 75 100 125 150

DMY
Hmean 0.80 0.98 0.98 0.79 0.66 0.93 0.98 0.95 0.88 0.71
Hmax 0.87 0.93 0.97 0.85 0.85 0.86 0.97 0.93 0.89 0.77
Hp90 0.85 0.96 0.97 0.85 0.74 0.91 0.97 0.96 0.91 0.77
Href 0.84 0.92 0.95 0.89 0.68 0.92 0.98 0.96 0.94 0.95

FY
Hmean 0.80 0.97 0.96 0.67 0.55 0.95 0.98 0.98 0.91 0.76
Hmax 0.90 0.92 0.94 0.78 0.82 0.95 0.98 0.96 0.95 0.83
Hp90 0.87 0.95 0.95 0.75 0.64 0.97 0.98 0.98 0.96 0.81
Href 0.87 0.90 0.93 0.81 0.69 0.92 0.98 0.97 0.98 0.96

Href
Hmean 0.72 0.94 0.96 0.84 0.62 0.90 0.99 0.95 0.84 0.83
Hmax 0.80 0.95 0.96 0.88 0.74 0.92 0.99 0.96 0.84 0.86
Hp90 0.78 0.96 0.96 0.88 0.68 0.92 0.99 0.97 0.85 0.87

An analysis of the PCCs of regressions with Href on different measurement dates showed that the
earliest and latest dates displayed the poorest results (Table 8). The first measurement date provided
the worst PCC of 0.78. There was a low correlation because during the first assessment the grass growth
had just started and grass was sparse and nonhomogeneous. Therefore, the grass did not provide a
homogenous canopy, which reduced the accuracy of the CHM-based estimates. During the growing
period in the second and third measurement dates, the PCCs were 0.96. In the last measurement date,
when the grass was already overgrown, the PCC was 0.88. When combining all the measurement dates
into a single simple regression, the PCC was 0.94 (Figure 4 and Appendix A, Table A4). The regressions
of the DMY and FY measurements with respect to the CHM features were consistent with the results
of the Href. The best PCCs were obtained on the second and third measurement dates (15 and 19 June)
when the canopy was homogeneous; for example, the PCCs were 0.96–0.97 for the DMY and 0.95 for
the FY. On the first and last dates, the PCCs were 0.85 for the DMY and 0.85 and 0.75, respectively,
for the FY.

When comparing regressions with different nitrogen fertilizer levels, the fertilizer level of 0 kg/ha
provided the worst correlations: the PCC was 0.68 with the Href, 0.74 with the DMY and 0.64 with the
FY (Table 8). In addition, the nitrogen fertilizer level of 150 kg/ha performed poorly in the regressions.
The fertilizer levels of 75 and 100 kg/ha were the closest to the ideal values. For these, the PCC was
0.96–0.98 in the regressions with the DMY and the FY, and 0.96–0.99 in the regressions with the Href.
The poor sward volume and density with the 0-nitrogen fertilizer levels and the vigorous growth
resulting in lodging with the nitrogen fertilizer levels of 150 kg/ha were the major reasons for the
poorer results with these plots.

We also calculated regressions between the DMY and FY and the Href measured by the height stick
to compare the photogrammetric and ground based measurements (Table 8). The PCCs were better
with the CHM-features at the three first growth stages of the silage sward studied, whereas, in the
last measurement date with overgrown and lodging grass, the Href outperformed the CHM features.
In the analysis with respect to the nitrogen fertilizer level, the CHM features and the Href provided
similar results with the fertilizer levels of 0–125 kg/ha; in the largest fertilizer level of 150 kg/ha the
Href outperformed the CHM.
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3.3.2. VI Features

We performed the sensitivity analysis with the VI features MSAVI, NDVI, ExG, ExG + Hp90

and GrassIp90. The results showed that both the date and the nitrogen application rate affected the
correlations between the VI features and the physical measurements. However, especially the date
had less impact on certain VIs than on the height features (Table 9 and Appendix A, Tables A1–A4).
The best behaving VIs are presented in Table 9.

Table 9. Pearson correlation coefficients for VIs and DMY, FY and Href on different dates and different
Nitrogen fertilizer levels (0–150 kg/ha). DMY: dry matter yield; FY: fresh yield; and Href: reference
height measurement.

Date N-Level (kg/ha)

6 June 15 June 19 June 28 June 0 50 75 100 125 150

DMY
MSAVI 0.95 0.94 0.96 0.95 0.62 0.91 0.90 0.91 0.87 0.94
NDVI 0.92 0.94 0.94 0.89 0.75 0.95 0.94 0.95 0.88 0.91
ExG 0.77 0.75 0.87 0.89 0.75 0.88 0.68 0.84 0.85 0.90

ExG +
Hp90

0.91 0.94 0.96 0.90 0.80 0.92 0.96 0.96 0.93 0.88

GrassIp90 0.88 0.91 0.96 0.90 0.87 0.89 0.95 0.94 0.92 0.89

FY
MSAVI 0.96 0.95 0.97 0.99 0.59 0.95 0.87 0.90 0.94 0.92
NDVI 0.94 0.92 0.92 0.81 0.73 0.95 0.92 0.94 0.96 0.91
ExG 0.82 0.71 0.84 0.89 0.77 0.94 0.79 0.89 0.92 0.91

ExG +
Hp90

0.95 0.92 0.94 0.83 0.75 0.98 0.99 0.98 0.98 0.91

GrassIp90 0.93 0.88 0.92 0.85 0.87 0.98 0.99 0.98 0.98 0.94

Href
MSAVI 0.85 0.94 0.93 0.81 0.71 0.89 0.89 0.85 0.88 0.87
NDVI 0.86 0.97 0.94 0.88 0.77 0.93 0.95 0.92 0.89 0.86
ExG 0.72 0.85 0.89 0.76 0.75 0.88 0.71 0.87 0.79 0.85

ExG +
Hp90

0.84 0.97 0.96 0.89 0.76 0.93 0.99 0.97 0.88 0.94

GrassIp90 0.82 0.96 0.96 0.89 0.80 0.93 0.98 0.97 0.89 0.95

In the analysis of regressions at different dates, the MSAVI provided in most cases the best PCCs
of 0.94–0.99 for the DMY and FY, and the ExG + Hp90 and the GrassIp90 provided the best PCCs of
0.82–0.97 for the Href. The VIs including height features (ExG + Hp90 and GrassIp90) were impacted
more by the date than the MSAVI and NDVI. With increased grass heights on the last measurement
date (28 June), the RGB-based VIs were saturating (Table 9 and Figure 6b).

When concerning different nitrogen fertilizer levels, the VIs including height features (ExG + Hp90

and GrassIp90) provided the best correlations. The nitrogen fertilizer level of 0 kg/ha performed the
worst compared to other dates: the PCC was 0.75–0.87 for the DMY, FY and Href at best. The nitrogen
fertilizer levels of 75 and 100 kg/ha provided a PCC of 0.96–0.99 for the best VIs. Overall, the nitrogen
fertilizer level had less impact on the PCCs with the best VI features (Table 9) than with the CHM
features (Table 8).



Agriculture 2018, 8, 70 16 of 28

Agriculture 2018, 8, x FOR PEER REVIEW  15 of 27 

 

  
(a) (b) 

Figure 6. Simple linear regression of (a) MSAVI and dry matter yield (DMY) and (b) ExG + Hp90 and 

DMY for different time series. 

Table 9. Pearson correlation coefficients for VIs and DMY, FY and Href on different dates and 

different Nitrogen fertilizer levels (0–150 kg/ha). DMY: dry matter yield; FY: fresh yield; and Href: 

reference height measurement. 

 
Date N-Level (kg/ha) 

6 June 15 June 19 June 28 June 0 50 75 100 125 150 

DMY           

MSAVI 0.95 0.94 0.96 0.95 0.62 0.91 0.90 0.91 0.87 0.94 

NDVI 0.92 0.94 0.94 0.89 0.75 0.95 0.94 0.95 0.88 0.91 

ExG 0.77 0.75 0.87 0.89 0.75 0.88 0.68 0.84 0.85 0.90 

ExG + Hp90 0.91 0.94 0.96 0.90 0.80 0.92 0.96 0.96 0.93 0.88 

GrassIp90 0.88 0.91 0.96 0.90 0.87 0.89 0.95 0.94 0.92 0.89 

FY           

MSAVI 0.96 0.95 0.97 0.99 0.59 0.95 0.87 0.90 0.94 0.92 

NDVI 0.94 0.92 0.92 0.81 0.73 0.95 0.92 0.94 0.96 0.91 

ExG 0.82 0.71 0.84 0.89 0.77 0.94 0.79 0.89 0.92 0.91 

ExG + Hp90 0.95 0.92 0.94 0.83 0.75 0.98 0.99 0.98 0.98 0.91 

GrassIp90 0.93 0.88 0.92 0.85 0.87 0.98 0.99 0.98 0.98 0.94 

Href           

MSAVI 0.85 0.94 0.93 0.81 0.71 0.89 0.89 0.85 0.88 0.87 

NDVI 0.86 0.97 0.94 0.88 0.77 0.93 0.95 0.92 0.89 0.86 

ExG 0.72 0.85 0.89 0.76 0.75 0.88 0.71 0.87 0.79 0.85 

ExG + Hp90 0.84 0.97 0.96 0.89 0.76 0.93 0.99 0.97 0.88 0.94 

GrassIp90 0.82 0.96 0.96 0.89 0.80 0.93 0.98 0.97 0.89 0.95 

3.4. Biomass Estimation Using MLR and RF 

We used the MLR to estimate the DMY and the FY using the RGB, the VI and the 3D features 

separately and in different combinations (Table 10). The best results when using the RGB, the VI or 

the 3D features separately were obtained with the VI features: the PCC and RMSE were 0.96 and 0.44 

t/ha (16.7%) for the DMY and 0.91 and 2.94 t/ha (26.6%) for the FY, respectively. Using the 3D 

features provided slightly worse results: the PCC and RMSE were 0.93 and 0.59 t/ha (22.4%) for the 

DMY, and 0.92 and 2.79 t/ha (25.27%) for the FY, respectively. The RGB features provided clearly the 

worst results. Combining the 3D and VI features and all the features (3D, VI, and RGB) provided the 
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3.4. Biomass Estimation Using MLR and RF

We used the MLR to estimate the DMY and the FY using the RGB, the VI and the 3D features
separately and in different combinations (Table 10). The best results when using the RGB, the VI or
the 3D features separately were obtained with the VI features: the PCC and RMSE were 0.96 and
0.44 t/ha (16.7%) for the DMY and 0.91 and 2.94 t/ha (26.6%) for the FY, respectively. Using the 3D
features provided slightly worse results: the PCC and RMSE were 0.93 and 0.59 t/ha (22.4%) for the
DMY, and 0.92 and 2.79 t/ha (25.27%) for the FY, respectively. The RGB features provided clearly the
worst results. Combining the 3D and VI features and all the features (3D, VI, and RGB) provided the
best results; for example, in the case with all the features, the PCC and RMSE were 0.98 and 0.34 t/ha
(12.7%) for the DMY and 0.98 and 1.25 t/ha (11.4%) for the FY, respectively.

Table 10. Multilinear regression (MLR) and Random Forest (RF) classification results. PCC: Correlation
coefficients; RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error; DMY: dry
matter yield; FY: fresh yield; RGB: Red, Green and Blue spectral features; VI: Vegetation Index features;
3D: CHM 3D features.

DMY FY

PCC RMSE (t/ha) NRMSE (%) PCC RMSE (t/ha) NRMSE (%)

MLR
RGB 0.65 1.19 44.82 0.66 5.17 46.83
VI 0.96 0.44 16.71 0.91 2.94 26.62
3D 0.93 0.59 22.37 0.92 2.79 25.27

RGB + VI 0.96 0.45 17.03 0.94 2.47 22.34
RGB + 3D 0.97 0.40 15.22 0.95 2.14 19.41
VI + 3D 0.98 0.34 12.94 0.98 1.22 11.05

RGB + VI + 3D 0.98 0.34 12.70 0.98 1.25 11.35

RF
RGB 0.77 1.00 37.65 0.79 4.22 38.19
VI 0.96 0.46 17.37 0.97 1.67 15.13
3D 0.93 0.56 21.16 0.93 2.58 23.34

RGB + VI 0.96 0.42 15.94 0.97 1.63 14.78
RGB + 3D 0.96 0.43 16.34 0.97 1.80 16.32
VI + 3D 0.97 0.37 14.06 0.98 1.51 13.66

RGB + VI + 3D 0.97 0.40 15.12 0.98 1.49 13.49
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We performed a similar analysis using the RF estimator (Table 10). The best results when using
the RGB, the VI or the 3D features individually were obtained using the VIs: the PCC and RMSE
were 0.96 and 0.46 t/ha (17.4%) for the DMY and 0.97 and 1.67 t/ha (15.1%) for the FY, respectively.
In addition, in the case of the RF, the 3D features provided slightly worse results than the VI features
and the RGB features provided the worst results. Similar to MLR, using the combinations of the 3D
and VI features and all the features, provided the best results; for example, the 3D and VI features
provided the PCC and RMSE 0.97 and 0.37 t/ha (14.1%) for the DMY, and 0.98 and 1.51 t/ha (13.7%)
for the FY, respectively. When comparing the two estimators, the RF estimator provided better results
than the MLR when using individual RGB and VI features, and their combinations; the results with the
VI and 3D features were on the same level. The RF estimator provided slightly worse results than the
MLR when combining all the features. Regarding the importance of different features, the 3D features
were the most important if they were included in the feature combinations: the percentile heights and
ExG + CHM were the most important for the DMY and ExG + CHM, GrassI and the percentile heights
for the FY (Table 11 and Appendix B, Tables A5 and A6). Thus, the new ExG + CHM index appeared
to be significant in grass biomass estimations.

Table 11. The most important features for the Random Forest (RF) (in the order of importance). DMY:
dry matter yield; FY: fresh yield; RGB: Red, Green and Blue spectral features; VI: Vegetation Index
features; 3D: CHM 3D features.

Case DMY FY

Features

RGB B, R, G B, R, G

VI RVI, OSAVI, NDVI, MGRVI, ExG,
MSAVI, ExGR, ExR, RGBVI, GRVI

RVI, NDVI, MGRVI, OSAVI, ExG, MSAVI,
RGBVI, ExGR, GRVI, ExR

3D Hp90, Hp80, Hp70, Hmin, Hmax, Hp50,
Hmean, Hmedian, Hstd

Hp70, Hp80, Hp90, Hmax, Hp50, Hmin, Hmean,
Hmedian, Hstd

RGB + VI NDVI, RVI, OSAVI, MGRVI, ExG,
MSAVI, B, RGBVI, GRVI, ExR

RVI, OSAVI, NDVI, ExG, MSAVI, B, ExGR,
RGBVI, G

RGB + 3D Hp90, Hp80, Hmin, Hp70, Hp50, Hmean,
Hmedian, Hmax, G, R

Hp90, Hp80, Hp70, Hp50, Hmax, Hmean, Hmedian,
Hmin, G, B

VI + 3D
Hp90, Hmin, GrassImax, Hp80, GrassIp90,
Hmean, Hp50, Hp70, Hmax, ExG + Hp90

ExG + Hmax, ExG + Hp90, GrassImax, GrassIp90,
Hp90, Hp80, Hp70, Hmax, Hp50, Hmeadian

RGB + VI + 3D
Hp90, Hmin, Hp70, Hp80, Hmean, Hmax,

Hp50, Hmedian, ExG + Hmax, ExG + Hp90

ExG + Hmax, ExG + Hp90, GrassImax, Hp90,
Hmin, Hmean, Hp70, GrassIp90, Hp80, Hp50

We analysed the sensitivity of the biomass estimation with respect to the date and nitrogen
application rate using the RF estimator with the combination of 3D, VI and RGB features. Similar
to the analysis with the linear regression in Section 3.2, both the date and the nitrogen fertilization
level had an impact on the results (Table 12). When concerning the impact of the measurement date,
the results were the worst for the first date: the PCC and RMSE were 0.91 and 0.15 t/ha (13.1%) for
the DMY, and 0.95 and 0.48 t/ha (12.1%) for the FY, respectively. The best performance was obtained
during the third measurement date: the PCC and RMSE were 0.97 and 0.27 t/ha (9.1%) for the DMY,
and 0.98 and 1.30 (10.2%) for the FY, respectively. The results of the second and last measurement dates
were almost as good. Regarding the impact of the nitrogen application rate, the best performance for
the DMY was achieved with the application rate of 100 kg/ha, which provided the PCC and RMSE
of 0.98 and 0.35 t/ha (11.0%), respectively. In the case of the FY, the nitrogen application rates of
50–125 kg/ha performed evenly well giving the PCC and the RMSE of 0.97–0.98 and 0.95–1.71 t/ha
(11.3–12.0%), respectively. A nitrogen application rate of 150 kg/ha provided slightly worse estimation
accuracy, and the nitrogen level 0 kg/ha provide clearly the poorest estimation accuracy. In the first
measurement date, the most important features were ExG + Hp90, ExG + Hmax, GrassIp90, GrassImax
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and NIR-based VIs; less important features were the 3D features (Appendix B, Table A6). During
the second and third measurement dates, the importance of 3D features increased, even though the
most important features were still ExG + Hp90, ExG + Hmax and GrassIp90. On the last measurement
date, the VI features started to dominate: the most important features were NDVI, OSAVI and MSAVI.
Between different nitrogen fertilization levels, the selected features had less variation than different
dates (Appendix B, Table A6).

Table 12. Random Forest (RF) classification results for different dates and nitrogen fertilizer levels. PCC:
Correlation coefficients; RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error;
DMY: dry matter yield; FY: fresh yield; RGB: Red, Green and Blue spectral features; VI: Vegetation
Index features; 3D: CHM 3D features; 0–150: Nitrogen fertilizer levels 0–150 kg/ha.

DMY FY

PCC RMSE (t/ha) NRMSE (%) PCC RMSE (t/ha) NRMSE (%)

Date

6 June 0.91 0.15 13.09 0.95 0.48 12.13
15 June 0.95 0.24 10.44 0.95 1.27 11.98
19 June 0.97 0.27 9.13 0.98 1.30 10.22
28 June 0.94 0.52 12.11 0.97 1.92 11.30

Nitrogen

0 0.75 0.19 24.41 0.73 0.71 27.78
50 0.93 0.41 17.88 0.97 0.95 11.37
75 0.95 0.41 14.61 0.97 1.35 11.99
100 0.98 0.35 10.99 0.97 1.48 11.25
125 0.98 0.42 12.45 0.98 1.71 11.55
150 0.93 0.64 18.36 0.96 2.39 14.86

4. Discussion

We developed and assessed a novel drone-based machine learning technique for estimating the
height, fresh yield (FY) and dry matter yield (DMY) of grass swards. Our approach was to derive
various features from the multispectral photogrammetric data sets, including the height features from
the CHM and the colours and different VIs from orthophotos in the red (R), green (G), blue (B) and
near-infrared (NIR) spectral bands. The MLR and RF estimators were trained using high variation
timothy/meadow fescues mixture swards dominated by timothy.

Our study was the first to integrate various structural and spectral features from a drone
multispectral photogrammetric system using machine learning techniques for the grass sward biomass
estimation in the context of silage production. The best results were obtained when combining different
height, RGB and VI features. The correlations and RMSEs were at best 0.98 and 0.34 t/ha (12.7%)
for the DMY and 0.98 and 1.22 t/ha (11.05%) for the FY, respectively. The MLR and RF provided
quite similar results (Table 10). Overall, the most important features for the RF were the new indices
ExG + Hp90 and ExG + Hmax (introduced in this study), the height features and the GrassI (Table 11
and Appendix B, Table A5). Additionally, the CHM-features gave better correlations to the DMY
and the FY than the regressions with the physical canopy height measurements by the height stick
(Href) at the three growth stages of the silage sward studied resulting from the three first measurement
dates. We obtained the best results on the targeted silage harvesting date (19 June) and just before
that (15 June) when the canopy was well-grown and homogeneous. Poorer estimation results were
obtained early in the growing season when the sward volume and density was low, as well as after the
targeted silage harvesting date when the stand was already heading, and lodging occurred in the most
heavily fertilized plots.

In the trial area, we generated the DTM utilizing the paths that were cut down between the
sample plots (Figure 1). We evaluated the performance of manual and semi-automatic DTM generation
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approaches. In the case of the manual DTM, we classified all points of the paths to ground points.
The semi-automatic method also classified most of these same points as ground points. Both methods
provided similar DTMs and correlations to the biomasses. The results indicated that it was possible to
generate an accurate CHM from a single flight’s data without the need to collect DTM data separately
before or after harvesting. The second date’s automatic DTM’s worse RMSE of 6.80 cm was caused by
the lower number of overlapping images in some parts of the model that was due to some camera
triggering problems during the flight. Our plots had the cut paths (Figure 3), which probably improved
ground point detection in all cases. However, the grass height in cut paths was 6–7 cm on each date,
into which the photogrammetric DSM could not penetrate well. Because of this, the interpolated DTMs
were above the real ground level. Therefore, the canopy height values based on the CHM were lower
than the physical height measurements. The limitation of photogrammetric DSM has been discovered
in earlier studies [32,52]. One solution for the underestimation could be to use oblique images or
combine oblique and nadir images in the DSM generation as suggested in previous studies [3,68].
Accurate georeferencing and a non-deformed photogrammetric block are important requirements
in the proposed method. We performed the georeferencing using GCPs, which can be considered
a laborious approach when aiming for fully automatic procedures and also expensive equipment
for performing field measurements are required. In future studies, our objective will be to evaluate
approaches that do not require in situ GCPs, particularly our objective is to implement better direct
georeferencing process [69] utilizing a more accurate L1/L2 GNSS/IMU receiver and to investigate
relative georeferencing of the multitemporal datasets. This improvement would also reduce the overall
cost of the complete measurement system. Our results also supported the general expectations that
the large image forward and side overlaps of approximately 80% and the self-calibration during the
photogrammetric processing provided a non-deformed photogrammetric block.

In the simple linear regressions, the VIs performed well. The best performing individual VIs
were the MSAVI for the DMY and FY (PCC: 0.94–0.99 for different dates) and ExG + Hp90 for the
Href (PCC: 0.84–0.97 for different dates) (Table 9). Overall, the NIR-based VIs gave better results than
the RGB-based VIs. Several studies have shown that the NIR spectral range performs better in the
estimation of crop biomass than the RGB spectral range [25,28]. However, the new ExG + CHM indices,
suggested by us, provided good results and outperformed all the RGB-based VIs in regressions with
all of the physical measurements, and in addition outperformed the best performing VI (MSAVI) in
the regressions with the DMY and the Href. Similarly, in other studies, combined CHM and RGB
based VIs have provided better regressions than the CHM and the RGB based VIs separately [29,32].
With increasing grass height, the RGB-based VIs were saturating, which is consistent with previous
studies [18,32]. However, the saturation had less impact on the new ExG + CHM indices and the
GrassI than other RGB-based VIs; and even less impact on the NIR-based VIs (Table 9 and Figure 6a).

All of the CHM features performed overall better than the VIs; Hp90 being the best performing
CHM feature (Appendix A, Table A4). The simple linear regression results of Possoch et al. [32]
indicated also that the grass height was a suitable feature for grass yield estimation; regression of
CHM to DMY provided a correlation of 0.80, and the physically measured height to the DMY provided
the slightly worse correlation of 0.79. Previous studies have proven in different grasses and crops
that the visible spectral range VIs (VIVIS) perform well at the booting stage and do not perform as
well in the other growing stages [25,61,70–72]. Wang et al. [42] found that laser scanning derived
metrics combined with hyperspectral data can provide better biomass estimates of maize using partial
least squares (PLS) regression. Pittman et al. [8] studied estimation of biomass and canopy height in
bermudagrass, alfalfa, and the mix (containing a mixture of bermudagrass and alfalfa) using a golf
car with mobile ultrasonic, laser and spectral sensors. For single sensor estimations, laser-estimated
height measurements had the best correlations to the physically measured canopy heights and to the
DMY: the PCC of height regressions was 0.88 for bermudagrass and 0.78 for the mix; correlations to
the DMY were 0.88 for bermudagrass and 0.80 for alfalfa. However, combining two or three methods
improved correlations of height estimation for bermudagrass giving the PCC of 0.92; and of DMY
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estimation in all cases, giving the PCC of 0.92 for bermudagrass, 0.83 for alfalfa and 0.89 for the mix.
Additionally, combined laser- and ultrasonic-estimated height measurements provided equivalent
and/or better estimates when compared to the physical canopy height measurements and plate meter
DMY estimation methods. Differences between method-predicted values versus measured DMY
were minimal. The average percent error was 11.2% for the differences between predicted values
versus forage harvester and quadrat measurements of forage biomass values (1.64 and 4.91 t/ha),
except at the lowest measured DMY, where the errors were larger, the average percent error was 89%
and the absolute error <0.79 t/ha. With the greatest measured DMY, the average error was 18% and
>6.4 t/ha [8].

Moeckel et al. [73] estimated the DMY and FY with a ground-based ultrasonic and spectrometer
in grasslands with a heterogeneous sward structure on four dates representing different growth stages.
The MPLSR approach resulted in a PCC of 0.69 (0.39–0.89 for date-specific models) for the DMY and a
PCC of 0.82 (0.57–0.93 for date-specific models) for the FY. Fricke and Wachendorf [74] had similar
results estimating biomass of legume-grass swards with combined ultrasonic and hyperspectral
VIs: PCC were 0.91 in common swards and 0.94–0.95 for species-specific calibrations for DMY.
Marabel et al. [33] studied Support Vector Machine (SVM) and Partial Least Squares Regression
(PLSR) for estimating the biomass of grasslands from field spectrometer data. The best results for
DMY estimation were obtained using PLSR, and the maximum band depth index derived from the
continuum removed reflectance in the absorption features between 916–1120 nm and 1079–1297 nm;
the PCC was 0.97 and the RMSE was 71.2 t/ha for the DMY. We can thus conclude that our results
with the photogrammetric drone data were in most cases better than the previous results obtained
with typically more expensive measurement systems, and even with terrestrial measurements.

To obtain accurate estimations of the grass sward biomass using a low-cost drone-based system,
we suggest utilizing a high-resolution RGB camera equipped with a good quality lens with a global
shutter and potentially combined with an NIR band, e.g., a colour-infrared modified camera. Sensors
such as the Parrot Sequoia [75] are not ideal for 3D reconstruction due to the rolling shutter, but the
multispectral data are relevant. Datasets should be captured with high image overlaps at a low flying
height to provide ultrahigh spatial resolution and dense point clouds. With the support of an accurate
onboard direct georeferencing system the overall system and measurement cost could be reduced to a
low level. The image processing and machine learning methods introduced in this study were proven
to provide accurate results. We recommend integrating 3D, VI and RGB features using advanced
machine learning methods.

5. Conclusions

Our study developed and assessed a machine learning technique based on multispectral
orthophotos and photogrammetric 3D geometric remote sensing data for the estimation of fresh
and dry matter yield of grass swards for silage production. Our approach was to extract various
features from a remote sensing dataset by combining an ultra-high resolution photogrammetric canopy
height model (CHM) with a pixel size of 1.0 cm and red, green, blue and near-infrared range intensity
values and different vegetation indices (VI) extracted form orthophoto mosaics. We compared the
performance of the Multiple Linear Regression (MLR) and the Random Forest estimator (RF). The best
estimation results were obtained by combining the 3D, RGB and VI features. The RF provided similar
or better results than the MLR. The Person’s correlation coefficient (PCC) and RMSEs were at best
0.98 and 0.34 t/ha (12.70%), respectively, for the dry matter yield combining the 3D, RGB and VI
features, and 0.98 and 1.22 t/ha (11.05%), respectively, for the fresh yield combining the 3D and VI
features. We also evaluated the sensitivity of the method by creating variability in the swards by
using different nitrogen fertilization rates and by repeating the data capture on four dates of the
primary growth of the grass sward. Several points may have reduced the accuracy of the estimates:
(1) nonhomogeneous sparse stand as a result of early season; (2) nonhomogeneous sparse stand as a
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results of low fertilizer application levels; (3) the heading of the sward due to a late harvesting date;
and (4) lodging caused by high fertilization levels.

Our results are consistent with previous scientific results regarding the impact of date and
combination of 3D and RGB features on the height and biomass estimation results. Furthermore,
our novel approach integrating machine learning algorithms and the various 3D, spectral and VI
features from the ultra-high resolution CHM and orthomosaics provided better results than most of
the previous studies. The results were also highly precise in absolute terms. The yield estimation
results had an excellent accuracy and outperformed the estimation results based on the measurement
on the field using the height stick. Our results showed that the proposed method offers an accurate
tool for estimating both the fresh yield and the dry matter yield of grass swards particularly close to
the targeted silage harvesting stage.

In the next phases of our research, we will integrate the grass sward quality parameters to the
estimation process, including nitrogen content and digestibility. We will also compare the proposed
approach to multispectral datasets as well as to hyperspectral data. It is necessary also to integrate
efficient direct georeferencing approach to the method to further improve the level of automation
and cost of the overall system. An important future research topic will be to assess the generalization
potential of the developed methods—in other words, to use the trained estimators in other fields
without in situ training data. This is a highly relevant topic to develop efficient remote sensing tools
with minimum in situ efforts.
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Appendix A

Table A1. Pearson correlation of coefficients (PCC) for all VI’s with the DMY, the FY and the Href from
different times. DMY: dry matter yield; FY: fresh yield; Href: reference height measurements.

DMY FY Href

Feature 6 June 15 June 19 June 28 June 6 June 15 June 19 June 28 June 6 June 15 June 19 June 28 June

RGBVI 0.51 0.49 0.77 0.76 0.58 0.43 0.73 0.79 0.51 0.63 0.79 0.59
GRVI 0.80 0.93 0.90 0.95 0.79 0.91 0.88 0.93 0.70 0.96 0.92 0.87

MGRVI 0.23 0.93 0.90 0.95 0.17 0.91 0.88 0.92 0.16 0.96 0.92 0.87
ExG 0.77 0.75 0.87 0.89 0.82 0.71 0.84 0.89 0.72 0.85 0.89 0.76
ExR 0.60 0.96 0.86 0.91 0.55 0.96 0.85 0.85 0.50 0.94 0.87 0.91

ExGR 0.80 0.92 0.90 0.95 0.79 0.90 0.88 0.92 0.70 0.96 0.91 0.87
NDVI 0.92 0.94 0.94 0.89 0.94 0.92 0.92 0.81 0.86 0.97 0.94 0.88

MSAVI 0.95 0.94 0.96 0.95 0.96 0.95 0.97 0.99 0.85 0.94 0.93 0.81
OSAVI 0.94 0.94 0.96 0.97 0.96 0.94 0.96 0.97 0.86 0.96 0.95 0.87

RVI 0.95 0.94 0.96 0.64 0.98 0.96 0.97 0.56 0.86 0.92 0.93 0.74
ExG + Hp90 0.91 0.94 0.96 0.90 0.95 0.92 0.94 0.83 0.84 0.97 0.96 0.89
ExG + Hmax 0.91 0.92 0.96 0.91 0.94 0.90 0.93 0.85 0.83 0.97 0.96 0.90

GrassIp90 0.88 0.91 0.96 0.90 0.93 0.88 0.92 0.85 0.82 0.96 0.96 0.89
GrassImax 0.88 0.92 0.96 0.90 0.94 0.90 0.93 0.83 0.83 0.96 0.96 0.89
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Table A2. Pearson correlation of coefficients (PCC) for all VI’s with the DMY and the FY from different
nitrogen fertilizer levels. DMY: dry matter yield; FY: fresh yield; 0–150: Nitrogen fertilizer levels
0–150 kg/ha.

DMY FY

Feature 0 50 75 100 125 150 0 50 75 100 125 150

RGBVI 0.77 0.85 0.67 0.82 0.89 0.87 0.80 0.90 0.76 0.86 0.89 0.87
GRVI 0.22 0.55 0.48 0.56 0.62 0.55 0.17 0.64 0.59 0.65 0.75 0.60

MGRVI 0.62 0.72 0.72 0.74 0.71 0.78 0.69 0.87 0.85 0.85 0.87 0.86
ExG 0.75 0.88 0.68 0.84 0.85 0.90 0.77 0.94 0.79 0.89 0.92 0.91

ExGR 0.17 0.55 0.49 0.58 0.62 0.59 0.13 0.64 0.60 0.67 0.77 0.64
ExR 0.30 0.25 0.23 0.29 -0.02 0.48 0.35 0.20 0.22 0.26 0.37 0.45

NDVI 0.75 0.95 0.94 0.95 0.88 0.91 0.73 0.95 0.92 0.94 0.96 0.91
MSAVI 0.62 0.91 0.90 0.91 0.87 0.94 0.59 0.95 0.87 0.90 0.94 0.92
OSAVI 0.72 0.94 0.92 0.93 0.88 0.94 0.70 0.96 0.90 0.92 0.96 0.93

RVI 0.74 0.83 0.84 0.86 0.78 0.88 0.69 0.79 0.74 0.79 0.82 0.84
ExG + Hp90 0.80 0.92 0.96 0.96 0.93 0.88 0.75 0.98 0.99 0.98 0.98 0.91
ExG + Hmax 0.85 0.88 0.95 0.94 0.91 0.87 0.83 0.97 0.99 0.97 0.98 0.92

GrassIp90 0.87 0.89 0.95 0.94 0.92 0.89 0.87 0.98 0.99 0.98 0.98 0.94
GrassImax 0.83 0.93 0.96 0.96 0.93 0.91 0.81 0.99 0.99 0.99 0.99 0.94

Table A3. Pearson correlation coefficients (PCC) for all VI’s with the Href from different nitrogen
fertilizer levels. Href: reference height measurements; 0–150: Nitrogen fertilizer levels 0–150 kg/ha.

Href

Feature 0 50 75 100 125 150

RGBVI 0.76 0.83 0.69 0.84 0.89 0.81
GRVI 0.19 0.62 0.54 0.61 0.62 0.63

MGRVI 0.59 0.79 0.80 0.84 0.68 0.88
ExG 0.75 0.88 0.71 0.87 0.79 0.85

ExGR 0.15 0.62 0.55 0.63 0.62 0.66
ExR 0.32 0.16 0.19 0.27 0.06 0.37

NDVI 0.77 0.93 0.95 0.92 0.89 0.86
MSAVI 0.71 0.89 0.89 0.85 0.88 0.87
OSAVI 0.79 0.92 0.92 0.89 0.92 0.88

RVI 0.71 0.80 0.81 0.76 0.73 0.75
ExG + Hp90 0.76 0.93 0.99 0.97 0.88 0.94
ExG + Hmax 0.78 0.93 0.98 0.96 0.87 0.93
GrassImax 0.80 0.93 0.97 0.97 0.88 0.94
GrassIp90 0.80 0.93 0.98 0.97 0.89 0.95

Table A4. Pearson correlation coefficients (PCC) for all VI’s and CHM features with the DMY, the FY
and the Href in all datasets. DMY: dry matter yield; FY: fresh yield; Href: reference height measurements.

Feature DMY FY Href

RGBVI 0.81 0.80 0.83
GRVI 0.70 0.74 0.68

MGRVI 0.71 0.75 0.80
ExG 0.86 0.87 0.86

ExGR 0.70 0.74 0.68
ExR 0.27 0.33 0.24

NDVI 0.82 0.81 0.81
MSAVI 0.89 0.92 0.82
OSAVI 0.86 0.88 0.81

RVI 0.81 0.73 0.79
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Table A4. Cont.

Feature DMY FY Href

Hmean 0.91 0.9 0.93
Hmedian 0.9 0.89 0.93

Hmin 0.82 0.78 0.81
Hmax 0.91 0.92 0.94
Hstd 0.54 0.55 0.56
Hp50 0.9 0.89 0.93
Hp70 0.91 0.9 0.94
Hp80 0.92 0.91 0.94
Hp90 0.92 0.92 0.94

ExG + Hp90 0.93 0.93 0.95
ExG + Hmax 0.92 0.93 0.95
GrassImax 0.94 0.93 0.96
GrassIp90 0.93 0.93 0.96

Href 0.95 0.93 -

Appendix B

Table A5. Selected features for the Multilinear Regression (MLR) (not in the order of importance).
DMY: dry matter yield; FY: fresh yield; RGB: Red, Green and Blue spectral features; VI: Vegetation
Index features; 3D: CHM 3D features.

Case DMY FY

MLR

RGB B B

VI RGBVI, GRVI, MGRVI, ExR,
MSAVI, RVI RGBVI, MGRVI, ExR, RVI

3D Hmin, Hmax, Hstd Hmedian, Hmin, Hmax, Hstd, Hp50

RGB + VI R, G, B, GRVI, ExGR, ExR, NDVI,
MSAVI, RVI R, B, MGRVI, ExG, NDVI, MSAVI, RVI

RGB + 3D R, G, B, Hmin, Hp80 R, G, B, Hmedian, Hmax, Hstd, Hp50

VI + 3D
RGBVI, MGRVI, ExG, ExR,

MSAVI, RVI, Hmedian, Hp50, Hp80,
GrassImax, ExG + Hp90

RGBVI, MGRVI, ExR, NDVI, MSAVI,
OSAVI, Hmean, Hmax, Hstd, Hp90,
GrassImax, GrassIp90, ExG + Hmax

RGB + VI + 3D

R, B, RGBVI, MGRVI, ExG, ExR,
NDVI, MSAVI, OSAVI, Hmedian,
Hmax, Hp50, Hp90, ExG + Hmax,

ExG + Hp90

R, B, MGRVI, ExR, NDVI, OSAVI,
Hmean, Hmax, Hstd, Hp90, GrassImax,
GrassIp90, ExG + Hmax, ExG + Hp90
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Table A6. The most important features for the Random Forest (RF) (in the order of importance) for
different dates and different nitrogen fertilizer levels. DMY: dry matter yield; FY: fresh matter; RGB:
Red, Green and Blue spectral features; VI: Vegetation Index features; 3D: CHM 3D features; 0–150:
Nitrogen fertilizer levels 0–150 kg/ha.

Case DMY FY

Date

6 June
GrassImax, ExG + Hmax, GrassIp90, ExG +

Hp90, MSAVI, OSAVI, NDVI, Hmax, B, RVI

GrassImax, ExG + Hmax, MSAVI, NDVI,
GrassIp90, OSAVI, ExG + Hp90, RVI,

Hp80, Hmax

15 June ExR, MSAVI, B, ExGR, GRVI, Hmean,
Hmedian, NDVI, G, ExG + Hmax

GrassImax, OSAVI, RVI, NDVI, MSAVI,
Hp70, Hp90, Hp80, MGRVI, ExG + Hp90

19 June
ExG + Hmax, ExG, OSAVI, ExR, NDVI, ExG

+ Hp90, MGRVI, GrassIp90, Hmean, Hp50

ExG + Hmax, RVI, NDVI, ExG + Hp90,
Hmean, OSAVI, Hp50, Hp90,

Hmedian, GrassIp90

28 June ExG + Hmax, ExR, ExG, GRVI, MGRVI,
MSAVI, OSAVI, ExGR, GrassImax, NDVI

ExGR, OSAVI, MSAVI, ExR, GRVI, ExG,
MGRVI, ExG + Hp90, NDVI, Hp90

Nitrogen

0
Hmax, Hp90, Hp80, GrassIp90, Exg + Hmax,
GrassImax, ExG + Hp90, Hstd, Hp70, RVI

ExG + Hp90, Hmax, GrassIp90, GrassImax,
Exg + Hmax, Hstd, Hp90, Hp80, RVI, NDVI

50
GrassIp90, Hmin, MSAVI, OSAVI, GrassImax,

RVI, B, Hp70, Hp90, Hp80

Hp70, ExG + Hp90, Hmax, GrassIp90, RVI,
MGRVI, B, ExG + Hmax, MSAVI, GrassImax

75
Hmax, GrassImax, ExG + Hmax, Hp80,

GrassIp90, Hmin, Hp90, Hp50,
ExG + Hp90, Hmedian

OSAVI, GrassIp90, RGBVI, MSAVI, MGRVI,
G, ExG + Hp90, RVI, ExG

100
ExG + Hmax, Hp80, Hp90, GrassImax, Hp70,

Hmax, Hmean, Hp50, GrassIp90

Hp90, GrassImax, Hp80, Hmedian, RVI, Hmean,
GrassIp90, Hmin, NDVI

125
Hp90, Hp80, GrassImax, ExG + Hmax, Hmax,

GrassIp90, OSAVI, MSAVI, Hp70

ExG + Hp90, MSAVI, GrassImax, RVI, ExG,
B, Hp80, RGBVI, Hp90

150 Hp90, RVI, Hmin, OSAVI, Hp70, Hmedian,
Hmean, MSAVI, Hmax

ExG + Hp90, Hmin, GrassImax, MGRVI,
GrassIp90, RVI, ExG + Hmax, Hp80,

MSAVI, NDVI
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