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Abstract: It has been recognized for decades that low and inconsistent spray coverages of pesticide
applications represent a major challenge to successful and sustainable crop protection. Deployment
of water-sensitive spray cards combined with image analysis can provide valuable and quantitative
insight into spray coverage. Herein we provide description of a novel and freely available smartphone
app, “Smart Spray”, for both iOS and Android smart devices (iOS and Google app stores). More
specifically, we provide a theoretical description of spray coverage, and we describe how Smart Spray
and similar image-processing software packages can be used as decision support tools and quality
control for pesticide spray applications. Performance assessment of the underlying pixel classification
algorithm is presented, and we detail practical recommendations on how to use Smart Spray to
maximize accuracy and consistency of spray coverage predictions. Smart Spray was developed
as part of ongoing efforts to: (1) maximize the performance of pesticide sprays, (2) minimize pest-
induced yield loss and to potentially reduce the amount of pesticide used, (2) reduce the risk of
target pests developing pesticide resistance, (3) reduce the risk of spray drift, and (4) optimize spray
application costs by introducing a quality control.

Keywords: spray coverage; decision support tools; pesticide applications; spray performance;
smartphone apps

1. Introduction

Conventional (synthetic) and organic pesticides are applied to manage pests (insects,
weeds, nematodes, diseases, etc.) in virtually all agricultural field cropping systems.
Most commonly, pesticides are applied as liquid formulations with either tractor-mounted
ground rigs or manned airplanes around time of planting, or to canopies of an established
crop, such as strawberry plants (Figure 1a). In recent years, pesticide spray applications
with unmanned actuating drone systems have also become commercially available, and
are used in a wide range of cropping systems, especially in East Asia [1–3]. Drone-based
pesticide spray applications typically involve considerably lower spray volumes than
tractor-mounted spray applications [2]. Spray volume and average spray droplet size are
generally correlated, and it is widely accepted that small spray droplets are less likely to
penetrate deeply into crop canopies compared to larger spray droplets. Thus, with all else
equal, the use of small spray volumes (and therefore also small droplets of spray) may
increase the risk of low and inconsistent spray coverage.
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Figure 1. Typical ground rig pesticide application to strawberry crop (a). Water-sensitive spray card 
placed in vertical position in strawberry canopy (b). Small blue dots represent spray droplets and 
can be used to estimate pesticide spray coverage. 

As part of assessing the performance of pesticide applications, water-sensitive spray 
cards may be deployed prior to application, and image analyses of spray cards provide 
quantitative data on spray coverage (Figure 1b). Several image processing software pack-
ages are available (including: Snap Card, Droplet Scan®, Swath Kit®, Deposit Scan, Image 
J, and Drop Vision®-Ag) and have been compared [4]. The combination of deploying wa-
ter-sensitive spray cards and image analysis of spray cards can provide valuable and 
quantitative insight into spray coverage and can therefore be used as quality control of 
spray applications. However, few of these image processing software packages are freely 
available, and few can be operated via built-in cameras in smartphones and tablets (most 
require external scanning devices). This article describes how quantitative data on spray 
coverage can be easily acquired with “Smart Spray”—a novel and freely available app for 
iOS and Android tablets and smart phones. Smart Spray represents a further development 
of an existing and freely available phone app (both iOS and Android versions), Snap Card, 
which has been described in a separate article [5]. By September 2021, Snap Card had been 
downloaded more than 10,000 times [6]. Tutorial videos on how to use Smart Spray are 
available online [7]. Smart Spray was developed and is being promoted as part of ongoing 
efforts to: (1) maximize the performance of pesticide sprays, to minimize pest-induced 
yield loss and to potentially reduce the amount of pesticide used, (2) reduce the risk of 
target pests developing pesticide resistance, (3) reduce the risk of spray drift, and (4) op-
timize spray application costs by introducing a quality control. 

2. Spray Coverage 
“Spray deposition” or “spray coverage” of a liquid pesticide application refers to the 

ground area or leaf surface to which pesticide formulations are applied. In field crops in 
the US, a standard pesticide application with tractor-mounted ground rigs is 20 gallons 
per acre, which equals 193.5 L per ha or about 20 mL per m2. Pesticide applications with 
drones involve considerably lower spray volumes [2]. Pesticide formulations are typically 
applied with nozzles delivering average droplet diameters ranging from 50–600 µm. It 
was considered beyond the scope of this article to describe important aspects affecting 
spray coverage, such as: flow rate, nozzle type, spray volume, and tank pressure nozzles. 
However, to briefly interpret effects of spray volumes and droplet sizes, we present some 
simple calculations of what we refer to as “potential spray coverage”. These simple calcu-
lations are based on two important assumptions: (1) that there is zero evaporation and 
drift, so the entire volume being delivered during spray applications is deposited onto the 
ground and crop surface, and (2) that distribution of droplets is perfectly uniform with 

Figure 1. Typical ground rig pesticide application to strawberry crop (a). Water-sensitive spray card
placed in vertical position in strawberry canopy (b). Small blue dots represent spray droplets and
can be used to estimate pesticide spray coverage.

As part of assessing the performance of pesticide applications, water-sensitive spray
cards may be deployed prior to application, and image analyses of spray cards provide
quantitative data on spray coverage (Figure 1b). Several image processing software pack-
ages are available (including: Snap Card, Droplet Scan®, Swath Kit®, Deposit Scan, Image
J, and Drop Vision®-Ag) and have been compared [4]. The combination of deploying
water-sensitive spray cards and image analysis of spray cards can provide valuable and
quantitative insight into spray coverage and can therefore be used as quality control of
spray applications. However, few of these image processing software packages are freely
available, and few can be operated via built-in cameras in smartphones and tablets (most
require external scanning devices). This article describes how quantitative data on spray
coverage can be easily acquired with “Smart Spray”—a novel and freely available app for
iOS and Android tablets and smart phones. Smart Spray represents a further development
of an existing and freely available phone app (both iOS and Android versions), Snap Card,
which has been described in a separate article [5]. By September 2021, Snap Card had been
downloaded more than 10,000 times [6]. Tutorial videos on how to use Smart Spray are
available online [7]. Smart Spray was developed and is being promoted as part of ongoing
efforts to: (1) maximize the performance of pesticide sprays, to minimize pest-induced yield
loss and to potentially reduce the amount of pesticide used, (2) reduce the risk of target
pests developing pesticide resistance, (3) reduce the risk of spray drift, and (4) optimize
spray application costs by introducing a quality control.

2. Spray Coverage

“Spray deposition” or “spray coverage” of a liquid pesticide application refers to the
ground area or leaf surface to which pesticide formulations are applied. In field crops in
the US, a standard pesticide application with tractor-mounted ground rigs is 20 gallons
per acre, which equals 193.5 L per ha or about 20 mL per m2. Pesticide applications with
drones involve considerably lower spray volumes [2]. Pesticide formulations are typically
applied with nozzles delivering average droplet diameters ranging from 50–600 µm. It
was considered beyond the scope of this article to describe important aspects affecting
spray coverage, such as: flow rate, nozzle type, spray volume, and tank pressure nozzles.
However, to briefly interpret effects of spray volumes and droplet sizes, we present some
simple calculations of what we refer to as “potential spray coverage”. These simple
calculations are based on two important assumptions: (1) that there is zero evaporation
and drift, so the entire volume being delivered during spray applications is deposited
onto the ground and crop surface, and (2) that distribution of droplets is perfectly uniform
with zero overlap of droplets as they are deposited. Thus, calculations of potential spray
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coverage represent the highest possible spray coverage to achieve based on spray volume
and droplet size.

“Droplet volume (µm3)” denotes the volume of a single droplet when measured in
µm3. “Droplet volume (mL)” denotes the volume of a single droplet when measured in mL.
“Droplets in 20 mL” denotes the total number of droplets in 20 mL (which is the amount
of spray formulation commonly applied to 1 m2 during insecticide applications to field
crops). “One droplet area (m2)” denotes the circle area of a single droplet when measured
in m2. “Total droplet area (m2)” denotes “One droplet area” multiplied by the “Droplets in
20 mL” and is therefore a measurement of the circular area of all droplets. “Spray coverage
(%)” denotes the “Total droplet area (m2)” as percentage of 1 m2, and it is an estimate of
the potential spray coverage.

For average droplet sizes of 200 µm or larger applied to bare ground, potential spray
coverage is about 16% (Table 1). However, the crop canopy adds to the surface area per m2

of a crop field and therefore reduces potential spray coverage. As an example, a crop canopy
may consist of six plants per m2 with an average of 20 leaves. Individual leaves may have an
average surface area of 50 cm2. If so (remembering that leaves have two sides, adaxial and
abaxial), canopy surface area amounts to 1.2 m2, so the total surface equals 2.2 m2 (ground
and canopy surface) and the potential spray coverage equals 7.3% (16%/2.2 m2). Although
virtually impossible to quantify under real-world spray applications, it is inconceivable
that a given spray application is performed with zero evaporation and spray drift, and
that droplets do not merge while airborne or immediately after being deposited. Thus,
spray applications of 193.5 L per ha (20 gallons per acre) with nozzles delivering average
droplet sizes near 200 µm or larger into an average size crop canopy (around 1.2 m2 leaf
surface area per m2) should not be expected to produce average spray coverages exceeding
5%. Portions of crop canopies closest to and facing spray nozzles will likely receive much
higher spray coverage, while other portions of crop canopies (i.e., underside of leaves
when applications are sprayed from above) have little or no spray coverage. Individual
growers and their stakeholder organizations recognize the importance and challenges
associated with obtaining high and consistent pesticide spray coverages. Obviously, issues
and challenges associated with maximization of spray coverage increase with the size of
crops and the density of their respective canopies. Achieving high and consistent pesticide
spray coverage against spider mites (Tetranychus spp.) in the bottom canopy portions
of tasseling maize plants (>1.5 m in height) or in mature walnut or almond orchards
(>4 m in height and each tree with canopies >4 m in diameter) presents examples of
such challenges. A 30-year-old quote summarizes the challenge well [8]: “Considering
only a small fraction of pesticidal sprays reaches the target, more attention needs to be
placed on developing techniques which increase crop canopy penetration. Quantification
of where pesticides are going is clearly going to be emphasized by EPA [Environmental
Protection Agency] as a mandatory process for all future registrants”. Unfortunately,
most research into pesticide spray applications focuses mainly on what to apply, and less
on how to apply pesticides with the highest likelihood of successful pest management.
Furthermore, pesticide spray applications are performed under varying weather conditions,
applied by different spray applicators, and conducted with different types of spraying
equipment. Thus, inconsistency of pesticide spray applications should be recognized as a
major challenge regarding effective and sustainable field crop protection.
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Table 1. Potential spray coverage based on average droplet diameter.

Average Droplet Diameter (µm)

50 100 200 300 400 500 600

Volume of single
droplet (µm3) 6.55 × 104 5.24 × 105 4.19 × 106 1.40 × 107 3.35 × 107 6.54 × 107 1.13 × 108

Volume of single
droplet (mL) 6.55 × 10−8 5.24 × 10−7 4.19 × 10−6 1.40 × 10−5 3.35 × 10−5 6.54 × 10−5 1.13 × 10−4

Droplets in 20 mL 3.06 × 108 3.82 × 107 4.77 × 106 1.43 × 106 5.97 × 105 3.06 × 105 1.77 × 105

Area of single
droplet (m2) 1.96 × 10−9 7.85 × 10−9 3.14 × 10−8 7.07 × 10−8 1.26 × 10−7 1.96 × 10−7 2.83 × 10−7

Total droplet area
(m2) 0.599 0.300 0.150 0.101 0.075 0.060 0.050

Spray coverage (%) 59.9 30.0 15.0 10.1 7.5 6.0 5.0

3. Possible Consequences of Low and Inconsistent Pesticide Spray Coverages

Low and inconsistent spray coverages cause concerns about the immediate perfor-
mance of pesticide applications, and poor results are referred to as “spray failures”, which
may trigger a need for repetition of spray applications. Such repetitions represent addi-
tional costs to growers and are also sometimes hampered by legal constraints, as many
pesticides may only be applied a certain number of times each growing season and/or have
restrictions on minimum time between repeated spray applications. In addition, it must be
recognized that, in the case of arthropod pests, low and inconsistent spray coverages imply
that pest individuals are essentially offered a choice between foliage with and without
insecticide. In large and dense crop canopies there may be considerable range, with some
portions of the canopy having very high spray coverage, while other portions are virtually
insecticide-free. Thus, under the assumption that arthropod pest individuals can associate
tactile and/or olfactory cues with a given insecticide (and therefore with the risk of being
killed), they may avoid portions of crop canopies in which they would become exposed to
lethal dosages of insecticides. Such “behavioral resistance” (avoidance of insecticide) has
been documented in multiple, and very different, insecticide-pest systems [9–15], and it
is formally defined as: “Resistant insects may detector recognize a danger and avoid the
toxin. Insects may simply stop feeding if they come across certain insecticides, or leave the
area where spraying occurred (for instance, they may move to the underside of a sprayed
leaf, move deeper in the crop canopy or fly away from the target area).” [16]. Finally, there
are reasons to be concerned about possible links between low and inconsistent insecticide
spray coverage and the long-term risk of physiological resistance evolution in target pest
populations of insects, weeds, and other pests [17–20]. Inconsistent and low spray cover-
age is of particular concern when contact insecticides are applied, but it may also be of
relevance to the long-term performance of systemic and translaminar insecticides [21].

4. Water-Sensitive Spray Cards to Quantify Spray Coverage

Water-sensitive spray cards are coated with bromoethyl blue [22–24], and in re-
action with water they turn brown/blue/purple depending on the size of the water
droplets (Figures 1b and 2). Under experimental conditions, water-sensitive spray cards
provide highly accurate predictions of volumetric flow rate and mass of water applied dur-
ing spray applications [25–27]. Furthermore, several studies describe methods based
on image analysis of data from water-sensitive spray cards to quantify spray cover-
ages [4,28–36]. Water-sensitive spray cards have been used to obtain quantitative data on
spray coverage/deposition in field crop studies of pesticide applications with manned
airplanes [22,37–39], unmanned drones [2,40], and tractor-mounted ground rigs [37,39,40].
A recent study confirmed that water-sensitive spray cards can be used to obtain spray
coverage data in the strawberry canopy, and also identified nozzle height above the canopy,
spray volume, and pressure as important factors that affect spray coverage [41]. In addition,
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there are numerous studies in which water-sensitive spray cards have been used to describe
spray coverages in orchard crops [2,42–45].
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Figure 2. Water-sensitive spray cards with distinct blue spray droplets (a,b). Distinct droplets
scattered in a range of diameters typically result from pesticide spray applications performed with
large-droplet nozzles and/or under low relative humidity conditions. Less discrete spray droplets,
which may appear as blue-gray shading (c,d). Such blue-gray haze may result from pesticide spray
applications with very small-droplet nozzles, but most commonly it is due to high relative humidity
conditions (in which case blue-gray haze should be excluded from spray coverage estimate).

Under favorable spray application conditions, i.e., high temperature, low wind, and
low ambient relative humidity, spray coverage patterns on water-sensitive spray cards
typically show a clear distinction between blue/purple spray droplets and the background
(yellow spray card) (Figure 2a,b). Due to a clear contrast between the water-sensitive spray
card and spray droplets, calculations of spray coverage are highly repeatable. However,
Figure 2c,d show how water-sensitive spray cards sometimes turn blue-gray with less
distinct spray droplets. It is our practical field experience that such blue-gray hazing
of water-sensitive spray cards is not uncommon. At least two scenarios may cause this
phenomenon: (1) Spray applications were performed with nozzles delivering very fine
droplets (similar to mist). If so, a grayish color response should be considered a direct effect
of spray application and should therefore be included in calculations of spray coverage.
(2) Spray applications were performed under high-humidity environmental conditions, so
grayish color responses may be considered an artefact and therefore to be excluded from
estimates of spray coverage. Another important challenge associated with the interpretation
of spray coverage based on water-sensitive spray cards is spray card saturation; this leads
to pixels turning dark blue or purple (Figure 2d). Such intensely colored pixels may be
actual spray droplets, or they may be the result of run-off from a leaf or from a clip used to
mount water-sensitive spray cards within crop canopies. In these and similar situations,
estimates of spray coverages may require that certain portions of spray cards are excluded.
In Smart Spray, this is accomplished through the cropping of images of water-sensitive
spray cards, so that background and unwanted portions of spray cards do not contribute
to calculations of spray coverage.

5. Pixel Classification to Quantify Pesticide Spray Coverages

Spray coverage may be assessed qualitatively based on visual inspection of water-
sensitive spray cards (i.e., available Teejet® [46]). However, to maximize consistency and to
obtain quantitative estimates of spray coverage, image processing software packages are
needed, and several are available [4]. More recently, “Smart Spray” has been developed
and is freely available in iOS and Google app stores. When smartphone apps are used
to quantify spray coverage, color values of individual pixels are interpreted as level of
spray coverage, and pixels are classified based on established color values in each of the
three color channels (red, green, and blue). In Smart Spray, pixels are classified into four
main classes: (1) B = Background (water-sensitive spray card), (2) S = Small droplets,
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(3) L = Large droplets, and (4) H = Humidity [blue-gray haze with no clear droplets, which
most commonly does not represent spray application (see Figure 2c,d)].

Equation (1): Spray coverage

(%) = (S + L + H (include/exclude)) × 100/(B + S + L + H) (1)

Thus, in Smart Spray, the user is given the option to include/exclude pixels in the “hu-
midity” main class as representing either actual spray or background. Humidity-induced
coloring of water-sensitive spray cards is of particular concern when spray applications
are performed under humid ambient conditions (i.e., at night and/or in tropical regions).
The risk and degree of humidity-induced coloring of water-sensitive spray cards are deter-
mined by a combination of ambient humidity and exposure time. It was considered beyond
the scope of this article to provide specific details on relative effects of different ambient
humidity conditions. However, users of Smart Spray concerned about humidity-induced
coloring are advised to deploy additional spray cards outside the crop being sprayed, as
such spray cards can be used as reference cards (to quantify the effect of ambient humidity).

To take into account slight variations in the coloring of water-sensitive spray cards
due to different manufacturers, age (and storage conditions) of the spray cards, projection
angle of images of the spray cards, distance between smart-device and spray card, and
light conditions during imaging of the spray cards—we subdivided each of the four main
classes of pixels (Table 2).

Table 2. Average values in color channels for main classes of pixels on water-sensitive spray cards.

Color Channel

Main Class Red Green Blue Code

Background 229 196 44 E5C42C

Background 243 225 97 F3E161

Small droplet 52 33 29 34211D

Small droplet 64 42 61 402A3D

Large droplet 37 8 89 250859

Large droplet 46 4 172 2E04AC

Humidity 109 94 35 6D5E23

Humidity 158 151 82 9E9752
Average color values for each channel (red, green, and blue) are based on 8-bit data (0–255) from a training data
set of approximately 2000 pixels. Actual average color of each of the eight subclasses is visualized in the far-right
column with the accompanying internationally recognized code for each color [47].

Average color values in each of the eight subclasses were based on averaging pixel
data from approximately 2000 pixels from these eight subclasses, and this data set was
used as training data. The training data represented water-sensitive spray cards deployed
under a range of environmental conditions and obtained from field studies with a wide
range of commercial spray rigs. In R v3.6.1 (The R Foundation for Statistical Computing,
Vienna, Austria), we used the packages “MASS” and “caret”, to classify training data pixels
based on linear discriminant analysis, (LDA) [48]. In the LDA, we used reflectance values
in the three color channels (red, green, and blue), the total sum of the three color channels
(red + green + blue), and four color channel ratios:

• Blue channel/sum of three color channels
• Green channel/sum of three color channels
• Red channel/sum of three color channels
• Red channel/green channel

Thus, in total, LDA classification of pixels was based on eight explanatory variables.
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6. Classification Performance of Spray Coverage

Based on 10-fold cross-validation, the LDA classification of pixels was associated with
an overall accuracy of 97%. More specifically, both background and humidity classes were
classified with 100% accuracy, while 7.5% of small droplet pixels were misclassified as
humidity, and 0.7% of pixels from small droplets were misclassified as large droplets. As a
sensitivity analysis of the LDA classification, we examined the effects of adding 10–50%
experimental stochastic noise to average values in the three color channels (Figure 3).
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Figure 3. Sensitivity analysis of pixel classifications of the main classes Background (a), Humidity
(b), Small droplets (c), and Large droplets (d). We added the following levels of stochastic noise:
±10%, ±20%, ±30%, ±40%, and ±50% to color values, and quantified to what extent the addition of
noise reduced classification accuracy.

For instance, and as seen in Table 2, the color value in the blue channel for the first
“Background” subclass = 44. Including ±10% stochastic noise in that color value meant the
new color value would be between 39.6 and 48.8 (44 ± 4.4). Using average color values for
all eight subclasses, we generated 1000 simulations for each of the five levels of stochastic
noise, and determined accuracies of LDA classifications of the approximate pixels. Thus,
this sensitivity analysis allowed us to quantify the robustness of the LDA classification by
characterizing the association between added noise and classification accuracy.

Regarding the main class of background (Figure 3a), it can be seen that 5–10% of pixels
were misclassified (mainly as humidity), when 40% or 50% noise was added. Regarding the
main class of humidity (Figure 3b), addition of stochastic noise mainly led to pixels being
misclassified as background, and misclassifications exceeded 30% when the level of added
stochastic noise exceeded 40%. Regarding the main class of small droplets (Figure 3c),
addition of stochastic noise exceeding 30% led to pixels being misclassified as humidity
or background. Regarding the main class of large droplets (Figure 3d), addition of up to
50% stochastic noise caused only minor misclassification of pixels (misclassified as small
droplets), which indicated that this main class was very robust. Overall, the sensitivity
analysis showed that all four main classes were associated with a low percentage of
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misclassified pixels, as long as stochastic noise levels were below 30%. However, we
demonstrated that the main classes, background and humidity, were somewhat sensitive to
reciprocal misclassification. We also showed that the main class of small droplets was the
most sensitive of the four main classes and somewhat sensitive to misclassification as either
background or humidity. The main class of large droplets was found to be very robust, and
misclassification was mainly of pixels being considered to represent small droplets and
therefore not a major concern.

7. Effect of Light Conditions on Spray Coverage Estimates

Cameras in tablets and smart phones vary in terms of spatial resolution and have
different automated and proprietary algorithms to process data into color representations
of pixels. Consequently, an object imaged with two different smart devices but under
the exact same conditions may yield slightly different results (pixel values). Another
complication with automated and device-specific image processing and analyses is that
light conditions may profoundly affect image quality and pixel values. In other words,
imaging of the same water-sensitive spray card under different light conditions (but with
constant projection angle and distance between smart device and spray card) may yield
different predictions of spray coverage.

Figure 4 shows how the main classes, background and humidity, were especially
sensitive to light conditions, while the sum of small and large droplet percentages remained
fairly consistent across light conditions. In order to quantify the effects of light conditions,
Smart Spray was tested by generating spray coverage estimates of the same 20 water-
sensitive spray cards on a white background (as shown in Figure 4a) and with images taken
of each water-sensitive spray card under four different light conditions: (1) inside without
direct sun light and no artificial light, (2) inside with direct sun light and no artificial
light, (3) inside an open garage (no direct sunlight and simulating shade), and (4) outside
with direct sunlight. With 20 water-sensitive spray cards, four lighting scenarios, and two
Smart Spray versions (iOS and Android), a total of 160 spray coverage estimates were
generated. During imaging of water-sensitive spray cards, we avoided shadows and glare.
We used the rcorr function in the Hmisc package in R to produce correlation matrices and
examine the significance of pairwise Spearman correlations for all four main classes of
pixels (background, humidity, and small and large droplets) (Table 3).
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Figure 4. Effects of light conditions on spray coverage estimates. A water-sensitive spray card (a) was analyzed (iOS version
of Smart Spray) under four different light regimes: inside without direct sun light and no artificial light (b), inside with
direct sun light and no artificial light (c), inside an open garage (no direct sunlight and simulating shade) (d), and outside
with direct sunlight (e).

All correlations were highly significant (p-value < 0.001), therefore suggesting a con-
siderable robustness of pixel classifications to light conditions and user-specific factors
(Table 3). All correlations with the Android version exceeded 0.88, while two correlations
with the iOS version (highlighted in bold in Table 3) were below 0.80. Both of these lowest
correlations involved data acquired outside under shade, and they were associated with
the main class of humidity.
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Table 3. Experimental testing of effects of light conditions.

Device Condition 1 Condition 2 Background Small Large Humidity Average

Android In_shade In_light 0.987 0.984 0.955 0.897 0.975
Android In_shade Out_shade 0.974 0.995 0.986 0.880 0.985
Android In_light Out_shade 0.992 0.993 0.959 0.968 0.981
Android In_shade Out_light 0.990 0.988 0.985 0.909 0.988
Android In_light Out_light 0.991 0.996 0.970 0.970 0.986
Android Out_shade Out_light 0.982 0.994 0.986 0.962 0.987

iOS In_shade In_light 0.990 0.962 0.990 0.986 0.981
iOS In_shade Out_shade 0.939 0.964 0.995 0.802 0.966
iOS In_light Out_shade 0.962 0.985 0.998 0.782 0.982
iOS In_shade Out_light 0.991 0.986 0.987 0.969 0.988
iOS In_light Out_light 0.986 0.982 0.999 0.985 0.989
iOS Out_shade Out_light 0.927 0.972 0.996 0.729 0.965

Android 0.986 0.992 0.974 0.931 0.984
iOS 0.966 0.975 0.994 0.876 0.978

Total 0.976 0.983 0.984 0.903 0.981

8. Use and Practical Recommendations Regarding Smart Spray

Tutorial videos on how to use Smart Spray are available online [7]. It is important to
highlight that water-sensitive spray cards react to humidity, which means that they have
limited use under highly humid environmental conditions. Smart Spray includes a “hu-
midity filter” to partially correct for this issue, but it is unlikely to yield meaningful results
under high ambient humidity conditions. During spray applications, 2–3 “control” or
“reference” spray cards may be placed outside the crop being sprayed to estimate humidity-
induced gray-coloration of water-sensitive spray cards, and thereby used to “calibrate”
spray coverage estimates. Water-sensitive spray cards should be imaged while on top of a
white background to minimize the influence of light conditions and device-specific color
correction features. Users should attempt to standardize distance and projection angle of
the water-sensitive spray cards being imaged. A minimum of 10 water-sensitive spray
cards should be deployed within a crop field, so that it is possible to identify representative
trends in spray coverage estimates. It is important to standardize the placement of spray
cards in crop canopies. This is particularly important in large and dense crops, such as
orchard trees, fully grown corn, or sugar cane. Standardization of spray card placement
includes ensuring both a vertical position in the canopy and a consistent depth within the
crop canopy (near the center or periphery of individual plants). It also concerns whether
to place water-sensitive spray cards so that they all face upwards or downwards. Finally,
it may include standardization of whether water-sensitive spray cards face towards or
away from the moving tractor, airplane, or drone. Alternatively, water-sensitive spray
cards may be placed in pairs, one in horizontal position (yellow side facing upwards) and
one in vertical position. Essentially, the placement of water-sensitive spray cards should
be standardized as much as possible, as spray card placement in crop canopies greatly
influences estimates of spray coverage.

For consistent use of Smart Spray across smart-device versions and light conditions,
the recommendation is to acquire spray card data after placing water-sensitive spray cards
on top of a white background, and to acquire card data inside (i.e., inside a vehicle) or
outside under direct sunlight. If water-sensitive spray cards are analyzed in locations
with limited direct sunlight (i.e., cloudy weather), we recommend data acquisitions from
water-sensitive spray cards inside without direct sunlight. If a user needs to specifically
estimate humidity coverage and uses the iOS version, we recommend acquiring data from
water-sensitive spray cards either outside under sunlight or inside without direct sunlight.
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9. Final Comments

For decades, concerns about spray coverage have been highlighted as a major chal-
lenge and an impediment to the implementation of effective and sustainable pest manage-
ment. Deployment of water-sensitive spray cards, combined with quantitative assessments
of spray coverage, may provide partial insight into ways to optimize the likelihood of
higher and more consistent pesticide spray applications. For several years a number of im-
age processing software packages have been available and used to quantify spray coverage
based on water-sensitive spray cards. However, most of them require external scanners
and are therefore less practical under field conditions. We recognize that data acquired
from water-sensitive spray cards have limitations, but, in combination with image-based
classification from in-built cameras, we argue that their usefulness far exceeds their short-
comings. Furthermore, challenges associated with meaningful interpretation of data from
water-sensitive spray cards underscore the need for consistent and automated decision
support tools. The fact that water-sensitive spray cards are readily available and easy to
use (especially when spray coverage can be estimated in real-time with apps, such as Smart
Spray), and can be purchased at a fraction of the cost of pesticide spray applications, these
spray cards can be used in combination with other sources of quantitative data in important
ways: (1) to maximize the performance of pesticide sprays, (2) to minimize pest-induced
yield loss and potentially reduce the amount of pesticide used, (3) to reduce the risk of
target pests developing pesticide resistance, (4) to reduce the risk of spray drift, and (5) to
optimize spray application costs by introducing a quality control.

In future studies, we plan to develop additional features of Smart Spray, so that the
app can be used to predict spray coverages based on spray settings, canopy characteristics,
and weather conditions. We envision Smart Spray being used by researchers to compare
spray coverages when pesticide spray applications are performed in different commercial
cropping systems, and/or when different spray nozzles or other types of spray equipment
are tested experimentally. If decision support tools such as Smart Spray become more
widely adopted by growers, it may be possible to influence pesticide companies to provide
more specific and quantitative information and recommendations on pesticide labels. As a
representative example, the Syngenta Chess® label states the following under 5.3 General
Directions, b) Equipment [49]: “Use suitable atomising equipment (hydraulic nozzles
or rotary atomisers) that will produce the desired droplet size and coverage but which
will ensure the minimum loss of product either through endodrift (within target field) or
exodrift (outside target field).”. Such language is found on virtually all pesticide labels.
Obvious and important questions related to this statement on the label are: What is meant
by “suitable atomising equipment”, and how to ensure “minimum loss of product”? Under
the assumption of quantitative spray coverage data being readily available, the Syngenta
Chess® label could state that applications of this insecticide should be performed in such
a way that spray coverage exceeds a certain threshold, such as 5% or 10%, based on an
average of data acquired from 10–15 water-sensitive spray cards. Moreover, we argue that
Smart Spray and similar decision support tools may lead to significant improvements to
experimental studies of pesticide spray applications. In addition, these decision support
tools may enable agricultural extension services and pesticide manufacturers to provide
more precise and quantitative recommendations about quality control and the appropriate
spraying of pesticides.

Author Contributions: Conceptualization, C.N.; methodology, C.N.; software, G.D.V., A.R., E.A.
and K.C.; validation, G.D.V., A.R., E.A. and K.C.; formal analysis, C.N.; investigation, all.; resources,
all; data curation, C.N.; writing—original draft preparation, C.N.; writing—review and editing,
all; visualization, all; supervision, C.N.; project administration, C.N.; funding acquisition, C.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was partially sponsored through a combination of funding from the California
Strawberry Commission and from USDA/ARS Floriculture, Nursery Research Initiative.

Institutional Review Board Statement: Not applicable.



Agriculture 2021, 11, 916 11 of 12

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yu, S.-H.; Kim, Y.-K.; Jun, H.-J.; Choi, I.S.; Woo, J.-K.; Kim, Y.-H.; Yun, Y.-T.; Choi, Y.; Alidoost, R.; Lee, J. Evaluation of spray

characteristics of pesticide injection system in agricultural drones. J. Biosyst. Eng. 2020, 45, 272–280. [CrossRef]
2. Li, X.; Giles, D.K.; Niederholzer, F.J.; Andaloro, J.T.; Lang, E.B.; Watson, L.J. Evaluation of an unmanned aerial vehicle as a new

method of pesticide application for almond crop protection. Pest Manag. Sci. 2021, 77, 527–537. [CrossRef]
3. He, X. Rapid development of unmanned aerial vehicles (UAV) for plant protection and application technology in China. Outlooks

Pest Manag. 2018, 29, 162–167. [CrossRef]
4. Ferguson, J.C.; Chechetto, R.G.; O’Donnell, C.C.; Fritz, B.K.; Hoffmann, W.C.; Coleman, C.E.; Chauhan, B.S.; Adkins, S.W.; Kruger,

G.R.; Hewitt, A.J. Assessing a novel smartphone application—SnapCard, compared to five imaging systems to quantify droplet
deposition on artificial collectors. Comput. Electron. Agric. 2016, 128, 193–198. [CrossRef]

5. Nansen, C.; Ferguson, J.C.; Moore, J.; Groves, L.; Emery, R.; Garel, N.; Hewitt, A. Optimizing pesticide spray coverage using a
novel web and smartphone tool, SnapCard. Agron. Sustain. Dev. 2015, 35, 1075–1085. [CrossRef]

6. Google App Store. Available online: https://play.google.com/store/apps/details?id=com.dafwa.snapcard&hl=en_US (accessed
on 23 September 2021).

7. Smart Spray. Available online: http://chrnansen.wixsite.com/nansen2/smartspray (accessed on 23 September 2021).
8. Hall, F.; Reed, J.P.; Reichard, D.L.; Riedel, R.M.; Lehtinen, J. Pesticide Delivery Systems: Spray Distribution and Partitioning in

Plant Canopies Pesticide Formulations and Application Systems; Bode, L., Hazen, J., Chasin, D., Eds.; ASTM International: West
Conshohocken, PA, USA, 1990; Volume 10, pp. 184–203.

9. Hostetler, M.E.; Brenner, R.J. Behavioral and physiological resistance to insecticides in the German cockroach (Dictyoptera:
Blattellidae): An experimental reevaluation. J. Econ. Entomol. 1994, 87, 885–893. [CrossRef]

10. Lockwood, J.A.; Byford, R.L.; Story, R.N.; Sparks, T.C.; Quisenberry, S.S. Behavioral resistance to the pyrethroids in the Horn Fly,
Haematobia irritans (Diptera: Muscidae). Environ. Entomol. 1985, 14, 873–880. [CrossRef]

11. Nansen, C.; Baissac, O.; Nansen, M.; Powis, K.; Baker, G. Behavioral avoidance—Will physiological insecticide resistance level of
insect strains affect their oviposition and movement responses? PLoS ONE 2016, 11, e0149994. [CrossRef] [PubMed]

12. Wang, C.L.; Scharf, M.E.; Bennett, G.W. Behavioral and physiological resistance of the German cockroach to gel baits (Blattodea:
Blattellidae). J. Econ. Entomol. 2004, 97, 2067–2072. [CrossRef]

13. Sarfraz, M.; Dosdall, L.M.; Keddie, B.A. Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (L.)
(Lepidoptera: Plutellidae). J. Econ. Entomol. 2007, 100, 215–224. [CrossRef]

14. Sarfraz, M.; Dosdall, L.M.; Keddie, B.A. Evidence for behavioural resistance by the diamondback moth, Plutella xylostella (L.). J.
Appl. Entomol. 2005, 129, 340–341. [CrossRef]

15. Jallow, M.F.A.; Hoy, C.W. Indirect selection for increased susceptibility to permethrin in diamondback moth (Lepidoptera:
Plutellidae). J. Econ. Entomol. 2007, 100, 526–533. [CrossRef] [PubMed]

16. Anonymous. Mechanisms. Available online: http://www.irac-online.org/about/resistance/mechanisms/ (accessed on 12 June
2021).

17. Renton, M.; Busi, R.; Neve, P.; Thornby, D.; Vila-Aiub, M. Herbicide resistance modelling: Past, present and future. Pest Manag.
Sci. 2014, 70, 1394–1404. [CrossRef]

18. Renton, M.; Diggle, A.; Sudheesh, M.; Powles, S. Does cutting herbicide rates threaten the sustainability of weed management in
cropping systems? J. Theor. Biol. 2011, 283, 14–27. [CrossRef] [PubMed]

19. Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [CrossRef]
20. Mortensen, D.A.; Egan, J.F.; Maxwell, B.D.; Ryan, M.R.; Smith, R.G. Navigating a critical juncture for sustainable weed manage-

ment. BioScience 2012, 62, 75–84. [CrossRef]
21. Khodaverdi, H.; Fowles, T.; Bick, E.; Nansen, C. Does drought increase the risk of insects developing behavioral resistance to

systemic insecticides? J. Econ. Entomol. 2016, 109, 2027–2031. [CrossRef]
22. Hill, B.D.; Inaba, D.J. Use of water-sensitive paper to monitor the deposition of aerially applied insecticides. J. Econ. Entomol.

1989, 82, 974–980. [CrossRef]
23. Turner, C.R.; Huntington, K.A. The use of a water sensitive dye for the detection and assessment of small spray droplets. J. Agric.

Eng. Res. 1970, 15, 385–387. [CrossRef]
24. Syngenta. Water-Sensitive Paper for Monitoring Spray Distributions; Syngenta Crop Protection: Basel, Switzerland, 2002.
25. Sama, M.P.; Evans, J.T.; Turner, A.P.; Dasika, S.S. As-applied estimation of volumetric flow rate from a single sprayer nozzle series

using water-sensitive spray cards. Trans. ASABE 2016, 59, 861–869. [CrossRef]
26. Sama, M.P.; Weiss, A.M.; Benedict, E.K. Validating spray coverage rate using liquid mass on a spray card. Trans. ASABE 2018, 61,

887–895. [CrossRef]
27. Fox, R.D.; Salyani, M.; Cooper, J.A.; Brazee, R.D. Spot size comparisons on oil- and water-sensitive paper. Appl. Eng. Agric. 2001,

17, 131.

http://doi.org/10.1007/s42853-020-00067-6
http://doi.org/10.1002/ps.6052
http://doi.org/10.1564/v29_aug_04
http://doi.org/10.1016/j.compag.2016.08.022
http://doi.org/10.1007/s13593-015-0309-y
https://play.google.com/store/apps/details?id=com.dafwa.snapcard&hl=en_US
http://chrnansen.wixsite.com/nansen2/smartspray
http://doi.org/10.1093/jee/87.4.885
http://doi.org/10.1093/ee/14.6.873
http://doi.org/10.1371/journal.pone.0149994
http://www.ncbi.nlm.nih.gov/pubmed/26943123
http://doi.org/10.1093/jee/97.6.2067
http://doi.org/10.1603/0022-0493(2007)100[215:ROSCBT]2.0.CO;2
http://doi.org/10.1111/j.1439-0418.2005.00969.x
http://doi.org/10.1093/jee/100.2.526
http://www.ncbi.nlm.nih.gov/pubmed/17461079
http://www.irac-online.org/about/resistance/mechanisms/
http://doi.org/10.1002/ps.3773
http://doi.org/10.1016/j.jtbi.2011.05.010
http://www.ncbi.nlm.nih.gov/pubmed/21620865
http://doi.org/10.1146/annurev-arplant-042809-112119
http://doi.org/10.1525/bio.2012.62.1.12
http://doi.org/10.1093/jee/tow188
http://doi.org/10.1093/jee/82.3.974
http://doi.org/10.1016/0021-8634(70)90099-5
http://doi.org/10.13031/trans.59.11538
http://doi.org/10.13031/trans.12565


Agriculture 2021, 11, 916 12 of 12

28. Cunha, J.P.A.R.; Farnese, A.C.; Olivet, J.J. Computer programs for analysis of droplets sprayed on water sensitive papers. Planta
Daninha 2013, 31, 715–720. [CrossRef]

29. Marçal, A.R.S.; Cunha, M. Image processing of artificial targets for automatic evaluation of spray quality. Trans. ASABE 2008, 51,
811–821. [CrossRef]

30. Zhu, H.; Salyani, M.; Fox, R.D. A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric.
2011, 76, 38–43. [CrossRef]

31. Cunha, M.; Carvalho, C.; Marcal, A.R.S. Assessing the ability of image processing software to analyse spray quality on water-
sensitive papers used as artificial targets. Biosyst. Eng. 2012, 111, 11–23. [CrossRef]

32. Degre, A.; Mostade, O.; Huyghebaert, B.; Tissot, S.; Debouche, C. Comparison by image processing of target supports of spray
droplets. Trans. ASAE 2001, 44, 217–222. [CrossRef]

33. Garcia, L.C.; Ramos, H.H.; Justino, A. Evaluation of software for analysis of spraying parameters carried over water-sensitive
papers (Availação de softwares para análise de parâmetros da pulverização realizada sobre papéis hidrossensíveis). Rev. Bras. Da
Agrocomputação 2004, 2, 19–28.

34. Özlüoymak, Ö.B.; Bolat, A. Development and assessment of a novel imaging software for optimizing the spray parameters on
water-sensitive papers. Comput. Electron. Agric. 2020, 168, 105104. [CrossRef]

35. Hoffman, W.C.; Hewitt, A.J. Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric. 2005, 21, 961–964.
[CrossRef]

36. Wolf, R.E. Assessing the ability of DropletScan to analyze spray droplets from a ground operated sprayer. Appl. Eng. Agric. 2003,
19, 525–530.

37. Latheef, M.A.; Carlton, J.B.; Kirk, I.W.; Hoffmann, W.C. Aerial electrostatic-charged sprays for deposition and efficacy against
sweet potato whitefly (Bemisia tabaci) on cotton. Pest Manag. Sci. 2008, 65, 744–752. [CrossRef] [PubMed]

38. Latheef, M.A.; Kirk, I.W.; Bouse, L.F.; Carlton, J.B.; Hoffmann, W.C. Evaluation of aerial delivery systems for spray deposition
and efficacy against sweet potato whitefly on cotton. Appl. Eng. Agric. 2008, 24, 415–422. [CrossRef]

39. Nansen, C.; Vaughn, K.; Xue, Y.; Rush, C.; Workneh, F.; Goolsby, J.; Troxclair, N.; Anciso, J.; Gregory, A.; Holman, D.; et al.
A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their
performance. J. Econ. Entomol. 2011, 104, 1138–1145. [CrossRef]

40. Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Coverage and drift potential associated with nozzle and
speed selection for herbicide applications using an unmanned aerial sprayer. Weed Technol. 2020, 34, 235–240. [CrossRef]

41. Fink, C.; Banuelos, J.; Rossi, L.; Barker, M.; Edsall, M.; Olivier, D.; Lin, J. An evaluation of spray rig designs for California
strawberries using water-sensitive paper. Int. J. Fruit Sci. 2020, 20, 997–1004. [CrossRef]

42. Bock, C.H.; Hotchkiss, M.W.; Cottrell, T.E.; Wood, B.W. The effect of sample height on spray coverage in mature pecan trees. Plant
Dis. 2015, 99, 916–925. [CrossRef]

43. Bock, C.; Hotchkiss, M.W. A comparison of ground-based air-blast sprayer and aircraft application of fungicides to manage scab
in tall pecan trees. Plant Dis. 2020, 104, 1675–1684. [CrossRef]

44. Siegel, J.P.; Strmiska, M.M.; Niederholzer, F.J.A.; Giles, D.K.; Walse, S.S. Evaluating insecticide coverage in almond and pistachio
for control of navel orangeworm (Amyelois transitella) (Lepidoptera: Pyralidae). Pest Manag. Sci. 2019, 75, 1435–1442. [CrossRef]

45. Abbott, C.P.; Beckerman, J.L. Incorporating adjuvants with captan to manage common apple diseases. Plant Dis. 2018, 102,
231–236. [CrossRef]

46. Teejet. Available online: www.teejet.com (accessed on 23 September 2021).
47. Rapid Tables. Available online: https://www.rapidtables.com/web/color/RGB_Color.html (accessed on 23 September 2021).
48. Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
49. Syngenta Chess Label. Available online: https://www.syngenta.co.za/product/crop-protection/chess (accessed on 23 September

2021).

http://doi.org/10.1590/S0100-83582013000300023
http://doi.org/10.13031/2013.24519
http://doi.org/10.1016/j.compag.2011.01.003
http://doi.org/10.1016/j.biosystemseng.2011.10.002
http://doi.org/10.13031/2013.4677
http://doi.org/10.1016/j.compag.2019.105104
http://doi.org/10.13031/2013.20026
http://doi.org/10.1002/ps.1748
http://www.ncbi.nlm.nih.gov/pubmed/19291696
http://doi.org/10.13031/2013.25141
http://doi.org/10.1603/EC10452
http://doi.org/10.1017/wet.2019.101
http://doi.org/10.1080/15538362.2020.1774473
http://doi.org/10.1094/PDIS-11-14-1154-RE
http://doi.org/10.1094/PDIS-11-19-2345-RE
http://doi.org/10.1002/ps.5265
http://doi.org/10.1094/PDIS-05-17-0629-RE
www.teejet.com
https://www.rapidtables.com/web/color/RGB_Color.html
http://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://www.syngenta.co.za/product/crop-protection/chess

	Introduction 
	Spray Coverage 
	Possible Consequences of Low and Inconsistent Pesticide Spray Coverages 
	Water-Sensitive Spray Cards to Quantify Spray Coverage 
	Pixel Classification to Quantify Pesticide Spray Coverages 
	Classification Performance of Spray Coverage 
	Effect of Light Conditions on Spray Coverage Estimates 
	Use and Practical Recommendations Regarding Smart Spray 
	Final Comments 
	References

