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Abstract: Tea trees are the main economic crop in Zhejiang Province. However, spring cold is a
frequent occurrence there, causing frost damage to the valuable tea buds. To address this, a regional
frost-hazard early-warning system is needed. In this study, frost damage area was estimated based
on topography and meteorology, as well as longitude and latitude. Based on support vector machine
(SVM) and artificial neural networks (ANNs), a multi-class classification model was proposed to
estimate occurrence of regional frost disasters using tea frost cases from 2017. Results of the two
models were compared, and optimal parameters were adjusted through multiple iterations. The
highest accuracies of the two models were 83.8% and 75%, average accuracies were 79.3% and 71.3%,
and Kappa coefficients were 79.1% and 67.37%. The SVM model was selected to establish spatial
distribution of spring frost damage to tea trees in Zhejiang Province in 2016. Pearson’s correlation
coefficient between prediction results and meteorological yield was 0.79 (p < 0.01), indicating consis-
tency. Finally, the importance of model factors was assessed using sensitivity analysis. Results show
that relative humidity and wind speed are key factors influencing accuracy of predictions. This study
supports decision-making for hazard prediction and defense for tea trees facing frost.

Keywords: tea tree; frost disaster; machine learning; frost hazard; space distribution

1. Introduction

Tea is a traditional drink, with a history that can be traced back 5000 years, and which
has profound cultural and economic significance [1]. Tea plants are a type of warm-leaf
plant. The shrub-type tea plants in the middle and lower reaches of the Yangtze River
in China maintain a good growth state in 25–30 ◦C, and the sprout temperature of tea
plants is 6–12 ◦C [2,3]. As the temperature rises in the early spring, the cold-resistant
ability of tea trees decreases after the sprouting of tea buds, which can be damaged by
freezing if the temperature drops sharply to below 0 ◦C. Frost disasters cause destruction
of the tea protoplasm when the water in tea-leaf cells freezes, and this reduces tea yield [4].
Frost damage to the tea bud not only affects the quality and taste of tea, but also stops
the germination of tea buds, causes bud death, and delays the picking period for spring
tea [5,6].

Frost is a type of agricultural meteorological disaster. Frost disasters are caused by a
strong cold wave in the crop-growing season, where the temperature of plants and leaves
drops to below 0 ◦C and growing plants suffer from frost damage, leading to reduced crop
yield, crop failure, or quality decline [7]. Frost disasters can be caused by two weather
processes, radiation and advection; frost disasters caused by radiation are more common
in Zhejiang [8–10]. Radiation frost disasters occur with a decrease in apparent heat, caused
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by the loss of net energy from the surface to the sky by radiation under conditions of clear
skies and very little wind [11]. Climate change frequently causes climate fluctuation events,
resulting in an increased probability of frost disaster events [12]. Because of the increasing
frost caused by the uncertainty of climate change, low temperatures and frost threat are
increasing in the spring tea-planting areas, making them sensitive to climate change.

The influence of spring frost disasters is widespread and serious. To establish the
impact of large-scale spring frost damage quickly and effectively, the normalized difference
vegetation index (NDVI), normalized NDVI valley area index (NNVAI), spring frost dam-
age index (SFDI), and other indices have been proposed and calculated; these are based on
remote-sensing images that can be used to conduct real-time assessment of the damage
to crops caused by spring frost [13–15]. Several studies have analyzed the duration and
severity of frost events using historical meteorological data; the distribution characteristics
of frost damage were analyzed, and the recurrence period of frost damage was calculated to
strengthen the management of frost risk [16]. In small-scale areas, researchers have focused
mainly on meteorological factors, which cannot reflect the detailed characteristics of frost
damage [17]. When studying frost in mountainous areas, the main control parameter of
temperature distribution in the complex terrain is altitude. Generally, the decreasing rate
of air temperature is set at 0.65 ◦C/100 m [18,19], but it also fluctuates due to long-wave
radiation and other factors, and even leads to temperature inversion. On a small scale, the
slope aspect and the curvature of the terrain affect solar emissivity and local circulation,
resulting in a difference in low-temperature distribution [20–22]. In several studies, surface
temperature data was obtained by satellite remote-sensing and coupled with terrain factors
(e.g., aspect, slope) to establish a low-temperature model that accurately reflected the spa-
tial distribution of frost [23–25]. Researchers have applied several methods to model frost
events in complex terrain, including multi-variate adaptive regression splines (MARS) [26],
logistic regression and decision trees [27], and fuzzy neural networks [28].

Based on previous studies, we summarized the formation mechanism of frost hazards
and the reasons for their uneven distribution in space (Figure 1). This study selected
important factors (e.g., weather and terrain) and analyzed the relationship between factors
affecting the occurrence of frost disaster and the hazard of frost disaster using artificial
neural networks (ANNs) and support vector machines (SVMs) based on the case of 11
March 2017. This study also compared the accuracy of frost-occurrence models and
constructed a frost-hazard model. Finally, the reliability of the model was verified using
the yield data. The purpose of this study is to provide a model that can be used to analyze
the spatial distribution of frost hazards for tea farmers in Zhejiang Province. In addition,
combined with weather forecast data or climate change models, it can also be used to
predict frost events in tea-planting areas.



Agriculture 2021, 11, 607 3 of 16

Figure 1. The formation of tea frost and the causes of its uneven spatial distribution.

2. Materials and Methods
2.1. Study Area

The study area (Zhejiang Province) is the main tea-planting area in China (Figure 2),
with the country’s highest tea export. Mean annual sunshine hours measure between 1600
and 2000 h, the frost-free period is >200 d, and the mean annual precipitation is between
1100 and 2000 mm. This “less-sunlight, warm, and humid” environment is highly suitable
for tea-tree growth, and spring tea, with good quality and high economic benefit, is the
main tree species planted by tea farmers [29]. In the past 20 years, Zhejiang Province has
vigorously developed its famous, high-quality tea, and planted large areas of spring tea
species. However, because mountainous or hilly terrain accounts for more than 70% of the
total area in Zhejiang Province, and the transition zone in the middle and low latitudes
is often affected by the monsoon; large-area tea trees often suffer from frost disasters in
spring. Frost not only delays the growth of tea buds, reducing their price and quality, but
also causes the death of tea buds, creating serious losses for farmers.
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Figure 2. Study area. Note: The DEM in the legend is Digital Elevation Model, The unit is “meter”.

2.2. Data

The meteorological data in this study were obtained from the China Meteorological
Data Network [30], which acquired daily meteorological data sets from 2000 to 2020, in-
cluding the air minimum temperature, relative humidity, sunshine hours, wind speed, and
other data recorded by 47 meteorological stations in Zhejiang Province and its surrounding
areas. The Australian National University Spline (ANUSPLIN) package [31,32] and inverse
distance weighted (IDW) interpolation were used to interpolate 47 meteorological stations.
Digital elevation model (DEM) data were obtained from the Geospatial Data Cloud [33] us-
ing ArcGIS 10.4 (Environmental Systems Research Institute, The United States of America)
spatial analysis tools to establish the slope, aspect, and curvature models. The county-level
data of spring tea yield and planting area in Zhejiang Province from 1995 to 2019 (Huzhou,
Quzhou, and Jinhua include only data from 2001 to 2019) were collected from Year Book
China [34] to evaluate the accuracy of the model. Finally, combined with China’s land data
in 2015, this study also generated the tea-planting area by visual interpretation based on
the Landsat 8 remote-sensing image.

On 3 March 2017, the temperature dropped significantly in Zhejiang Province, and
a tea frost event occurred. The Zhejiang meteorological station monitored this tea frost.
According to the damage rate of buds and leaves, the frost grades of tea trees were classified
as follows: the damage rate of buds and leaves ≤20% was mild frost damage; ~20–50%
was moderate frost damage; ~50–80% was severe frost damage; and >80% was serious frost
damage. No damage and four frost grades were assigned as 0, 1, 2, 3, and 4, and selected
samples in each frost grade were 32, 50, 82, 66, and 90, respectively; a total of 320 disaster
points were used as model samples (Figure 3).
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Figure 3. Collected records of occurrence points of spring frost damage on tea tree.

2.3. Methods

The study flowchart is shown in Figure 4. It includes three main parts: first, variables
were selected to remove factors with high correlation and collinearity; second, the frost
disaster point related to the factors, and the appropriate training and test samples were
selected; and finally, the prediction model of spring frost hazard of tea plants in Zhejiang
Province was established by SVM and ANN. The optimal model was selected by comparing
the accuracy of the models, and the optimal model was used to predict the occurrence
of a tea-tree frost event. The spatial distribution of frost hazard and its relationship with
meteorological output determine the practical application of the model.

Figure 4. The flowchart of the study.

2.3.1. Artificial Neural Network

An artificial neural network (ANN) is a complex network structure formed by a
large number of processing units (neurons) connected to each other. It is an information-
processing system based on imitating the structure and function of brain neural networks



Agriculture 2021, 11, 607 6 of 16

and simulating the activity of neurons using a mathematical model [35]. One of the main
advantages of the ANN algorithm is its cost-effectiveness in real-time analysis, speed, and
efficiency. It can also minimize errors and improve accuracy [36]. Therefore, it has become
an important method for frost research. The formation and distribution of frost can be
analyzed by predicting the minimum and dew-point temperatures. In the research of
Chevalier et al., prediction of frost by ANN has been successfully applied to reality [37–39].

The back propagation (BP) algorithm of ANN is used mainly in research and includes
two processes: forward propagation of the signal and backward propagation of error. In
other words, the error output is calculated in the direction from input to output, while
the weight and threshold are adjusted in the direction from output to input. In forward
propagation, the input signal acts on the output node through the hidden layer, and the
output signal is generated through a nonlinear transformation. If the actual output is not
consistent with the expected output, it will turn into an error back-propagation process.

The number of hidden layer nodes influences the forecasting accuracy of the ANN.
Having few nodes causes the network to learn less efficiently, requiring increased training
times and affecting training accuracy; numerous nodes increase the training time, making
the network easily overfit. The general formula for determining the number of hidden
layer nodes l is:

l <
√
(m + n) + a (1)

where m is the number of output layer nodes, n is the number of input layer nodes, and a is
a constant between 0 and 10. The cut-and-try method was used to determine the optimal
number of nodes so as to improve the performance of ANN.

2.3.2. SVM

A support vector machine (SVM) was first proposed by Vapnik; the main idea of
the SVM is to establish a classification hyperplane as a decision surface to maximize the
isolated edge between positive and negative examples [40]. An SVM is an approximate
realization of structural risk minimization. The foundation and principle of the SVM is
based on the fact that the error rate of machine learning on test data (i.e., generalization
error rate) is bounded by the sum of the training error rate and a term depending on the
Vapnik-Chervonenkis dimension. In the separable pattern case, the value of SVM for the
first term is zero, and the second term is minimized. The unique attribute of the SVM in
pattern classification is that it can provide better generalization performance.

The SVM algorithm was originally designed for binary classification problems. When
dealing with multiclass classification problems, a classifier must be constructed directly or
indirectly. In this research, we use the C-Support Vector Classifier (C-SVC) model, which
is commonly used in SVM. In the multi-classification problem, the C-SVC model uses
the “one-to-one” method, which designs an SVM between any two classes of samples,
so k (k − 1)/2 SVM is needed for k classes of samples. When an unknown sample is
classified, the category with the highest number of votes is the category of the unknown
sample. The radial basis function kernel (RBF) with better performance is selected as the
kernel function, which can map samples to higher spatial dimensions; it also requires fewer
parameters, which reduces the difficulty of calculation [41]. The toolkit used in the study
was LIBSVM, developed by Chih-Jen Lin et al. The latest version of LIBSVM is 3.25, which
can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvm/ (accessed on 4
June 2020) [42].

When using SVM to classify spring frost disaster events affecting tea plants, we
need to adjust the penalty parameter C and kernel function parameter g to achieve good
accuracy. Cross-validation (CV) is a statistical method often used to verify the performance
of classifiers. The K-fold cross-validation (K-CV) in CV was selected and the original data
were evenly divided into K (K ≥ 2) groups. Each subset of data was used as a validation
set, and the remaining k-1 subsets were used as the training sets. Finally, the mean value
of the K model rows was selected as the output of the parameters. The advantage of this
method is that it avoids overfitting or underfitting [43].

https://www.csie.ntu.edu.tw/~cjlin/libsvm/


Agriculture 2021, 11, 607 7 of 16

2.3.3. Methodologies for Model Evaluation

The performance of the two models has been evaluated under different conditions.

1. The Kappa coefficient can measure the accuracy of the multi-class classification
problem when it is used in the consistency test, and its calculation method is based
on a confusion matrix.

k =
po − pe

1 − pe
(2)

where po represents the overall classification accuracy. Formula (3) is the calculation
method of pe. Assume that the number of real samples of each class is a1, a2, a3
. . . aC (C is the number of classification categories. In our research, C is equal to 5)
respectively, and the predicted number of samples of each class is b1, b2, b3 . . . bC
respectively, and the total sample size of the input model is n, then there are:

pe =
∑C

i=1 aibi

n2 (3)

According to the previous experience, K usually falls between 0–1, which can be
divided into five groups to represent the consistency of different levels, and gener-
ally when it falls between 0.61 and 0.80, it is considered to have a high degree of
consistency [44].

2. Accuracy. This is the ratio of the number of correct samples to the total number of
samples.

3. Average accuracy. This is the average accuracy of each sample. For imbalanced data,
for n classes, the accuracy of each class is calculated respectively, and then the average
value is calculated.

2.3.4. Meteorological Yield

In order to study the effect of spring frost disasters on tea yield, long-term trends
in yield caused by human factors were first eliminated in this study (production level,
policy, social economy, etc.). Yield (Y) time series can be decomposed into trend yield (Yt),
meteorological yield (Ym) and random yield (ε), random production, (also called random
noise), which is a random error term that can be ignored.

Y = Yt + Ym + ε (4)

In this study, the quadratic exponential smoothing method was used to calculate the
trend yield, which has been proved to be more universal in this study [45].

2.3.5. Selection of Variables

Many factors affect frost damage in tea trees, and they can be divided into two aspects:
physiological and meteorological. The physiological aspect includes tea varieties, growth
stages, plant age, branch and leaf maturity, and picking level. The meteorological aspect
depends on the intensity and duration of low temperature, as well as wind direction, wind
speed, air, and soil humidity. At the same time, longitude and latitude can also affect
the spatial distribution of temperature through meteorological factors [46,47]. Moreover,
altitude can affect the vertical distribution of air temperature, and local topography can
further affect the flow path and convergence of cold air, leading to an uneven spatial
distribution of minimum temperature [19,20,48].

Combined with previous studies [25,27,49], this study selected 10 variables, includ-
ing longitude and latitude, meteorological factors (e.g., relative humidity, wind velocity,
sunshine hours, and minimum temperature), and terrain factors (e.g., elevation, aspect,
slope, and curvature). Then, two types of tests were conducted to verify the correlation and
collinearity between independent variables. Pearson correlation coefficients of any two of
the 10 variables were calculated to eliminate variables with high correlation. To avoid high
multicollinearity among the selected variables, which may lead to a large deviation in the
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classification accuracy of the model, and to select variables with better independence and
higher explanatory ability, the coefficient of variance inflation factor (VIF) was used to test
the linear correlation between factors [50].

The correlation analysis shows that the Pearson correlation coefficients of the longi-
tude, sunshine, and wind speed were 0.725 and 0.667, respectively, indicating a strong
correlation between them. Since the correlation of sunshine and wind speed with other
variables was less than ±0.3, the longitudinal variables were excluded from the study. In
previous studies, VIF values > 4 were regarded as evidence of multicollinearity [25]. In the
process of calculation, it was found that the largest VIF value of the remaining variables
was 2.134 of the aspect variable (Table 1); therefore, nine variables were retained, excepting
longitude.

Table 1. Selected variables in the study.

Variable Min Max VIF

Latitude 118.156 30.737 1.684
Slope 0 50.306 1.047

Aspect −1 359.963 2.134
Elevation −57 1801 1.038
Curvature −0.210 0.231 1.1

Minimum temperature −1.856 7.647 1.187
Relative humidity 31.323 69.710 1.881

Sunshine hours 4.420 9.692 2.082
Wind velocity 0.843 4.232 1.239

3. Results
3.1. Model Parameter Adjustment

We apply ANN and SVM to a group of variables. The data were divided into training
samples (75%) and test samples (25%). Test samples are used for unbiased evaluation of
the final fitting of the model on the sample training data. As a group of data not involved
in the construction of the model, the generalization of the model can be tested, and the
accuracy of the model can be calculated by testing the actual and predicted values of the
samples.

The construction of SVM model needs to adjust parameters c and g. The parameters
c and g of the model are 194.012 and 0.144, respectively, after the samples are input into
the model for the first time, and the accuracy is 80.417%. Then, taking the training set as
the original data, the best parameters c and g are obtained byK-CV method. In the process
of parameter selection, there may be multiple sets of c and g corresponding to the highest
accuracy of verification classification. In this part, we choose a group of c and g (our results
are 64 and 0.5) which can reach the lowest parameter c under the condition of the highest
classification accuracy as the best parameters (Figure 5). This avoids the problem of over
fitting caused by too high penalty parameters, reduces the generalization ability of the
classifier, and improves the accuracy to 83.75%.
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Figure 5. Taking model as an example, the 3D view and contour map of the precision process of
model parameters c and g are shown, respectively.

The number of hidden layers and hidden layer nodes of the neural network have
an influence on the classification results. As for the number of hidden layers, Robert [51]
proved theoretically that any continuous function in a closed interval can be approximated
by a BP network with a hidden layer, so a three-layer BP network can complete any
mapping from m dimension to m dimension. Increasing the number of layers can improve
the learning accuracy, but on the other hand, it also makes the network structure complex
and increases the training time [52]. Therefore, we only consider the single hidden layer
neural network model.

Figure 6 shows the influence of the different numbers of hidden layer nodes on the
error rate of model classification; the error rate is lowest when l is equal to 8. In addition,
the classification accuracy is 75%.

Figure 6. The error rate changes.
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3.2. Classification Results

The accuracy rate of the results obtained by the SVM model was 83.75%, and the
sensitivities of different categories of models were quite different. The correct classification
rate of Category 0 was only 37.5%, while that of Category 3 was as high as 100%. In
addition, there was slight confusion in Categories 2 and 4, with 25% of the samples in
Category 2 classified into Category 4, and 8.3% of the samples in Category 4 classified into
Category 2 (Figure 7).

Figure 7. Confusion matrix of classification results. Note: Because the values in the graph are
rounded to two decimal places, some values are larger or smaller than the original values, resulting
in the sum of each row not being equal to one.

The overall accuracy of the ANN model is lower than that of SVM, and it is better than
SVM in 0 category classification, but it is not ideal. In addition, the classification results
of Categories 1–4 are worse than those of SVM. The same as SVM is that the recognition
accuracy of Categories 3 and 4 is high, which is related to the large number of training
samples.

The accuracy, average accuracy and Kappa coefficient were calculated for each of the
two models. The results show that the evaluation result of the SVM model is better than
that of the ANN model (Table 2).

Table 2. Model classification performance.

Accuracy Average Accuracy Kappa Coefficient

SVM 0.8375 0.7929 0.791
ANN 0.75 0.7129 0.6737

3.3. Actual Prediction of the Models

In this study, the SVM model was verified to be more suitable for predicting the hazard
of spring frost to tea trees in Zhejiang Province. In order to verify the practical application
of the model, the spatial distribution of the frost-hazard degree of tea trees in Zhejiang
Province in 2016 was predicted:

The late-spring cold event on 11 March 2016, caused frost damage to more than half
of the tea plantations in Zhejiang Province, covering an area of more than 100,000 hectares.
Approximately 3700 tons of early tea were damaged, with an estimated economic loss of
1.8 billion yuan. Lishui, Hangzhou, Shaoxing, Huzhou, and other places suffered the most
serious damage. In this study, the economic crop forests based on land use types in Zhejiang
Province were selected as the sample points, and nine research elements corresponding
to the sample points were extracted as variables and input into the model to obtain the
classification results of the model.



Agriculture 2021, 11, 607 11 of 16

From overall classification results, the disasters in the east of Zhejiang Province and the
Yangtze River estuary are shown to be at a lower level, due to the fact that a body of water
can adjust and compensate for temperature when encountering strong cold air, raising the
extreme minimum temperature, and correspondingly reducing the harm from cold spells
in late spring. Due to the undulating terrain, the air temperature in the southwest and
northwest decreases vertically; the influence of frost events is closely related to altitude,
slope aspect, and other topographic factors. In the central basin, due to its high density,
cold air deposits in low-lying areas, so it more readily causes serious frost events in these
low areas than in plain areas. The accuracy of the classification results can be proved using
empirical theory. However, the correlation between the results and the meteorological
yield was further analyzed to determine the accuracy of the model.

The gray areas in Figure 8 are the main spring tea planting counties in Zhejiang
Province. The samples of each county were counted, the mean value of frost grade (M) of
the area is calculated according to the Equation 5, and the calculation results are shown in
Table 3.

M =
∑5

i=1 i × xi

n
(5)

where i is the assignment of frost damage level of tea tree corresponding to the sample, xi
is the number of sample points corresponding to class i in the region, and n is the number
of sample points.

Figure 8. Model prediction results of the study. Note: For convenience of observation, raster data are
converted to a vector point display.

By calculating the correlation between M and meteorological yield, Pearson corre-
lation coefficient was found to be −0.79 (p < 0.01) (two tailed), that is, there is a good
negative correlation between the regional frost level average output of the model and the
meteorological yield of tea, which indicates that the model also has a high fitting effect in
actual production.
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Table 3. Mean value of meteorological yield and regional frost hazard grade of spring tea in main
planting areas.

Area Meteorological
Yield M Area Meteorological

Yield M

Hang zhou −0.017 3.000 Ji an 0.005 3.071
Sheng zhou −0.055 3.560 Xin chang −0.086 3.241

Hu zhou 0.029 3.067 Ning bo 0.045 2.667
Wu yi −0.040 3.385 Yu yao 0.045 2.429

Yu hang 0.062 2.760 Ning hai −0.018 3.027
Zhu ji 0.149 2.696 Long you −0.049 3.360

Fu yang −0.124 3.529 Jian de −0.012 3.094
Chun an −0.012 2.777

3.4. Factor Importance Analysis

Since several input variables may affect the hazard of tea-tree frost damage in different
ways, it is necessary to study the importance and mechanism of variables in order to
provide better guidance for the prediction and control of frost damage to tea trees. In this
study, the importance of nine variables was evaluated using the sensitivity analyses of the
SVM model [53]. That is, the degree to which the prediction accuracy of the predictor is
reduced by removing the factors one-by-one, and the prediction accuracy of the model
before and after elimination, were analyzed. The importance of the factors increases with
their differences [54]. The order of importance of condition factors is shown in Figure 9.

Figure 9. Factor importance ranking.

Relative humidity is the most important factor affecting the risk of spring frost damage
to tea trees in the study area, and the average precision is reduced by 0.2875. The wind
speed is less important, and the average precision is reduced by 0.1. The two least important
adjustment factors are curvature (0.0125) and sunshine hours (0.0125).

4. Discussion

In this study, we found that air humidity is the most important factor affecting the
accuracy of prediction, followed by wind speed, latitude, minimum temperature, terrain
factors, and solar radiation. The spring in Zhejiang Province is the alternating season
between the East Asian monsoon in the winter and the summer monsoon, with frequent
north–south airflow exchange, low air pressure, and cold and rainy fronts, so air humidity
is maintained over a large duration. Air humidity affects the supercooling temperature
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of the plants [55]. Frost occurs when the temperature is lower than the supercooling
temperature. Although there is little information on the supercooling temperature in the
study of tea plants, it is undeniable that it is meaningful to study the influence of relative
humidity on the occurrence of frost. Damage by frost can be reduced by reducing the
air humidity or spraying humidification. In Zhejiang Province, which is dominated by
radiation frost, frost usually occurs in the early morning or at night, and when the air
forms a stable radiation inversion to form frost; however, if the wind speed is high, this
can disturb the inversion layer structure and reduce the degree of damage incurred by
frost. Based on this conclusion [11], we believe that wind turbines are an effective means of
preventing and controlling spring frost damage to tea trees in Zhejiang Province.

Latitude and longitude affect the degree of frost damage on a large scale. Longitude
affects the location of land and sea, thus affecting the continental characteristics of the
region. However, the study area is located on the southeast coast of China, and the
entire region is significantly affected by the Pacific monsoon climate. We also tried to
input longitude as a variable into the model and found that the classification accuracy
of the model was reduced by 5–8%. However, in regions with significant continental
characteristics, longitude is an important variable [56]. Latitude is the third most important
factor in our study, affecting the zonal distribution of temperature, thus affecting the risk
of frost.

The minimum temperature is generally considered to be the most important factor
affecting frost occurrence [57,58]. In previous studies, scientists used the threshold and
duration of the minimum temperature to assess the severity of frost [16,57]. However,
in our study, the minimum temperature was not the most important factor affecting the
accuracy of the model. The results of Kotikot et al. [18] show that there is a negative
correlation between the surface temperature and the occurrence of frost (0 indicates frost-
free, 1 indicates frost), but its weight is lower than that of most terrain factors. This
shows that in the local tea-planting area, the air temperature cannot completely reflect the
occurrence of frost due to the influence of microclimate and terrain on the accumulation of
cold air. The difference between our study and other studies is that frost does not occur in
one of the five classification labels. Even if the occurrence of frost may be greatly affected by
low temperatures, the influence of minimum temperature on different degrees of severity
may be low, and this requires further study and discussion.

In selection of the model, we choose ANN and SVM, which have the advantages of
simple operation, low learning cost, and stability. However, the results of the ANN are not
ideal. Since ANN classification may be affected by the workload of the provided samples,
the variables transmit calculation results to the output layer nodes through the hidden
layer, and finally adjust the weight to reduce the sum of the prediction square errors of
the dependent variables; therefore, the input and output of the training samples affect the
classification performance of the neural network. In our research, SVM is a better choice,
but we did not try a random forest model, Bayesian, or more a complex artificial neural
network, which should be addressed in future research.

5. Conclusions

In this study, based on ANN and SVM model, the spring frost hazard for tea tree in
Zhejiang Province was classified and modeled. The machine learning classifier was used
to combine the spring frost on tea tree with terrain and meteorological factors, and the
selected nine factors were input into the model as variables. By adjusting the parameters,
the best classification model with the highest accuracy was obtained. By calculating the
accuracy and consistency of the model, it was concluded that the SVM model was more
suitable. Then, SVM model was applied to predict the spatial distribution of the frost
hazard to tea tree in 2016. The results showed that the frost damage was more serious in
the middle and the north due to the influence of topography and latitude, respectively,
and the degree of frost damage was lower in the coastal and river areas because of the
buffering effect of water at low temperatures. Compared with previous studies on frost
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prediction, this study predicts different hazard levels of frost disasters of tea trees, so that
the producers can not only distinguish the occurrence and nonoccurrence of frost through
the model, but also respond according to different levels. In this region, the model has high
classification accuracy and reliability, which is conducive to improving the effectiveness of
frost prevention and saving resources.

Finally, we analyzed the importance of different factors and identified the most
important factors affecting the spring frost damage to tea trees in the study area. Relative
humidity and wind speed were found to be important factors affecting the classification of
the model in our study, indicating that spring frost damage to tea trees in the study area is
related mainly to the relative humidity and wind speed, and that use of fans and water
spray may effectively reduce the damage caused by frost to tea trees.
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