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Abstract: This paper presents a review of the conducted research in the field of multitemporal clas-
sification methods used for the automatic identification of crops and arable land using optical sat-
ellite images. The review and systematization of these methods in terms of the effectiveness of the 
obtained results and their accuracy allows for the planning towards further development in this 
area. The state of the art analysis concerns various methodological approaches, including selection 
of data in terms of spatial resolution, selection of algorithms, as well as external conditions related 
to arable land use, especially the structure of crops. The results achieved with use of various ap-
proaches and classifiers and subsequently reported in the literature vary depending on the crops 
and area of analysis and the sources of satellite data. Hence, their review and systematic conclusions 
are needed, especially in the context of the growing interest in automatic processes of identifying 
crops for statistical purposes or monitoring changes in arable land. The results of this study show 
no significant difference between the accuracy achieved from different machine learning algo-
rithms, yet on average artificial neural network classifiers have results that are better by a few per-
cent than others. For very fragmented regions, better results were achieved using Sentinel-2, SPOT-
5 rather than Landsat images, but the level of accuracy can still be improved. For areas with large 
plots there is no difference in the level of accuracy achieved from any HR images. 
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1. Introduction 
The aim of this paper is to systematise the present achievements in the field of crop 

and arable land recognition with use of multitemporal classification based on machine 
learning algorithms using optical satellite images. Recognition and classification of differ-
ent crops in a particular area and environmental conditions involves the accuracy and 
optimalisation of these processes. Such factors as crop types and agriculture structure, 
classifier methods, and optical sensors are the focus of this paper. Certain trends as well 
as indications of further development and research directions, whose aim is to automatise 
crop identification processes, transpire from the projects and implementation experience 
described so far. 

Research and studies into arable areas could be categorised into three main groups 
depending on spatial resolution of data. The first category consists in monitoring change 
and its dynamics in arable land on a continental scale with a resolution of 1 km, with use 
of data from sensors such as, for instance, NOAA/AVHRR, VEGETATION, MODIS [1,2]. 
The second category includes studies into identification and classification of crop types, 
conducted on a regional scale [3]. Currently, this approach is frequently adopted by sci-
entists and developers using widely available data of medium resolution of several dozen 
metres, which is still called high resolution (for instance SPOT or Sentinel-2 of 10 m to 60 
m resolution or Landsat of 30 m resolution). The third category in the context of spatial 
resolution consideration are studies with use of very high resolution imaging–of 1 m or 
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less resolution, such as WorldView, QuickBird, Ikonos (Table 1), or aerial imaging of sev-
eral centimetres resolution [4]. Such data are mainly used for the purpose of local-scale 
application in detection and monitoring of arable land and crop conditions at the detail 
level, which is used to manage and plan agricultural production in a single farm, often in 
combination with GIS and GPS technologies in precision agriculture [3]. Research and 
studies of the second category play a vital role in managing and monitoring vegetation 
cover in arable land, providing answers to questions of what and where something is cul-
tivated [3]. This means recognition of the crop or land type along with a specification of 
their location and boundaries. However, it needs to be emphasized that arable land is 
characterised by high complexity, which means a great diversity of species and types as 
well as dynamics of change related to the growing season or crop rotation [5]. All of these 
are particularly important in the areas of the complex mosaic of crops and arable plots of 
varied geometry and size. These factors, combined with a diversity of crop types, pheno-
logical changes, agricultural practices, and environmental and climatic parameters result 
in a great divergence and variability that need to be allowed for while establishing a model 
and prove challenging in the automatic classification of images [6]. Hence, the issue of 
automatic crop detection is a topical one, present in numerous studies undertaken in order 
to improve quality and reliability. As a matter of fact, that consists in a search for methods 
allowing high accuracy of intermediate results as well as final cartographic products. Nu-
merous global projects aiming at crop recognition with use of satellite images [7–9] make 
use of machine learning classification algorithms. 

Table 1. Sensors most frequently used to examine vegetation and identify crops in arable lands, 
based on [3,10]. 

Sensor 
Resolution  

Imaging Width 
Panchromatic Mode Multispectral Mode  

(Number of Bands) 
LR–category 1    

NOAA AVHRR - 1 km/8 km (6) 2400 km 
(Vegetation] - 1.15 km (4) 2000 km 

MODIS/Terra - 
250 m/500 m/1 km 

(36) 2330 km 

HR–category 2    
SPOT 1–4 10 m 20 m (3–4) 60 km 

SPOT 5 2.5 m/5 m 10 m (4) 60 km 
SPOT 6–7 1.50 m 6 m (4) 60 km 

Landsat 7–8 15 m 30 m (6–8) 185 km 
Sentinel 2 - 10 m/20 m/60 m (13) 290 km 

Gaofen 1–2 2 m 8 m (4)  93 km 
VHR–category 3    

Ikonos 0.82 m 3.20 m (4) 11 km 
Quick Bird 0.65 m 2.62 m (4) 16 km 

Geo Eye 0.46 m 1.84 m (4) 15 km 
World View 1–3 0.46–0.31 m 1.84–1.24 m (8) 13 km 

Pleiades/Pleiades Neo 0.50 m/0.30 m 2 m/1.2 m (4/6) 20 km/14 km 
Super View 0.50 m 2 m (4) 12 km 

The early commonly applied classification methods known as parametric or non-par-
ametric [11] were used to categorize land or crop types on the basis of single images. This 
resulted mainly from the costliness and rareness of such imaging in the 1980s and 1990s, 
in addition to IT limits. More recent decades brought the development of methods based 
on a combination of variability of the spectral reflection value with the crop growth stage 
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during the growing season [5]. This approach requires monitoring of changes in the area 
during the season and establishing samples called spectro-temporal profiles which are 
most frequently based directly on reflection values or on processed data e.g., vegetation 
indices. These indices calculated from two bands (e.g., NDVI from red and infrared) cor-
relate well with biomass [3]. The value of such processed images indicates healthier or 
more stressed vegetation and can be used to compare conditions of the same species at 
different times in a year, in different years or growing in different areas in the same region 
or same field [3]. 

The further progress in processing was to obtain a multitemporal image dataset, 
whose timing coincides with changes typical of a specific crop type. It involves numerous 
specific and variable features of the cultivation calendar as well as individual cases [5,6]. 
Hence, a difficulty of establishing appropriate patterns arises, not to mention a difficulty 
of obtaining adequate imaging data or attempts at universalising or extrapolating the 
model to other regions [5]. And this is where machine learning as an image classification 
approach can be of help. 

The main aim of machine learning (ML) is to create an automated system able to 
improve with use of the gained experience (here: imagery data) as well as to be able to 
extrapolate the acquired knowledge [12] in order to crop recognition and classification. 

The idea of classification in the context of processing and analysing satellite images 
implies data categorisation into defined groups. This group process can vary significantly, 
depending on the various needs, including the need for thematic details, which means the 
number of classes, or geometric details related to image spatial resolution. Classes that 
should be classified into the same category exhibit certain physical features, most fre-
quently in the form of a spectral reflection registered in one or many spectral channels 
[11]. The aim of a systematised and automated process of digital classification is to identify 
areas of similar features, label them and assign them to a class. Automated classification 
methods rely on defining the rules of assigning pixels to classes on the basis of their spec-
tral features [13], or in the case of crop detection on spectral and time feature space [14]. 

The earliest methods of ML that were effectively used for remote sensing were 
known as unsupervised and supervised classifications. In the supervised approach, the 
“machine” otherwise algorithm is taught using samples (i.e., the training set) of the de-
sired input and output. The “machine” processes the input data to determine correlations 
and logic which can be later used to predict results. After the identification of a logical 
pattern, this can be applied to determine whether a given object belongs to a given class 
[12]. This spectro-temporal sample as a training set is a key issue of any algorithm [5,6,13]. 
Moreover, Vieira et al. involved the spectro-temporal response surface (STRS), which pro-
vides for the generalization in time of spectral reflectance properties of agricultural areas 
[14]. For unsupervised training, the analyst employs a computer algorithm that locates 
concentrations of feature vectors within a heterogenous sample of pixels. These so-called 
clusters are then assumed to represent classes in the image and are used to calculate class 
signatures. They remain to be identified (labelled), however, they may not correspond to 
classes of interest to the analyst [11]. Therefore it is rather rarely used for crop identifica-
tion, though some studies involved such approaches [5,14]. 

Another aspect of crop identification, independent of the ML algorithm, concerns the 
spatial unit, i.e., pixel or object (i.e., single parcel) [5]. Pixel-based methods often fail to 
identify actual parcel boundaries [15], while spatial filters improve accuracy by removing 
small inclusions within the dominant class [16]. 

Although certain algorithms and image data combinations may produce good results 
in specific land and crop type, they may perform poorly in other related applications 
[5,17,18]. In this regard, the choice of data sets, sensors, and processing methods depends 
on the feasibility and objectives of the crop identification study. The main goal of this 
paper is to compare the results of ML methods used for crop recognition at the parcel 
level, especially in fragmented areas. To the best of my knowledge, there is no compre-
hensive assessment of the progress and challenges in crop types studies with a key focus 
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on complex structure agricultural areas. Consequently, there is a need to review the ad-
vancements in crop types detection methods, especially using the most popular high res-
olution (HR) images. The paper also interrogates the results from commonly used ML 
algorithms with respect to crop types, structure, and parcel size achieved in recent studies. 

2. Methods 
The multitemporal classification of optical images approach was chosen from among 

the many described in literature methods since it is reported as the effective one and to 
make possible the comparison of the results. The major research method was literature 
review and analysis of the reported outcomes. The databases (e.g., Scopus, Google 
Scholar, Web of Science, IEEE Xplore, ScienceDirect, MDPI, BazTech) were chosen to 
search for the relevant literature. This choice was motivated by the extensive numbers of 
publications as well as advanced tools for literature analysis. Queries covering all possible 
combinations of terms related to optical satellite sensors, arable land and crop classifica-
tion methods were used and returned over 50 articles from 1995 to 2021. The majority of 
the papers (almost 30) are dated from 2014–2018. The most popular journals are Remote 
Sensing (11 papers), Computers and Electronics in Agriculture (6), International Journal 
of Applied Earth Observation and Geoinformation (5), and ISPRS publishing (6 papers). 
A few papers were found in the IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing (3 papers), the International Journal of Remote Sensing (3), 
Remote Sensing of Environment (2), and Machine Learning (2 papers). Besides the peer-
reviewed papers, in this research some other types of publication were included: one Mas-
ter’s thesis and four reports or information on the internet. Most of the reviewed articles 
are case studies on the topic of crop type classification using optical and radar data. In 
addition to the reviewed case studies, literature on remote sensing data and ML algo-
rithms were analysed. These research and review publications were mainly used as infor-
mation sources to describe the methodological context and background of the above-men-
tioned topics but were not included in the systematic review. 

In the last decade the interest in machine learning (ML) methods in crop detection 
increased, especially using time-series images [5,6,14,17,18]. Therefore the literature re-
view covers several recent years, mainly but not only the period since 2010. Earlier efforts 
before 1995, though vital in development of currently used crop and arable land recogni-
tion algorithms, are already historical studies and therefore not the subject of this paper. 
During the last 20 years, the most focus went to study and adjust the classifiers using 
multitemporal data as much as possible. 

A state of the art review indicates main areas of interest for research groups so far 
concerning the development of algorithmics in automation processes of crop and arable 
land recognition and the quality increase of these processes (here: increase in accuracy of 
the products of these processes). The most frequent statistics describing the accuracy of 
classification are adopted from Congalton [19], and they are estimated based on an error 
matrix. Overall Accuracy (OA) for classification itself, and User’s Accuracy (UA) for par-
ticular classes (crops) dominate in the publications, therefore these will be used in the next 
paragraphs to compare the results of classification. The results were juxtaposed in the ta-
bles and displayed in figures as an alluvial chart, box plot and matrix plot. 

3. Results 
In this chapter, the results of crop detection using multitemporal optical images were 

compared. The technical issues like classifiers and image sensors were considered as were 
the environmental issues i.e., crop types and agricultural structure. 

Analysis of the bibliography available on the subject indicates considerable interest 
in some particular supervised algorithms: Random Forests–RF [20], Support Vector Ma-
chine–SVM [21] and Artificial Neural Network–ANN [22] successfully used in satellite 
images classification [23]. A steady increase in interest in supervised methods of mul-
titemporal classification of vegetation classes [5,24] or topographic objects identification 
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[25,26] can be seen as well. The automated crop and arable land recognition based on 
multitemporal classification includes methods such as RF [17,27–30], SVM [16,17,28,31–
33], ANN [28,34–36]. Other methods, such as maximum likelihood algorithm–MXL 
[5,24,37] or K-Means algorithm [5] are still used, mostly to compare the classification re-
sults. There are a lot of aspects affecting the performance of the classification: chosen clas-
sification method, spectral characteristic similarities of the crops [33] or biophysical vari-
ables [38] and weather conditions, such as cloudiness [39], temperature and precipitation 
of the study area [6]. Therefore, an identification method working well in one agro-region, 
i.e., an area with similar climate, soil and agro-technical conditions, cannot be assumed to 
work as well in another, different environment [6]. The final result of classification de-
pends not only on the selected method of data processing but also on many other factors 
such as input satellite data type and acquisition period, quality of the training data, plant 
species or arable land structure. Therefore it is difficult to discuss the merits of any method 
in comparison with others. However, the previous mentioned classifier, that is RF, ANN 
and SVM, yield very good results. Since they are very common in use for multitemporal 
classification, their accuracy will be discussed, paying special attention to the dominant 
crops and agricultural structure. 

3.1. Approach to Classification 
Since both elements input images and the type of classifier establish an approach to 

classification, their results will be considered together. 
Both pixel and object approach for crop classification are frequently used. The choice 

depends on the availability of software of the OBIA type [40] and the ability to generate 
reference boundaries for the crops [34]. However, the pixel approach seems to dominate, 
followed with aggregation of the classification result related to the plot. Extra filters are 
frequently used in the final processing stage in order to smooth and remove single ran-
dom pixels [18]. The parcel-based approaches have been found to be more accurate than 
the pixel-based approaches [41]. The field boundaries can be derived from the digital vec-
tor database [42] or by segmentation [43]. The accuracy of the results is also affected by 
the image processing unit (i.e., pixel or object). In mixed agriculture landscapes, image 
segmentation methods seem to provide a significant advantage, as different types of land 
use have different functions and at the same time are similar spectrally [44]. 

Although the weather can make the crop development start earlier or later, so too are 
the amount and correct timing images important factors for crop identification [6]. There 
are also some unique approaches to classification, such as using single date imagery [45] 
or pre-harvest images [46]. Nevertheless, most of the studies are based on time-series data 
from the whole growing season. 

The most popular satellite images used for crop recognition are Landsat and Sentinel-
2 due primarily to the open and easy access to the data. Another reason is the parameters 
of these systems: spatial and spectral resolution and temporal resolution i.e., time of re-
visits. Today, the access to this data and processing tools is even faster and less compli-
cated since both data and software are incorporated within single services e.g., DIAS–Data 
and Information Access Services [47], the Google Earth Engine [48] or even through the 
open-access software [49,50]. The other remote sensing systems i.e., SPOT, Pleiades, 
RapidEye, or commercial VHR systems are not so common in use due to the price and 
small area of acquisition [3]. For instance, Landsat image covers an area 180 km by 180 
km, while WorldView-2 is 16 km by 16 km only (Table 1). Again, it is much faster is to 
process a single image for a big area at once rather than to process mosaics of the images 
acquired on different dates [13]. 

Table 2 presents crop classification results obtained with use of RF, SVM, ANN, and 
MXL, the most popular techniques and diverse satellite data. Countries (as research areas) 
in bold type are the ones where small-holdings and complex agricultural structure domi-
nate. The results are presented from the lowest to highest accuracy within each method 
and for each sensor separately. The overall accuracy level of classification results in 
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Landsat images (TM, ETM+, OLI) ranges from 70% (Tasmania, MXL) to 92% (Iran, SVM), 
in Sentinel-2 images from 77% (South Africa, SVM) to 98% (China, ANN), and in SPOT-5 
or RapidEye images from 74% (Pakistan, RF) to 95% (China, ANN). This range seems rel-
atively stable regardless the method. On Figure 1 one can notice that RF classifier ranges 
from 74–96%, MXL varies from 70% to 92%, while SVM is from 82% to 92%. The best 
results are found by the ANN method, which reaches the accuracy of 85–98% for Ukraine 
and China, respectively, and this method is on top of other classifiers. 

Table 2. The best overall accuracy (OA) of crop classification with machine learning methods and 
the area of research from selected publications. “Small-holdings” in bold type. 

Classifier 
Landsat 

TM/ETM/OLI  
Country [Reference] 

Sentinel-2, S2 + L8  
Country [Reference] 

SPOT5/RapidEye  
Country [Reference] 

RF 

79% Poland [51] 80% Mali [27] 74% Pakistan [45] 

90% France [45] 
83% Austria [52] 
96% Austria [53] 86% Uzbekistan [54] 

90% Argentina [30] 84% India [45] 87% Germany [55]  
87% Luxemburg [55] 

90% South Africa [30] 86–91% Poland [51] 94% France, Belgium, 
Ukraine [18] 

90% USA [30] 89% Spain [31]  
 89% Japan [56]  

SVM 

84% Portugal [33] 83% South Africa [46] 87% Turkey [57] 
86% France, China 

[17] 82% India [45] 90% USA [16] 

90% Argentina,  
South Africa, USA 

[17] 
91% Spain [31]  

92% Iran [32] 91% Japan [56]  

ANN 
85% Ukraine [34] 91% Finland [58] 95% China, Gaofen1–

2 [59] 
86% Ukraine [60] 96% Italy [61]  
89% Canada [36] 98% China [62]  

MXL 
70% Tasmania [63] 89% China [64] 78% Turkey [65] 
73% Germany [6]  86% USA [16] 
90% Canada [24]  92% Canada [45] 

In the research areas characterised by great fragmentation of plots, these values vary 
from 83% (Austria) to 89% (Spain) for the RF method, while for the SVM method it is 
slightly higher and reaches 84% (Portugal) to 91% (Spain). Overall there is no significant 
difference between results on complex and any other areas in respect to the classifiers. 
Another observation for this type of fragmented structure of plots concerns the images. 
The classification has better accuracy on the Sentinel-2, where the range is 83% to 96% 
(Austria) and on SPOT-5, which reaches 87% (Germany, Luxemburg). This range is simi-
lar to the accuracies for any other areas; for Sentinel-2 it ranges from 80% (Mali) to 98% 
(China), and for SPOT-5 from 74% (Pakistan) to 95% (China). For Landsat, these accuracies 
for complex areas are somewhat worse, from 79% (Poland) to 84% (Portugal). In compar-
ison with the accuracies in any other area, OA is lower approximately about 10% (i.e., 
from 85% in Ukraine to 92% in Iran). 
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Figure 1 shows the overall accuracy for all study areas regarding the images and clas-
sifiers based on values presented in Table 2. Also, the considered classifiers are all used in 
any optical sensor: Landsat, Sentinel-2, SPOT5, or RapidEye. 

 
Figure 1. The overall accuracy (OA%) achieved regarding classifier and image (sensor), based on 
Table 2. 

3.2. Dominant Species 
The literature review provides an insight into which plant species are most fre-

quently detected. These are usually dominant species cultivated in the temperate climate 
zone in the northern hemisphere such as spring and winter cereals, rapeseed, corn, sugar 
beet and grassland [5,31]. The number of species classified usually amounts to five to six 
classes or crop groups and does not exceed 12–15. The more species to be identified, the 
more difficult the task is, and the lower the accuracy of classification results. This results 
from the physical and phenological, and what follows is spectral similarity of the related 
species (for instance legumes), for which it is difficult to develop separate models. That is 
why these species “confuse” in the classification process and the end result of their classi-
fication is poor. Classes representing non-crops in agricultural areas, such as water, build-
up areas or forests are also included in many studies [60], which in fact increases the over-
all accuracy and supports visualisation or further analyses concerning land cover. Earlier 
instances of SPOT-4, Landsat-8 and RapidEye images for diverse research areas all over 
the world yielded varying results, ranging from the best ones in the USA (OA equals 90–
91%) to the poorest in Madagascar or Burkina Faso (OA equals 30–50%) [14,24,30,63]. Yet 
other commonly used approaches to agricultural areas classification, such as arable and 
non-arable areas (two general classes) results in an overall accuracy (OA) at the 85% level 
and enables differentiation between arable and non-arable lands, not indicating specific 
crops [5,18]. 

Table 3 shows commonly classified crops together with the accuracy of their classifi-
cation. The dominant types of crops are maize, grassland, winter and spring cereals, rape-
seed, sunflower, potatoes and sugar beets. Maximum values reported in scientific papers 
are presented together with the main method of their classification (ANN, RF, SVM, MXL) 
and the input data types. The results of classification are presented with the User’s Accu-
racy (UA), as this measure was commonly used in the literature reviewed. For each crop 
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classification, results were ordered from the poorest to the best results obtained. The RF 
method yielded the poorest results for spring cereals (16%) and potatoes (20%), while the 
SVM method yielded highly accurate results for the same crops: 90% for spring cereals 
and 94% for potatoes. Cited accuracy for other crops are usually within a range from 60% 
(maize, grasslands, sunflower) up to even 99% (rapeseed, maize). Juxtaposing the results 
for various crops it is possible to notice that the accuracy divergence is high and it is dif-
ficult to find a correlation between specific crops, classification method or data type. 

Table 3. Dominant arable land classes in given areas and the User’s Accuracy (UA) of their classification, together with 
the classification method: ANN, RF, SVM, MXL and the sensor types: L8—Landsat-8 (OLI), S2—Sentinel-2, TM and ETM—
Landsat, S5—Spot-5. 

Class 
Name 

Maize 

UA (%) 60% 77% 80% 88% 92% 93% 87% 89% 98% 99% 82% 90% 96% 
Classi-

fier  
RF RF RF RF RF RF ANN ANN ANN ANN SVM SVM SVM 

Data 
[source] 

L8 [30] S2 [52] S2 [56] S2 [27] S5 [55] S2 [31] L8 [34] L8 [60] S2 [61] S2 [62] S2 [66] TM [33] S2 [31] 

Class 
name 

Grassland  

UA (%) 76% 77% 91% 93% 63% 68% 89% 68% 80% 83% 94% 96%  

Classi-
fier  

RF RF RF RF ANN ANN ANN  SVM SVM SVM SVM SVM  

Data 
[source] 

L8 [30] S2 [31] S2 [56] S5 [55] L8 [60] S2 [61] L8 [34] TM [33] L8 [32] S2 [31] S2 [56] S2 [46] 

 
 

Class 
name Winter cereals      

UA (%) 98% 68% 88% 92% 93% 72% 87% 90%      

Classi-
fier  ANN RF RF RF RF SVM SVM SVM      

Data 
[source] 

S2 [58] S5 [55] S2 [31] L8 [51] S2 [52] TM [33] L8 [32] S2 [31]      

     

Class 
name 

Spring cereals      

UA (%) 39% 64% 16% 89% 90% 94% 53% 90%      

Classi-
fier  ANN ANN RF RF RF RF SVM  SVM      

Data 
[source] 

L8 [34] L8 [60] S5 [55] L8 [51] S2 [31] S2 [58] TM [33] S2 [31]      
     

Class 
name 

Rapeseed        

UA (%) 76% 86% 95% 96% 96% 99% 96%       

Classi-
fier  RF RF RF RF ANN ANN SVM       

Data 
[source] 

S5 [55] L 8[51] S2 [31] L8 [30] L8 [60] L8 [34] S2 [31] 

      
      

Class 
name 

Sunflower         

UA (%) 67% 85% 63% 67% 92% 95%        

Classi-
fier  ANN ANN RF RF RF SVM        
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Data 
[source] L8 [60] L8 [34] L8 [30] S2 [52] S2 [31] S2 [31]        

Class 
name Black fallow land         

UA (%) 80% 75% 78% 96% 49%         

Classi-
fier  

ANN MXL RF RF SVM         

Data 
[source] TM [14] TM [24] L8 [30] RE [54] TM [33] 

        
        

Class 
name Potatoes          

UA (%) 96% 20% 81% 85% 94%         

Classi-
fier  ANN RF RF SVM SVM         

Data 
[source] TM [14] S5 [55] S2 [56] S2 [56] L8 [32] 

        
        

Class 
name 

Sugar beets         

UA (%) 70% 94% 79% 84% 96%         

Classi-
fier  

ANN ANN RF RF SVM         

Data 
[source] 

L8 [60] L8 [34] L8 [51] S5 [55] S2 [56] 

        
        

Since Table 3 itself is rather extensive to facilitate its interpretation, Figures 2–4 illus-
trate the results and relations between crops, data (sensor), classifier, and accuracy. They 
show that classifiers achieve similar accuracy regardless of the type of crops (Figure 2). 
The majority of the crops reach the User Accuracy (UA) value from 60% to 99% with the 
median at the 87% level. Spring cereals group different kinds of cereals, hence this large 
variation of results from 50% to 90%. The best and the most consistent results were re-
ported for rapeseed (from 90% to 96% of UA). Figure 2 summarizes a quantitative distri-
bution with five standard statistics: the smallest value, lower quartile, median, upper 
quartile, and largest value. 

Figure 3 shows the aggregation of User’s Accuracy (boxes) as an average value in 
relation to images (vertical axis), and classifiers (horizontal axis). User Accuracy in percent 
(UA) was averaged for all crops and displayed from the lowest value (light colors) to the 
highest value (dark red). The count of UA value for crop types describing in the reviewed 
literature is shown as the size of square (from 1 to 14 as maximum). The best single result 
was achieved using the RF method on the RapidEye dataset for black fallow land. Since 
this value refers to single measure it cannot be used for comparison (similar to MXL 
method on TM for black fallow as well). The best mean values reached were for crops 
classified by SVM in Sentinel-2 time series images. The poorest results were indicated for 
crops classified by RF in SPOT-5 images similar to SVM in Thematic Mapper (TM) images 
on a 50% level. 
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Figure 2. The distribution of crop type accuracy (UA%) based on Table 3. The colors indicate dif-
ferent sets of sensors used in the aforementioned studies. 

Figure 3. The relations between data (sensor), classifier and accuracy (UA%) calculated based on 
all crops from Table 3. The boxes show UA average values in color, and UA count in size. 

The chart in Figure 4 represents the relations between crops, data (sensors) and 
achieved accuracy (UA). One should notice that crop types are recognizable at each da-
taset and there is no special inclination to choose the imagery for experiments. It is rather 
the plot size and agricultural structure and availability to determine of input data selec-
tion. Also it is worth mentioning that each sensor has a large dispersion of achieved accu-
racies (UA%). For Landsat 8 (OLI) it is from 39% to 99% and for Thematic Mapper is from 
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49% to 96%, while for Sentinel-2 is from 67% to 99%. For SPOT-5 this range is from 16% 
to 93%, therefore no direct relation between image resolution and value of accuracy is 
shown. 

 
Figure 4. The relations between data (sensor), crops (class name) and accuracy (UA%) based on 
Table 3. 

An additional juxtaposition of classification accuracy obtained in wheat recognition 
with use of diverse sensors and methods is shown in Table 4. Irrespective of the region 
and the method used, very good results were obtained, ranging from 76% (SVM, Landsat) 
to 98% (ANN, Landsat). 

Table 4. Accuracy obtained in wheat recognition with use of diverse sensors and classifiers. 

Method 
Data 

RF SVM ANN 

Landsat 79% [30] 
76% [33] 
85% [32] 

92% [34] 
98% [60] 

Sentinel2 
83% [31] 
95% [44] 

91% [31] 
96% [56] 

98% [61] 
90–99% [62] 

SPOT5/RE 
88% [55] 
89% [52]   

It needs to be noted that the number of satellite images and the date they were ac-
quired are of vital importance in a multitemporal analysis to maximize the differentiation 
of crop types. It would be ideal to acquire a maximum number of images throughout the 
growing season (image capture during every possible flight), but on the other hand, there 
are meteorological limitations for optical images, as well as equipment limitations con-
cerning the processing and storing of such a large amount of data. The literature indicates 
the need to take into account at least 4 periods of the growing season: (1) plants at rest, 
after ploughing or sowing (bare soil dominates); (2) an increased rate of growth compared 
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to natural vegetation; (3) the culmination moment of growth–maturity; and (4) a decrease 
in biomass–harvest and withering [5,6]. 

3.3. Structure and Size of Agricultural Plots 
Classification of large plots, i.e., the size above 50 ha, based on the data from Landsat-

8 yielded varying accuracy levels (OA range of 60–90%) depending on the method used 
and the character and structure of the area [28,35,37,66]. Classification for small plots, as 
conducted in Poland, indicates an overall accuracy of 77–89% [51], when SAR images were 
used the results reached as high as88% [29,35,67,68]. A similar to Polish fragmented agri-
cultural structure and similar classification results were noted in Austria and Portugal, 
where the overall accuracy was of 76–83% in Austria [52] and 68–84% in Portugal [33]. 
Comparing these results (Table 2) one should notice that the agricultural structure is an 
important variable that makes an impact on the accuracy and feasibility of crop classifica-
tion. Certain initiatives have been undertaken to resolve such problems all over the world 
independently of agricultural structure and size of plots. Their results can be seen in the 
open access software Sen2Agri and Sen4CAP used for crop classification developed in the 
ESA projects [69,70] and the OneSoil Map service [71]. The data published by OneSoil 
come from the satellite images supplied by the ESA on free-access service for Sentinel-2. 
24 crops are identified with the accuracy of F1 = 0.91 with use of a neural networks algo-
rithm in this service. The data included in the map include crop name, location, size, as 
well as the crop size estimate for the whole country. Machine learning algorithms identify 
crop boundaries with an accuracy of up to five metres [71]. Yet, these systems have limi-
tations and can be used to give an overview of the distribution of crops for smallholders 
where the width of a parcel is sometimes 10 m or less [51,72]. 

4. Discussion 
As was previously mentioned, it is difficult to compare the classification results due 

to differences in cultivation methods or agricultural features of the studied areas. Moreo-
ver, examples of multi-site assessments, which compare the performances of the same 
classification method in different agro-systems, are very scarce [5]. Examination of the 
accuracy of automated crop identification is closely related to the specific features of the 
regions and the specific kinds of crops, so that is why the results tend to be unique. Hence, 
the analysis of the results achieved on arable land classification with the use of optical 
data has limitations. To make feasible the comparison of the outcomes, the review in-
cluded only the main optical image sensors the Landsat (18 out of 46 studies), Sentinel-2 
(15), SPOT-5 and RapidEye (together 13 out of 46). Although Landsat images are still the 
most popular in crop recognition, areas with small-holdings and fragmented structures 
are preferably analysed in Sentinel-2, SPOT5, or RapidEye images because of the spatial 
resolution and better accuracy, e.g., in Spain OA reached the level of 89–91% [31], in Lux-
emburg 87% [55] (Table 2). Still, it is a little lower than on large plots. For example in 
Ukraine where the dominant field area is approx. 50 ha, 94% of OA was achieved using 
SPOT-5 [45], and 90% of OA in the USA [16] and Canada [36]. There are also interesting 
studies in Germany using Landsat TM/ETM showing 73% of OA [6] while using SPOT5 
and RapidEye 87% [55]. 

The most popular classifiers were Random Forests (20 studies), Support Vector Ma-
chine (12), Artificial Neural Network (8), and Maximum Likelihood (8), taking into ac-
count an agricultural structure as well. It should notice a slight dominance of RF methods 
more often chosen for such regions (Table 2). Results from this classifier achieve OA from 
79% [51] to 90% [30] using Landsat, from 80% [27] to 89% [31,56] using Sentinel-2, and 
from 74% [18] to 94% [45] on SPOT5. Using the SVM classifier, the OA was from 84% [33] 
to 92% [32] on Landsat, from 83% [46] to 91% [56] on Sentinel-2, and from 87% [57] to 90% 
[16] on SPOT5. For ANN, outcomes were 85% [34] to 89% [36] on Landsat and 91% [58] to 
98% [62] on Sentinel-2. Maximum Likelihood classifier was normally used to compare the 
results from other classifiers and has lower OA values (about 4–5 percent) [6,16,64]. 
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It was not considered in the time range of acquired images, since each study area had 
a specific, adjusted and feasible timeline. However, the earlier the estimation (ideally be-
fore the harvest), the more efficient the management [5]. The results discussed in Valero 
[18] showed that the cropland extent accuracy increased when the number of images in-
creased through the agricultural season. The real-time classification results yielded accu-
racies around 80% in the middle of the season and approximately 90% at the end of the 
season. The impact of missing observations in some periods of the year was also found to 
be a serious limiting factor [18]. The number and timing of image acquisition is crucial to 
distinguishing crop types [6]. 

There are also no evident findings if the number of crops have an influence on clas-
sification accuracy. It is rather a case of the particular agricultural structure than the num-
ber of crop types. However, it should be noticed that the overall accuracy is higher if the 
list of crops is shorter. For instance, Valero et al. reported 90% of accuracy for crop/non-
crop mapping on 12 different test sites spread across the globe [18]. While in Poland, clas-
sification of 19 classes resulted with 89% of overall accuracy [51], and in Spain for 9 classes 
the percentage was the same [31]. In Germany, classification of 12 types of crops reached 
73% of OA [6]. The list of crops is different for different regions, but the most common 
crop type is wheat. For this cereal, the best results above 90% of accuracy were achieved 
using the ANN algorithm on Landsat [35,60], on Sentinel-2 [61,62], and using SVM [31,56] 
or RF [56] on Sentinel-2 (Table 4). The other popular investigated crop types are maize, 
rapeseed, potatoes, sugar beets, and grassland, with an average UA value between 83% 
and 90%. Spring and winter cereals are very similar in results, reaching the average UA 
value of 76% and maximum UA value at the 94–95% level. 

It was observed that the investigated areas for crop mapping are focused on a specific 
region of the world without comparing the effectiveness of their methodology in different 
conditions. Only a few papers [5,17,18] that covered this topic tested their methods on 
different areas. Differences in agronomic practices, field sizes, climatic differences, etc. are 
major challenges for large-scale mapping tasks. Another reason may be that the availabil-
ity of training data for large areas and the spatial transferability of classification models 
remain a problem. Nevertheless, machine learning methods prove useful in satellite im-
age classification for a few reasons. Most of all, these are universal algorithm systems 
mapping multidimensional data sets (multispectral and multitemporal data). These algo-
rithms are capable of learning and adapting to the changing environment and choosing 
an ideal set of parameters and their organisational structure to solve the task. Moreover, 
they are capable of generalising the acquired knowledge and thereby enable the repeata-
bility of results [17,35]. Table 5 juxtaposes the most frequently cited advantages and dis-
advantages of the three chosen machine learning algorithms: Random Forests (RF), Sup-
port Vector Machine (SVM) and Artificial Neural Networks (ANN). 

Table 5. Most frequently cited advantages and disadvantages of chosen machine learning algo-
rithms used in crop classification in satellite images. Based on [27,39,51,55]. 

Algorithm Disadvantages Advantages 

RF 

Increase in the amount of 
training data does not in-

crease accuracy; 
Difficulty interpreting the re-

sults; 
Variability of the results  

Effective for big data sets and 
small amount of training 

samples; 
Low sensitivity to the 

amount of data input, re-
sistance to “noise”; 

Lack of overfitting (re-
sistance to overtraining); 

Low number of parameters 
defined by the user; 
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Analysis of feature (variable) 
importance; 

Low computational require-
ments 

SVM 

Multitude of parameters to 
be optimised; 

Difficulty building a univer-
sal model;  

Sensitivity to feature (varia-
ble) choice; 

High computational require-
ments 

Accuracy even for a low 
number of training grounds, 

including mixels; 
Possibility of adjusting pa-
rameters to specific cases 

(optimisation) 

ANN 

Long period of building and 
optimising the network; 

Large training set required; 
Relatively long computation 

process; 
Possibility of “overtraining” 

High tolerance to lack of 
data, weak representation or 

noise interference in the 
training data; 

Adaptive learning from the 
training data streams–mini-

mising errors; 
Varied types of variables 

used in the model 

The results obtained do not depend on classifiers as much as they do on local envi-
ronmental conditions. Generally speaking, the more data, i.e., Landsat 8 plus Sentinel-2, 
the higher accuracy and better chances of success [51,53]. However, larger data sets result 
in higher data divergence and a higher potential for predictive error. On the other hand, 
simpler models with a bigger amount of data seem better than more complex models with 
a smaller amount of data. These constitute the basis for team modelling techniques using 
the “collective power” to predict results [12,39]. Growing amounts of EO data, especially 
time series collections, are accelerating advanced computing needs and capacities. Fur-
thermore, the increasing availability of computing platforms and geospatial analysis as a 
service are major drivers of the advancement of crop mapping research. The continuous 
increase in the number of scientific publications on the use of optical data to distinguish 
between types of crops reflects the great advantage of multi-temporal analysis of data in 
terms of their informative content for crop recognition [68]. 

5. Conclusions 
The current study has reviewed the literature on the progress of remote sensing 

methods in recognition of crop types. Empirical evidence has shown that satellite images 
offer invaluable data sources in crop identification at regional and local scales. However, 
although the crop identification using ML methods results with very high accuracy (above 
90%), the modelling of crops from remote sensing data remains a challenge in terms of 
developing models that can be used efficiently in all environments. The general outcomes 
from this study can be summarized as follows: 
• There is no significant difference between the accuracy achieved from different ML 

algorithms, yet on average the ANN classifier is better than the others by a few per-
centage points. 

• For complex, fragmented regions, better results were achieved using Sentinel-2 or 
SPOT-5 rather than Landsat images, but the level of accuracy can still be improved. 

• For areas with large plots there is no difference in the level of accuracy achieved from 
any HR images. 
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Many studies prefer the simple and straightforward approach of layer-stacking and 
multitemporal data analysis. There are still some problems to be considered, like advisa-
ble temporal sequence of images versus data availability or expected number of crops 
versus a number of possible identified classes. The spatial and temporal transferability of 
the models still remains as one of the main issues. Future trends and possible develop-
ment directions in automated crop recognition might include the following: 
• A multi-seasons approach dealing with an increasing number of images captured 

over years; 
• multi-sensor image fusion, optical and radar [29,67,68], or even satellite and aerial or 

UAV data for large-scale mapping; 
• the creation of training samples and processing automation archives into the univer-

sal and repeatable models. 
Even with considerable experience, developing machine learning applications is still 

an experimental and iterative process, regardless of whether an already well-known algo-
rithm is used. In each case, the algorithm needs to be trained and tuned to the agricultural 
context and image dataset. Machine learning is a powerful tool and is extremely efficient 
when the user possesses the thorough knowledge of the agricultural structure. 
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