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Abstract: Convolutional neural networks have an immense impact on computer vision tasks. How-
ever, the accuracy of convolutional neural networks on a dataset is tremendously affected when
images within the dataset highly vary. Test images of plant leaves are usually taken in situ. These
images, apart from the region of interest, contain unwanted parts of plants, soil, rocks, and/or human
body parts. Segmentation helps isolate the target region and a deep convolutional neural network
classifies images precisely. Therefore, we combined edge and morphological based segmentation,
background subtraction, and the convolutional neural network to help improve accuracy on image
sets with images containing clean and cluttered backgrounds. In the proposed system, segmentation
was applied to first extract leaf images in the foreground. Several images contained a leaf of interest
interposed between unfavorable foregrounds and backgrounds. Background subtraction was imple-
mented to remove the foreground image followed by segmentation to obtain the region of interest.
Finally, the images were classified by a pre-trained classification network. The experimental results
on two, four, and eight classes of datasets show that the proposed method achieves 98.7%, 96.7%, and
93.57% accuracy by fine-tuned DenseNet121, InceptionV3, and DenseNet121 models, respectively, on
a clean dataset. For two class datasets, the accuracy obtained was about 12% higher for a dataset with
images taken in the homogeneous background compared to that of a dataset with testing images
with a cluttered background. Results also suggest that image sets with clean backgrounds tend to
start training with higher accuracy and converge faster.

Keywords: segmentation; background subtraction; transfer learning; deep convolutional neural
network; plant disease image classification

1. Introduction

Deep learning is a sub-field of machine learning that uses a multi-layered artificial
neural network, inspired by the structure and function of the brain for learning patterns
to deliver state-of-the-art accuracy. As shown in Figure 1, a biological neuron mainly
comprises of dendrites, soma, or nucleus, and axon or axon terminals, which act as input
activation functions and outputs, respectively, in an artificial neural network. Deep learning
algorithms have significantly outperformed traditional methods in signal, image, video,
speech, and text processing tasks. Convolutional neural network (CNN) is a form of an
artificial neural network popularly implemented in image and video processing tasks
due to its robustness and generalization abilities, which are achieved on account of deep
architectures [1]. Deep CNN architectures have proven to be efficient, but require large
computational and training resources [2]. CNNs demand a plethora of training data and
may result in overfitting or the inability to converge when faced with insufficient data.
Data augmentation, which artificially increases the amount of data within a dataset, helps
tackle this problem [3]. CNNs have demonstrated exceptional results in computer vision
tasks irrespective of image types in different applications, such as medical images [4,5],
satellite images [6,7], or hyperspectral images [8,9].
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tasks irrespective of image types in different applications, such as medical images [4,5], 
satellite images [6,7], or hyperspectral images [8,9]. 

Image noise has been a primary concern in computer vision tasks. The presence of 
image noise, in form of a redundant background, crucially affects the outcome of image 
analysis [10]. CNNs, at the cost of resources, efficiently classify images that may be af-
fected when the region of interest is significantly smaller. Noisy data impose such a prob-
lem. The presence of unwanted objects, besides an area of interest, is considered as back-
ground noise, which drastically affects the efficacy of CNNs. Early detection of plant dis-
ease is crucial for sustainable agriculture by enhancing crop productivity. The application 
of image processing algorithms and deep learning models hold a significant premise in 
the identification and classification of plant diseases that occur due to pathogens infested 
in leaves or plant parts, by providing diagnostic results for the early detection of plant 
diseases. However, the presence of redundant and noisy backgrounds in leaf images have 
hindered classification accuracy. Image segmentation in conjunction with background 
subtraction helps increase classification accuracy. Image segmentation separates or 
groups an image into different parts, which finally isolates the region of interest. The seg-
mentation process is based on various features, such as color or boundaries [11]. Back-
ground subtraction (BGS) is widely used for identifying foreground objects. The primary 
concept behind BGS is to detect foreground objects from the difference between the frame 
of interest and the reference frame, often called the background image [12]. 

 
Figure 1. A single biological neuron is annotated to describe a single artificial neural function. 

As mentioned earlier, CNNs require an abundance of data. However, transfer learn-
ing enables CNNs to learn with limited data by transferring knowledge from models pre-
trained on large datasets [13]. Transfer learning takes a source network i.e., a pre-trained 
model on a specific task with a larger dataset and then re-purposes it to perform on a 
similar target problem, usually with minimum training resources, on a small dataset 
[14,15]. For different sources or target domains or tasks, transfer learning emphasizes on 
improving the learning of predictive functions in the target domain, for better results, by 
applying collective knowledge from both of the domains. In transfer learning, models pre-
trained on standard datasets effectively adapt to downstream tasks [16]. Transfer learning 
essentially extracts reusable features from earlier layers of a pre-trained network, previ-
ously trained on a larger and easily available dataset and a different task, and finally in-
puts those features to train a much smaller model with fewer parameters. This smaller 
network only needs to learn the relations for the specific problem, having already learnt 
about patterns in the data from the pre-trained model. Transfer learning virtually creates 
a shallow network within a deep network by utilizing previously learned knowledge. The 
process of transfer learning is accomplished either by reusing features from the second to 

Figure 1. A single biological neuron is annotated to describe a single artificial neural function.

Image noise has been a primary concern in computer vision tasks. The presence of
image noise, in form of a redundant background, crucially affects the outcome of image
analysis [10]. CNNs, at the cost of resources, efficiently classify images that may be affected
when the region of interest is significantly smaller. Noisy data impose such a problem.
The presence of unwanted objects, besides an area of interest, is considered as background
noise, which drastically affects the efficacy of CNNs. Early detection of plant disease is
crucial for sustainable agriculture by enhancing crop productivity. The application of
image processing algorithms and deep learning models hold a significant premise in the
identification and classification of plant diseases that occur due to pathogens infested in
leaves or plant parts, by providing diagnostic results for the early detection of plant diseases.
However, the presence of redundant and noisy backgrounds in leaf images have hindered
classification accuracy. Image segmentation in conjunction with background subtraction
helps increase classification accuracy. Image segmentation separates or groups an image
into different parts, which finally isolates the region of interest. The segmentation process
is based on various features, such as color or boundaries [11]. Background subtraction
(BGS) is widely used for identifying foreground objects. The primary concept behind BGS
is to detect foreground objects from the difference between the frame of interest and the
reference frame, often called the background image [12].

As mentioned earlier, CNNs require an abundance of data. However, transfer learning
enables CNNs to learn with limited data by transferring knowledge from models pre-
trained on large datasets [13]. Transfer learning takes a source network i.e., a pre-trained
model on a specific task with a larger dataset and then re-purposes it to perform on a
similar target problem, usually with minimum training resources, on a small dataset [14,15].
For different sources or target domains or tasks, transfer learning emphasizes on improving
the learning of predictive functions in the target domain, for better results, by applying
collective knowledge from both of the domains. In transfer learning, models pre-trained on
standard datasets effectively adapt to downstream tasks [16]. Transfer learning essentially
extracts reusable features from earlier layers of a pre-trained network, previously trained
on a larger and easily available dataset and a different task, and finally inputs those features
to train a much smaller model with fewer parameters. This smaller network only needs
to learn the relations for the specific problem, having already learnt about patterns in the
data from the pre-trained model. Transfer learning virtually creates a shallow network
within a deep network by utilizing previously learned knowledge. The process of transfer
learning is accomplished either by reusing features from the second to last layer (i.e., the
layer before classification layer), which is termed as feature extraction, or by fine-tuning
the model for better performance.
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Our work primarily focuses on increasing the classification accuracy of diseased
plants on a classification problem where training and testing data visually vary. This
experiment explores the limitation imposed by Mohanty et al. [17], where it is mentioned
that a real world application should be able to classify images of a disease, as it presents
itself directly on the plant, i.e., testing the image in field conditions. It is shown that CNNs
are prone to decreased efficiency, while working with test data, which have a high variance
to training data. Models trained on images with clean backgrounds or images taken
on laboratory conditions fail to achieve higher accuracy when tested with images with
cluttered backgrounds or taken on field conditions. Testing the transfer learned models on
pre-processed images (pre-processed using image segmentation and background removal
to remove the background) provide a significant boost to classification accuracy.

1.1. Related Works

Early and accurate detection and classification of plant diseases are of utmost impor-
tance to increase crop yield. Numerous research studies have been conducted to increase
plant disease identification accuracy and decrease food loss. Automatic detection of plant
disease was conducted by implementing four steps viz. color transformation, masking of
green pixels, and removal using specific threshold, segmentation by creating equal sized
patches, and employing a classifier on a database of 500 plants [18]. A combination of a
genetic algorithm to obtain useful segments and a support vector machine (SVM) classifier
was used to classify plant diseases [19]. Various image segmentation techniques, such as a
difference of pixel values between neighborhood pixels and k-means based segmentation,
were employed to identify plant disease with 93% accuracy [20]. Most research on the
segmentation of plant leaves have focused on lesion isolation.

While image segmentation has been used for image identification and classification
of plant leaves, few studies have focused on background removal of plant leaf images.
Wang et al. present an effective image segmentation method based on the Chan–Vese model
and Sobel operator. This method consists of three stages: a feature that identifies hues with
relatively high levels of green were used to extract the region of leaves and remove the
background, the Chan–Vese model and improved Sobel operator were implemented to
extract the leaf contours and detect the edges, respectively, and a target leaf with a complex
background and overlapping was extracted by combining the results obtained by the
Chan–Vese model and Sobel operator [21]. Chen et al. proposed an enhanced segmentation
method to remove shadows for vehicle detection [22]. Background estimation and noise
removal from the retinal image was performed by applying coarse and fine segmenta-
tion for automated diagnosis of diabetic retinopathy, which significantly improved the
accuracy [23].

CNNs outperformed the fully connected multilayer perceptron (MLP) by yielding 85%
accuracy on major crops, such as wheat, maize, sunflower, soybean, sugar beet, etc., while
classifying crops from remote sensing (RS) images acquired by Landsat-8 and Sentinel-
1A RS satellites [24]. Depth-wise separable convolutional neural networks suitable for
mobile applications were employed to classify 55 classes and 82,161 plant disease leaf RGB
images with 98.34% accuracy [25]. Various state-of-the-art CNN models, pre-trained on
ImageNet [26], were re-trained to classify leaf images from 28 classes incorporating 15 crop
species, and a total of 23,352 images to achieve an accuracy of 99.74% [27]. INC-VGGN
achieved an accuracy of 92% on rice disease images under complex background conditions.
This model combined a pre-trained VGG model with an inception module to combine
the advantages of both inception and VGGNet [28]. Transfer learning was applied to a
pre-trained CNN (GoogLeNet) to classify 12 plant species with 1383 images and 56 classes.
This model achieved an accuracy of 84% for image sets with original images and 87%
accuracy with background-removed image sets [29].
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1.2. Problems with a Cluttered Background

The major problem with images in situ is the presence of undesired subjects in the
image. This issue can be seen in a plant leaf, in the form of mud on top of a healthy leaf
image, or a leaf from another plant on top of the desired leaf image, as shown in Figure 2a,
or the appearance of a human body part in the foreground of the leaf image, as seen in
Figure 2b. When a segmentation algorithm is applied for background removal on such
images, the region of interest could be considered as background, and removed, as shown in
Figure 2c. Thus, simply using segmentation is not suitable for certain images in the image
set, and requires additional processing. Applying the background subtraction algorithm
after segmentation helps create the image with the area of interest on the foreground with
undesirable objects in the background. Reiterating the segmentation process helps to correctly
remove the background from the input image.
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Figure 2. Images with an undesired background. (a) Leaf image in situ, the top image contains
a leaf from another species on top of the region of interest; the bottom two contain mud on top
of the healthy leaf, appearing to be diseased; (b) image with the human hand in the foreground;
(c) segmentation result of the image on the left.

2. Materials and Methods
2.1. Proposed Approach

We propose an automatic and intelligent method for classifying plant diseases based
on leaf images under true field conditions. Since most of the research focuses on isolating
the lesion instead of isolating the leaf from the image, we implemented algorithms to
isolate the leaf from an image containing noisy background. The classification system is a
combination of edge-based segmentation, background subtraction, and transfer learning of
the convolutional neural network. Figure 3 shows the framework of the proposed method,
including the training and testing phases. In the initial phases, the input frame is processed
by applying edge-based segmentation in junction with morphological segmentation to
extract objects of interest in the foreground. When the region of interest is interposed
between two unwanted objects, background subtraction is implemented to remove the
foreground object, followed by segmentation to obtain the object of interest from the input
image. During the final phases, these images are fed to pre-trained convolutional neural
network models. Fine-tuned models pre-trained on the ImageNet dataset were utilized for
the classification of plant diseases.
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Figure 3. A framework of the proposed method.

2.2. Edge and Morphological Based Segmentation

Image segmentation is defined as the process of distinguishing different objects within
an image. This includes separating objects from their background. The main idea of image
segmentation is to separate leaves of interest from the noisy background that contains
plant parts, human body parts, soil etc. Edge detection is a technique in which the point
where sharp changes in image properties are identified and organized using line segments
to form edges. Canny edge detection is a non-maximum suppression technique based on
a Gaussian filter. Canny edge takes the output from the Sobel operator and thins all the
edges followed by hysteresis thresholding. Steps involved in the canny edge detection
algorithm are shown in Algorithm 1.

Algorithm 1. Canny edge detection algorithm

1. Filter input image using low pass filter with Gaussian mask by employing Gaussian
distribution in Equation (1).

G(x, y) =
1√

2πσ2
e−

x2+y2

2σ2 (1)

where, x and y are distances from the origin in the horizontal axis and vertical axis,
respectively, and σ is the standard deviation of the distribution.

2. Calculate horizontal and vertical gradients at each pixel location by convolving the image
with horizontal and vertical derivative filters, using Equation (2).

Gx =
d G(x, y)

dx
; Gy =

d G(x, y)
dy

(2)

where, Gx and Gy are first derivatives in horizontal and vertical directions, respectively.
3. Evaluate gradient magnitude using Equation (3).

Edge Gradient (G) =
√

G2
x + G2

y ; Angle (θ) = tan−1 Gy

Gx
(3)

4. Compute higher and lower threshold (THL , THU).
5. Suppress non-maximal strong (NMS) edges to get rid of spurious response to

edge detection.
6. Perform hysteresis thresholding to determine edge map.

a. If Edgestrength < THL, discard
b. If Edgestrength > THU , keep
c. If THL < Edgestrength < THU , keep only if the path of edge with Edgestrength > THL

connects to Edgestrength > THU

Morphological filters are a collection of non-linear operations carried out relatively on
the ordering of pixels, without affecting their numerical value. Erosion and dilation are two
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fundamental operators in morphological filters. Erosion replaces the current pixel value
with the minimum value found in a defined set of pixels. Dilation replaces the current
pixel value with the maximum value found in a defined set of pixels [30]. Combining
canny edge detection and morphological operations results in a background removal
algorithm, as in Algorithm 2. The threshold values were taken from a range depending on
the outcome of the image. THlower = [10, 20], THupper = [150, 200], MIdilation = [10, 20],
MIerosion = [10, 20], Mcolor = (1, 1, 1) were the values used.

Algorithm 2. Algorithm for Background Removal

1. Set parameters:
Upper threshold = THupper

Lower threshold = THlower
Mask iteration for dilation = MIdilation
Mask iteration for erosion = MIerosion
Mask Color = Mcolor

2. img = input (Image)
3. gray_image = RGBtoGray(img)
4. edges = canny_edge(gray_image, THupper, THlower)
5. edges = erosion(dilate(edges))
6. mask = convex_polynomial_fill(edges, contour)
7. mask = gaussianBlur(erosion(dilation(Mask, iterations = MIdilation), iterations = MIerosion))
8. mask_stack = mask ∗ 3
9. output = (mask_stack ∗ img) + (1 −mask_stack) ∗ Mcolor
10. if (output = desired_leaf_image + Mcolor), goto 13
11. img = img − output
12. Repeat step 3–10
13. Save image.

2.3. Background Subtraction

Background subtraction (BGS) has been extensively used in video processing where
successive frames are used to detect foreground objects [31]. However, this concept can be
utilized to remove foreground objects if the foreground objects are not the region of interest.

For an input image I(x, y) and background B(x, y), the foreground image is given as
F(x, y) = |I(x, y)− B(x, y)| > Th where, Th is a threshold value. Similarly, the background
can be obtained by subtracting foreground from image i.e., |I(x, y)− F(x, y)|. Figure 4 shows
the removal of the human hand present in the foreground by applying BGS on the input
image and the background removed image after applying the segmentation algorithm.
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2.4. Transfer Learning and Fine-Tuning

Transfer learning is employed when the training dataset has a smaller amount of
data and is similar to a pre-trained dataset. Transfer learning is carried out by (i) creating
a suitable network by stacking neural layers, training the neural network on a dataset
with abundant data, and finally fine-tuning the network on the available dataset; or
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by (ii) reusing state-of-the-art model pre-trained on a standard dataset with surfeit and
analogous data, and fine-tuning in correspondence to available data. The latter is favored
as this reduces the inconvenience of creating a model and saves time for training on a
different set of data. Given a source domain DS = {XS , P(XS)}, where XS is a feature
space and P(XS) is a marginal probability distribution in which XT =

{
xT1 , . . . ., xTn

}
∈ XT ,

source task TS = {YS , fS(·)}, where YS is label space and fS(·) an objective predictive
function, target domain DT = {XT , P(XT)}, where XT is a feature space and P(XT) is
a marginal probability distribution in which XT =

{
xT1 , . . . ., xTn

}
∈ XT and target task

TT = {YT , fT(·)}, where YT is label space and fT(·) an objective predictive function, such
that 0 ≤ nT � nS. Predictive function fS(·) is learned from source training data, which
consists of pairs

{
xSi , ySi

}
and fT(·) is learned from target training data, which consists of

pairs
{

xTi , yTi

}
in junction with fS(·). While classifying diseased plant leaf images based

on ImageNet dataset, the source task TS and the target task TT are different (i.e., TS 6= TT ).
The label spaces between these two tasks are different (i.e., YS 6= YT ). Inductive transfer
learning is proven to be the best solution to solve such problems. In inductive transfer
learning, the common features can be learned by solving an optimization problem [14],
given as

arg min
A, U ∑

t∈{T,S}

nt
∑

i=1
L
(
yti ,
〈

at, UTxti

〉)
+ γ‖A‖2

2,1

s.t. U ∈ Od
(4)

In this equation, S and T denote the tasks in the source domain and target domain,
respectively. A = [aS, aT ] ∈ Rd×2 is a matrix of parameters. U is a d× d orthogonal matrix
(mapping function) for mapping the original high-dimensional data to low-dimensional

representations. The (r, p)-norm of A is defined as ‖A‖r,p

(
d
∑

i=1
‖ai‖p

r

) 1
p

The optimization

problem (4) estimates the low-dimensional representations UTXT , UTXS and the parame-
ters, A of the model at the same time.

Transfer learning makes use of previously learned knowledge on new tasks. Reusable
features extracted by models pre-trained on ImageNet was applied to re-train the model
on the plant leaf dataset. Transfer learning of a model is generally conducted in two
ways: the model used as a feature extractor and fine-tuning the model. These models are
state-of-the-art models, such as VGG19 [32], ResNet [33], Inception [34], MobileNet [35],
MobilenetV2 [36], DenseNet [37], NA SNetMobile [38], etc. Transfer learning works
on the concept of layer freeze. The core idea of layer freeze is not to update the layer
weights while training on a new dataset to obviate making changes on formerly extracted
reusable features generated by filters in earlier layers. Depending on the frozen layers,
parameters are divided into non-trainable parameters and trainable parameters. The former
corresponds to parameters of frozen layers whereas, the network trains on remaining
parameters corresponding to layers that are not frozen. In contrast to the back propagating
and updating the weights of all the layers in the network, fine-tuning drastically reduces
the computational cost. There is an inverse relationship between the number of frozen
layers and the number of trainable parameters. Feature extractor is employed by replacing
the final output layer with the suitable classifier and freezing the weight for whole network
excluding the final fully connected layer, whose neurons have full connections to all
activations in the previous layer. The rest of the network is treated as a fixed feature
extractor while the reusable features are entirely extracted from ImageNet. In fine-tuning,
not only the classifier is replaced, but the weights of the pre trained network is also fine-
tuned by continuing the backpropagation. The number of layers required to fine-tune
depends upon the data used and the type of network. While fine-tuning all of the layers
of the model could be re-trained, it is preferred to keep few earlier layers frozen to avoid
overfitting, and only fine-tine some higher-level layers of the network. We opted for
fine-tuning instead of feature extractor for higher accuracy in expense of slightly higher
computational costs [27].
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2.5. Convolutional Block

A convolutional block is referred to as a collection of layers in a model comprising of a
convolutional layer and all the layers before the succeeding convolutional layer, or a group
of convolutional layers together with other layers, depending on the model architecture.
Convolutional blocks are unfrozen and frozen instead of individual layers, which helps to
reach the desired accuracy faster. Trainable blocks are the convolutional blocks that are
not being frozen. Figure 5 shows the convolutional blocks and fine-tuning process for the
VGG19 model. Trainable parameters are the total number of parameters that get re-trained
on the new data. Thus, while fine-tuning, freezing and unfreezing blocks are efficient,
compared to individual layers. It is preferred to re-train the model with lesser layers
as training time significantly reduces compared to training the whole model. As shown
in Figure 5, while fewer layers, and then more layers to obtain the desired result, using
convolutional blocks and suitable hyperparameters, help achieve higher accuracy faster.
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convolutional blocks.

The Nadam optimization algorithm was used. Real-time augmentation was adopted
for data augmentation, which generates batches of augmented data while the model is
still training. This saves overhead memory on top of making the model robust. Hyper-
parameters and data augmentations used are listed in Table 1.
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Table 1. CNN Training hyperparameters and data augmentation techniques.

Hyperparameters Data Augmentation

Optimizer Nadam Rescaling
Learning rate 2× 10−3 Horizontal flip

Exponential decay rate (β1) 0.9 Zoom range = 0.3
Exponential decay rate (β1) 0.999 Width shift range = 0.3

Epsilon (ε) 1× 10−8 Height shift range = 0.3
Batch size 128 Rotation range = 30

Maximum epoch 500 Zca whitening
Activation function Rectified Linear Unit (ReLU) Zca epsilon = 1× 10−6

2.6. Dataset

The plant leaf dataset used in the experiment was taken from the PlantVillage dataset [39].
The images in the PlantVillage dataset were taken from various plants with and without
diseases. While most of the images were of a single leaf taken with homogeneous background,
a certain amount of images were taken in field condition. The dataset in our experiment
is a subset of the PlantVillage dataset and is divided into three datasets of two, four, and
eight. Each class contains images with a clean and cluttered background. Images with
clean backgrounds were used for training and images with cluttered backgrounds for testing.
These datasets are labeled as dataset1a, dataset2a and dataset3a for two, four, and eight
classes, respectively. Different datasets were created by cleaning cluttered images. These
datasets are labeled as dataset1b, dataset2b and dataset3b for two, four, and eight, respectively.
Figure 6 shows the classes information of the dataset. A total of 4588 images from eight
classes and six plant species were used for the experiment. Dataset1a and dataset1b contain
1268 images from two classes (Apple_healthy and Apple_blackrot). Similarly, dataset2(a,b)
and dataset3(a,b) contains 2268 and 4558 images, respectively. Images in datasets are of varied
sizes and different backgrounds. Clean images are taken in laboratory conditions where a
single leaf is placed on a homogenous background and the image is taken. Cluttered images,
on the other hand, are taken in situ, and comprised of a cluster of leaves along with stems,
branches, and human body parts.
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Dataset4a contains 484 cabbage leaf images from two classes (cabbage_healthy and
cabbage_blackrot). This dataset contains all leaf images from the cabbage plants with a
cluttered background. This dataset comprises of 388 images for training and 96 images
for testing both with a cluttered background. Dataset4b contains the same images, but the
images are cleaned using a background removal algorithm before training and testing the
algorithm i.e., both training and testing images are cleaned. Training and testing images
were divided into an 80:20 ratio for better results [17].

3. Results and Discussion
3.1. Background Removal

The input image was segmented into foreground and background by a combination
of edge segmentation and morphological operations, and the background was converted
to white background. Outputs of each operation involved in background removal can be
seen in Figure 7.
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ground removed image.

The segmentation algorithm produced exemplary results on images with ample depth
between foreground object and background as in Figure 8. However, the object of interest
was difficult to isolate on images with complex background and foreground. Application of
background subtraction followed by the segmentation algorithm on such images produced
satisfactory results. Few images required manual intervention to remove background and
the isolate leaf of interest.
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3.2. Grad-CAM Class Activation Visualization

While CNNs have enabled superior performance, they lack interpretability. This
makes models less transparent and difficult to explain the usability of components of the
model. To overcome this downside, a technique called gradient-weighted class activation
mapping (Grad-CAM) was introduced for producing visual explanations to make the
model transparent. Grad-CAM uses the gradients of any target concept, flowing into
the final convolutional layer to produce a coarse localization map highlighting important
regions in the image for predicting the concept [40]. This enables the visualization of the
outcome from different layers in a CNN model. The visual output of two CNN models,
InceptionV3 and VGG19, is shown in Figure 9.
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Figure 9. Visualization using Grad-CAM for plant leaf image.

The first and third rows show the heat maps and superimposed image of input
images, which are a healthy apple leaf image and strawberry with leaf scorch taken in
field conditions, respectively. It is evident from the heatmaps and superimposed images
obtained from both InceptionV3 and VGG19 models that images with backgrounds fail
to extract the essential features. However, the cleaned images of the aforementioned leaf
images, as seen in the second and fourth rows, have a fine localized region of interest in
the image, proving that CNNs work better with cleaned images.

3.3. Classification

Fine-tuned DenseNet121 outperformed other fine-tuned models by achieving a test
accuracy of 98.9% and 93.5% on the two-class and eight-class clean datasets whereas, fine-
tuned InceptionV3 outperformed others for the four-class dataset by attaining accuracy
of 96.7%. Figure 10 shows accuracies attained by various fine-tuned models on different
datasets. The accuracy difference between the same models on cluttered and cleaned testing
data can be seen in the figure below. Notation “a” denotes an image set with cluttered
testing images and notation b denotes an image set with cleaned testing images. On
dataset1, the difference in accuracy between cluttered and clean datasets (i.e., dataset1a and
dataset1b) ranges from 10% for MobileNet to 16% for NA SNetMobile. For dataset2a and 3a,
the highest accuracy obtained was 67.6% and 47.3%, respectively, by fine-tuned MobileNet.
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proposed background removal algorithm.

Table 2 shows the performance indicators obtained by the highest performing fine-
tuned model on each dataset with a homogeneous background. DenseNet121 attained
an F1-score of 0.99 and 0.95 for two classes and eight classes homogeneous background
dataset while InceptionV3 obtained an F1-score of 0.98 on a four-class homogeneous back-
ground dataset. Figure 11 shows the confusion matrix of fine-tuned models on dataset1b,
dataset2b and dataset 3b, where both training and testing images have a homogeneous
background. Figure 11a shows 176 and 81 truly predicted apple black rot and apple healthy
images out of 179 and 82 images, respectively. These are true positives and false positives.
Two apple black rot images were misidentified as apple healthy and one apple healthy
image was misidentified as apple black rot. These are false positives and negatives in the
confusion matrix.

Table 2. Classification performance indicators of various fine-tuned models on dataset2.

Dataset1b Dataset2b Dataset3b

Models
Metrics

DenseNet121 InceptionV3 DenseNet121

Precision 0.9944 0.9829 0.9639

Recall 0.9888 0.9773 0.9524

Specificity 0.9878 0.963 0.9240

F1-score 0.9916 0.98 0.958

Accuracy (%) 98.9 96.7 93.57
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Table 3 compares the test accuracy achieved by various models on the plant leaf dataset.
While Ferentinos et al. and Kamal et al. have lower accuracy, later models achieved higher
accuracy. There is a disproportion in training and testing data in the former two pieces of
research. Mohanty et al. has an accuracy of 31.4% even though the train–test split is 80–20.
This had a smaller dataset and the number of classes was not mentioned. The latter three
studies make use of a conventionally successful train–test split. Ferentinos et al. and Kamal
et.al train on images taken in laboratory conditions and test on images in field conditions
similar to the system proposed here (cluttered background), with fine-tuned DenseNet121.
Wang et al. train and tests images taken in laboratory conditions while in our proposed
system, with fine-tined DenseNet121 (background removed), we trained and tested images
cleaned, using the segmentation and background subtraction algorithm.

Table 3. A comparison of different CNN networks employed to classify plant disease with the proposed network.

Related Work Accuracy (%) Classes Total Images Train-Test Split (%) Model

Mohanty et al. [17] 31.4 - 121 80–20 GoogLeNet

Ferentinos et al. [41] 33.27 12 - 55.8–44.2 VGG

Kamal et al. [25] 36.03 11 22110 48.1–51.9 MobileNet

Wang et al. [42] 90.4 4 2086 80–20 Fine-tuned
InceptionV3

Proposed system
(Cluttered background) 87.12 2 1262 80–20 Fine-tuned

Densenet121

Proposed system
(Background removed) 93.57 8 4558 80–20 Fine-tuned

Densenet121

Figure 12 shows the training accuracy attained by fine-tuned MobileNet on dataset4a
and dataset4b. It is evident that data with clean backgrounds train faster and have higher
convergence compared to data with cluttered backgrounds.
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4. Conclusions

In this work, different state-of-the-art fine-tuned deep models were employed and
compared on image sets with different backgrounds. Segmentation and background
subtraction algorithms were implemented to clean noisy background images. It is evident
that the presence of a noisy background severely affects convolutional neural networks,
which are seen through Grad-CAM visualization and reflected in their accuracy when
trained and tested on data with high visual disparity. Segmentation algorithms isolated
regions of interest from noisy backgrounds efficiently on images with higher depth between
the subject of interest and background. Background subtraction algorithm improved
background removal on images where the region of interest was interposed between the
ill-favored foreground and background.

Fine-tuned models performed well on classifying plant diseases from leaf images.
Removing background and training and testing models on clean data, significantly in-
creased test accuracy. Fine-tuned DenseNet121 increased accuracy by 12% on a clean
dataset compared to the dataset with cluttered images for the two-class dataset. Similarly,
MobileNet and NA SNetMobile saw an increase in accuracy of 10 and 16%, respectively.
The difference is highly pronounced when the number of classes in the dataset increase.
The accuracy decreases when the number of classes increases. It dropped from 98.9% for
two classes to 96.7% for four classes and finally to 93.57% for the eight-class dataset.

This study combined the concept of background removal using segmentation, back-
ground subtraction with convolutional neural network, and transfer learning to explore the
impact of background noise on convolutional neural networks. The proposed image process-
ing technique and deep learning approach showed higher efficacy on the plant leaf dataset,
and its potential depends on the quality and quantity of available data. This study explored
the potential of the noise removal algorithm and its effects on various network models.
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