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Abstract: The leaf is the organ that is crucial for photosynthesis and the production of nutrients in 

plants; as such, the number of leaves is one of the key indicators with which to describe the de-

velopment and growth of a canopy. The irregular shape and distribution of the blades, as well as 

the effect of natural light, make the segmentation and detection process of the blades difficult. The 

inaccurate acquisition of plant phenotypic parameters may affect the subsequent judgment of crop 

growth status and crop yield. To address the challenge in counting dense and overlapped plant 

leaves under natural environments, we proposed an improved deep-learning-based object detec-

tion algorithm by merging a space-to-depth module, a Convolutional Block Attention Module 

(CBAM) and Atrous Spatial Pyramid Pooling (ASPP) into the network, and applying the smoothL1 

function to improve the loss function of object prediction. We evaluated our method on images of 

five different plant species collected under indoor and outdoor environments. The experimental 

results demonstrated that our algorithm which counts dense leaves improved average detection 

accuracy of 85% to 96%. Our algorithm also showed better performance in both detection accuracy 

and time consumption compared to other state-of-the-art object detection algorithms. 
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1. Introduction 

The phenotype of plant refers to all observable characteristics of a plant, including 

its physical morphology as well as biochemical and physiological properties. These 

characteristics are influenced by both genetic code expression and environment, which 

can consequently change during the growth of plants. Thus, rapid and accurate tech-

niques of plant phenotype detection play an important role in studying genetic and en-

vironmental synergistic effects on crop growth, and have attracted much attention in 

agronomy research [1]. The benefit of advanced computer vision, robotics and artificial 

intelligence technologies, being the efficient detection of plant phenotypic traits, has also 

implied progressive developments in recent years [2,3]. Early measurements of these 

plant architectural features were often carried out manually. However, the manual col-

lection of architectural phenotypic traits can be time-consuming and labor-intensive. Bao 

et al. [4] found that, depending on the growth stage, 32 to 64 man-hours of manual 

measurements were necessary to study 11 traits in 18 sorghum plots. In comparison, 

these plots could be imaged within three minutes using a high-throughput phenotyping 

(HTP) platform. Therefore, numerous studies on automated plant phenotyping in 

greenhouses, fields and controlled laboratory conditions have been carried out in the last 

decade. Automated plant phenotyping usually focuses on parameters that are related to 

architectural indicators (height, leaf number, leaf angle, etc.). Especially, the number of 
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leaves of a plant is considered as one of the key phenotypic metrics related to its devel-

opment rate, flowering time or yield potential. Therefore, great efforts have been devoted 

to the identification and detection of leaves from digital images. 

In early works on leaf detection, image analysis techniques based on color or shape 

features were usually used for the identification or segmentation of leaves [5]. For ex-

ample, based on the HSI color space model (which represents colors with three compo-

nents: hue, saturation and intensity), Tang et al. [6] used a watershed segmentation 

method to extract the leaf region from plant images with a complex background. Yin et 

al. [7] matched the existing extracted leaf templates with hidden data to segment and 

track the Arabidopsis leaf. Another study used an active contour method to segment and 

track the leaves of Arabidopsis plants [8]. As proposed by Dellen et al. [9], the 

graph-based method can also be used for leaf tracking. Grand-Brochier et al. [10] re-

ported a comparative study on tree leaf extraction from natural images. Cerutti et al. [11] 

developed a parametric active polygon model for leaf segmentation and shape estima-

tion. However, these methods are dedicated to detecting separate leaves, and often fail 

when handling overlapped leaves. Additional works have thus been carried out to ad-

dress the issue of segmenting overlapped leaves. Pape and Klukas [12] used a 3D histo-

gram of the L*a*b* color space of plant images for the supervised segmentation of fore-

ground/background, in which a distance map, skeleton and equivalent graph represen-

tation are used to find the separate leaves. Scharr et al. [13] analyzed the use of the region 

growing method and its drawbacks for segmenting leaves over the superpixels extracted 

from the L*a*b* color map. Vukadinovic and Polder [14] proposed a method of combin-

ing a supervised classification and a simple artificial neural network to segment the plant 

regions, and then using watershed transformation to identify individual leaves. Never-

theless, this approach uses ground truth images to mask the plant and background pix-

els, and therefore is not suitable for automatic processing. Giuffrida et al. [15] used 

log-polar representation and global descriptors to estimate the number of leaves in a 

plant. Apart from the above, some efforts have also been made to count objects via den-

sity estimation by per-pixel ridge and random forest regression [16,17]. This method 

works by learning a mapping, F: X Y, between local image features, X, and object densi-

ty, Y, which then allows the derivation of an estimated object density map for unseen 

images, where regressors are used to infer local densities. However, these approaches in 

handling leaf occlusions can be influenced by large-scale variability, moreover, these 

methods would also suffer from significant limitations, such as requiring specific light 

conditions or only being suitable for specific plants [18]. 

Recently, artificial intelligence methods such as convolutional neural networks 

(CNNs) have made important progress in plant phenotyping, and have brought wide 

applications in plant classification, fruit detection and leaf segmentation [19]. The leaf 

counting can be addressed by using semantic segmentation or instance segmentation 

from a deep learning perspective. Compared to conventional machine learning methods, 

deep neural networks showed better accuracy and faster processing efficiency [20]. Some 

solutions used recurrent neural networks to segment leaves and count fruits. For in-

stance, Romera-Paredes and Torr [21] developed an end-to-end model of recurrent in-

stance segmentation by combining convolutional long short-term memory (LSTM) [22] 

and spatial inhibition modules, thereby segmenting one leaf at a time by keeping track of 

the spatial information within each image. Ren and Zemel [23] applied visual attention to 

jointly compute instance segmentation with a counting function. This method obtains 

sequential attention by creating a temporal chain via a LSTM cell which outputs one in-

stance at a time, in which non-maximal suppression was used to solve heavily occluded 

scenes. Aich and Stavness [24] used deep convolutional and deconvolutional network 

(DCDN) to segment the rosette plant region and to count the rosette plant leaves. 

Giuffrida et al. [25] used ResNet50 architecture to count the rosette plant leaves from 

multimodal 2D images. Although their network was pretrained on only the Arabidopsis 

images in the CVPPP dataset, the network runs well on other datasets (e.g., tobacco). 
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Recently, Kumar and Domnic [26] used the circular Hough transform and DCNN models 

to count the leaves from segmented plant regions. Their detection results on leaves of 

rosette plants reached 0.96, 0.94 and 0.95 on average precision, recall and F1 score, re-

spectively. In general, LSTM is a type of temporal recursive neural network (RNN) and 

is more suitable for time series data, while DCDN works by using a deconvolutional 

network for initial segmentation and a convolutional network for instance counting; 

therefore, DCDN is expected to achieve better performance in object detecting and 

counting. 

Most existing methods for detecting and counting overlapped leaves were dedicated 

to leaves of rosette-shaped plants such as Arabidopsis, which has a relatively simple 

morphological structure and less overlapping on its canopy. In this work, the 

state-of-the-art deep learning-based instance segmentation detector—CenterNet—is ap-

plied and improved, to address the problem of counting dense, overlapped and 

size-changing leaves in different plant canopies under natural environments. The main 

objectives of this study were: 

(1) to architecturally improve the current CenterNet network (i.e., improved CenterNet) 

with the specific focus on overlapped leaves in canopy images captured under nat-

ural light conditions; 

(2) to verify the performance of our improved CenterNet with other commonly used 

deep neural networks, including Mask R-CNN, Faster R-CNN, YOLOv4 and origi-

nal CenterNet, as well as a commonly used traditional machine learning method; 

(3) to validate the value and significance of our improved CenterNet by using several 

plant species with different shapes and sizes in leaves. 

2. Materials and Methods 

CenterNet [27] is a key point-based one-stage object detection algorithm, with a 

simple architecture and excellent detection performance. CenterNet uses key point esti-

mation to find center points and regresses to all other object properties. It adopts a fully 

convolutional upsampling DLA-34 backbone network, with skip connections between 

lower layers to the output augmented by deformable convolution (see the network 

structure in Figure 1). According to benchmark tests based on the COCO dataset [28], the 

DLA-34 network achieved a detection speed of 52 fps with a recognition accuracy of 

37.4%, while the accuracy of CenterNet is 4% higher than that of YOLOv3 at the same 

detection speed. YOLO (You Only Look Once) is a state-of-the-art object detection and 

localization network [29], while YOLOv3 is the third version of YOLO. 

 

Figure 1. Network structure of DLA-34 with fully convolutional upsampling. 
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2.1. Motivation in Improving CenterNet Algorithm 

As discussed above, the number of leaves is usually one of the key parameters in 

plant phenotyping. The key of leaf segmentation and detection is to accurately extract the 

position, size, shape and other information of each leaf. However, dense leaves are often 

overlapping each other and usually under complex light conditions. Thus, CenterNet 

algorithm would still meet challenges posed by leaf detection. 

To overcome these challenges, several modifications were made to the original 

CenterNet algorithm: 

(1) Since leaves have significantly different sizes at different growth stages, a 

space-to-depth module was used to convert the input image into feature maps with 

different resolutions. In this way, the detection performance for small leaves could 

be improved by high-resolution feature maps; 

(2) For accurate extraction of edge information of overlapped leaves, an attention 

mechanism CBAM was used behind each resolution feature map. This allowed the 

network to focus on the key information that distinguishes the edge features of each 

leaf. 

(3) To address the influence of different factors and the effective combination of dif-

ferent features, atrous convolutions and atrous spatial pyramid pooling (ASPP) 

modules were used to extract the image receptive field features at different scales. 

By combining the feature maps detected at different scales, the network could store 

more image information to facilitate the detection of plant leaves. 

Details of the above modifications will be given in the following. 

2.2. The Improved Network Structure 

As shown in Figure 2, the network structure of the improved CenterNet was com-

posed of a space-to-depth module, a CBAM [30] attention mechanism module, an ASPP 

module [31], a deep feature fusion network DLA-34, and a feature fusion and level chain 

module. 

 

Figure 2. The improved network structure of CenterNet for detecting dense and overlapped leaves in plant canopy. 

The backbone network was sampled at different spatial resolutions to output feature 

maps. Each feature map had a specific spatial resolution and could be viewed as a stage. 

At each stage, the residual block method [32] was used to generate feature maps with 

different spatial resolutions, and obtain leaf features with different spatial resolutions. 

Then, the attention mechanism was introduced to allow the network to focus on the edge 

information of each leaf and correctly identify each leaf region. Finally, these feature 

maps were connected, and the leaf was detected based on the cascaded feature maps 

with 1/4 input resolution. 
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2.3. Space-to-Depth Module 

If the ASPP is only used in downsampling processes, a feature degradation issue is 

likely to be raised, which is unfavorable for obtaining object information. Meanwhile, to 

segment and detect overlapped leaves with different shapes and sizes, the edge details of 

the leaves must be properly determined. It requires not only a high resolution in feature 

maps, but also good detection performance for feature maps under different scales. Based 

on the above analysis and the previous work by Li et al. [33], a space-to-depth module 

was used to extract detailed features of leaves at smaller image resolution. It was ac-

complished by dividing the input data equally into four blocks based on the height and 

width of the image; then, stacking these four blocks to generate a new block with a 

smaller size but deeper depth. 

2.4. Attention Mechanism 

The attention mechanism has been used widely in natural language processing, 

image recognition and speech processing [34]. Considering that the size/shape of a leaf 

may be significantly different at different growth stages or in different plant species, the 

attention mechanism can enhance object features while suppress non-object features of 

leaves, highlights object information and understates background information, thus 

reaching better detection accuracy. 

In this study, we combined the CBAM into the improved CenterNet. CBAM com-

bines both channel sub-module and spatial attention sub-module. The channel 

sub-module squeezes the spatial dimensions of the feature map firstly, thus obtaining a 

one-dimensional vector for further operations. It involves both average-pooling and 

max-pooling, which yields two one-dimensional vectors. Overall, the channel attention is 

calculated as: 

)))F(W(W))F(W(W()))F(MaxPool(MLP))F(AvgPool(MLP()F(M c

max01

c

avg01C +=+=   (1) 

where, σ is the sigmoid activation function, F denotes the input feature map, 𝐹𝑎𝑣𝑔
𝑐  and 

𝐹max
𝑐  respectively denote average-pooled and max-pooled feature map, W0 and W1 are 

two layers of parameters in the multilayer perceptron model. 

In the spatial sub-module, the channel dimension is squeezed by applying aver-

age-pooling and max-pooling operations. The max/average-pooling extracts the 

max/average values along the channel, with many extraction of height × width. After the 

extraction, the extracted feature maps (with 1 channel) are combined to generate a new 

feature map (with 2 channels). This is accomplished by: 

]))F;F([f()]))F(MaxPool);F(AvgPool([f()F(M s

max

s

avg

7777

S

 ==   (2) 

Here the convolution layer uses a 7 × 7 kernel, as it shows better performance than a 

3 × 3 kernel. The CBAM module is a general and lightweight module and can be readily 

integrated into the convolution module of any network, thus enabling end-to-end train-

ing. In this study, after the image was converted with the space-to-depth module, the 

CBAM module is used as convolution module with different depths. The integrated at-

tention mechanism enables the network to extract more key information from the image, 

and improves the detection accuracy of overlapping and small objects. 

2.5. Atrous Spatial Pyramid Pooling 

Atrous spatial pyramid pooling (ASPP) is a module for sampling a given input im-

age at multiple rates using multiple parallel atrous convolutional layers. In general, it 

captures objects and useful image context at multiple scales [35]. Atrous convolutional 

with different sampling rates can effectively extract image receptive field features at dif-

ferent scales, while the ASPP structure further enhances the image segmentation effect by 

combining multi-scale image information with different-scale cavity convolutions, 
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thereby achieving more accurate and efficient classification. The ASPP module is com-

posed of two main parts (see Figure 3): 

• 1 × 1 and 3 × 3 convolutions, with dilation rates of 6, 12, and 18; 

• image-level features. 

 

Figure 3. Illustration of Atrous Spatial Pyramid Pooling. 

Convolution is given by: 

)1()1( −−+= dKKKd  (3) 

where, K is initial kernel size, d is the atrous rate. The number of sampling points in ASPP 

is 3, with a receptive field 𝐾 = 13. 

Overlapped leaves usually have irregular shapes, information from different recep-

tive fields is valuable for plant leaf detection. Meanwhile, significant amounts of feature 

information can be lost during convolution and pooling, resulting in a decrease in detec-

tion accuracy. In this study, we combined ASPP module (with dilation rates of 1, 2, 3, and 

6) with a deep feature network to overcome the shortcomings of overlapping or irregular 

object detection under different receptive fields. Different scaled images with attention 

mechanism were integrated with the ASPP module which improved the ability to seg-

ment overlapping leaves. The fused feature map was then inputted into the deep feature 

network, which produced a feature map with rich information between different deep 

networks. 

2.6. Modification on Loss Function 

The loss function of CenterNet includes three parts: the loss function of the heat 

map, the object size prediction loss function, and the center point offset loss function. 

Note that correct frame selection of dense leaves is the key of accurate leaf detection. 

Therefore, to improve the performance of leaf detection, we modified the object size 

prediction loss function in the CenterNet loss function. 

In our leaf datasets, the density of leaves is relatively high. In this way, two leaves in 

an image can share one feature point after being down-sampled by a factor of 16, thus are 

difficult to distinguish. A small leaf object can reduce to 1 pixel or even diminish after 

being down-sampled by a factor of 32, making feature extraction rather difficult. To ac-

curately predict leaf size and to increase the robustness for outliers, we used the smoothL1 

loss function [36] for object size learning and training. Compared with the L2 loss func-

tion, the smoothL1 loss function is less sensitive to outliers and anomalies, thus has better 

gradient control and convergency, ensuring accurate detection on leave edges with dif-

ferent shapes. The modified loss function for object size is given by: 

( )
=

−=
n

k

kpLsize SSsmooth
N

L
k

1

1
ˆ1

 (4) 

Here, N denotes the number of key points in the image, 𝑆̂𝑝𝑘 is the predicted object 

size, Sk is the actual size the object. 
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During the model training, the Focal loss function [37] is adopted for logistic re-

gression. While the center point offset value loss function is defined as: 

 







−−=

p

poff P
R

P
O

N
L ˆˆ1

 (5) 

where, 𝑂̂𝑝 is the predicted offset, P denotes the center point coordinates of the leaf in 

the image, R is the scaling factor, 𝑃̂ is the rounded integer coordinates of the center point 

after image scaling. 

3. Experiments and Discussion 

3.1. Data Acquisition and Organization 

3.1.1. Data Acquisition 

All images in this work were collected at Shanghai Academy of Agricultural Sci-

ences. We obtained images of cucumbers in a plastic greenhouse by placing a 

high-resolution camera directly above the canopy (Figure 4). The images were taken 

hourly from 6:00 to 18:00 every day, from seedling to flowering stage. A total of 300 im-

ages were collected, including images under different weather (sunny and cloudy) and 

light (direct light and back light) conditions. Images of eggplant, tomatoes, pennywort, 

and orchid grass were also collected in a glass greenhouse by using an EOS 5D Mark III 

camera (Canon, Oita Prefecture, Japan). For each type of crop, we prepared 5–15 pots of 

plants and took 30 images from different angles. The resolution of each image is 3000 × 

4000 pixels. 

  

(a) (b) 

Figure 4. Image acquisition scene: (a) in glass greenhouse; (b) in plastic greenhouse. 

3.1.2. Image Labeling and Data Augmentation 

The LabelImg package were used to label plant images. Both the position and the 

type of each leaf were marked during the image labeling. In this study, we considered 

two situations, i.e., with over/under 50% of leaf area being overlapped (by other leaves), 

respectively. Leaves with overlapped rate over 80% were not labeled. Augmentor image 

enhancement library was used to augment our leaf dataset. According to the different 

interference factors involved in our experimental environments, the augmentation 

methods considered here include rotating the original image (Figure 5a,c), adjusting the 

brightness of the image (Figure 5b), and increasing the noise (Figure 5d). As a result, the 

original leaf dataset was expanded by 10 times. 
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(a) (b) 

  

(c) (d) 

Figure 5. Image augmentation by: (a) original image; (b) adjust brightness; (c) rotation; (d) increase 

noise. 

The structure of the dataset and directory was organized similar to the COCO da-

taset. The dataset was divided into training set, test set, and validation set; represent 80%, 

10%, and 10% of the entre dataset, respectively. The whole processing flow chart of our 

proposed method is shown in Figure 6. 

 

Data Collection

 Canon EOS

Create Dataset

Python Script 

for Resizing

Preprocessing

Data Augmentation

Rotation;Adjuping

st brightness; 

Labeling

LabelImg

 

 

Training

Improved 

CenterNet

Evaluation
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Final network 
model

Repeat 
with Test 

set

 

Figure 6. Overall processing flow chart. 

3.2. Training and Testing 

3.2.1. Implementation Protocol and Evaluation Parameters 

We used the Detectron2 deep-learning platform based on programming language 

Python. All experiments were performed on an Intel Core i7-9850H CPU and a Quadro 

P4000 GPU, with CUDA 10.1 and CUDNN 7.6.5. Three state-of-the-art deep learn-
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ing-based object detection methods (Mask R-CNN [38], Faster R-CNN [39], YOLOv4 [40]) 

and a traditional machine learning method (ExG + SVM [41]) were used for comparison. 

The relevant parameters for evaluating the effectiveness of the model include: precision, 

recall, model size, and detection time [42]. 

3.2.2. Training 

Two different training frameworks were used for these detection models, where 

Faster R-CNN, Mask R-CNN, the original CenterNet, and the improved CenterNet were 

trained with PyTorch, while YOLOv4 was trained with its own training framework. All 

these models were pre-trained by using the leaf dataset we collected and organized. Be-

fore training, we also augmented the data with random flips, random scaling (between 

0.6 and 1.3), cropping, as well as color dithering, and optimized the overall goal with 

Adam’s algorithm [43]. 

3.3. Comparison with the State-of-The-Art Methods 

The improved method were evaluated with the other state-of-the-art methods men-

tioned above by using images of cucumber leaves. P-R curves of the six object detection 

methods are shown in Figure 7. P-R curves in Figure 7 showed that the improved Cen-

terNet model has better performance than the other five methods. We compared the de-

tection performance of dense leaves on early and late stage of cucumber. Table 1 shows 

the relevant parameters of the test results of each method. The detection accuracy of the 

improved CenterNet is 96% for early cucumber leaves, with a detection speed of 0.29 s 

for each image. 

 

Figure 7. P-R curves for six detection detectors. 
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Table 1. Relevant parameters of six object detection methods in detecting cucumber leaves. 

Model 
Number of Train-

ing Images 
Growth Stage 

Model 

Size/M 

Detection Time 

(s) 
Precision Recall 

Training 

Time (h) 

ExG + SVM 300 Early — 0.76 0.78 0.74 16 

Mask R-CNN 300 Early 251 3.13 0.85 0.80 23 

Faster R-CNN 300 Early 540 3.52 0.82 0.79 21 

YOLOv4 300 Early 250 0.46 0.92 0.86 40 

Original CenterNet 300 Early 62 0.24 0.94 0.87 21 

Improved CenterNet 300 Early 83 0.29 0.96 0.90 22 

ExG + SVM 300 Late — 0.76 0.71 0.68 16 

Mask R-CNN 300 Late 251 3.13 0.82 0.78 23 

Faster R-CNN 300 Late 540 3.52 0.8 0.76 21 

YOLOv4 300 Late 250 0.46 0.88 0.84 40 

Original CenterNet 300 Late 62 0.24 0.9 0.86 21 

Improved CenterNet 300 Late 83 0.29 0.92 0.89 22 

Even for dense late-stage leaves, the accuracy of improved CenterNet still reaches 

92%. Despite the model size of improved CenterNet is larger than that of the original 

CenterNet, the accuracy and recall of the improved CenterNet is the highest among the 

six models. Figure 8 gives a visual leaf detected result on late-stage cucumber. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. Visual effects of six leaf detection methods on the late stage of cucumber: (a) ExG + SVM; (b) Mask R-CNN; (c) 

Faster R-CNN; (d) YOLOv4; (e) original CenterNet; (f) the improved CenterNet. 
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3.4. Detection Performance for Leaves with Different Shape and Silhouette 

To compare the detection performance for leaves with different shape and silhou-

ette, images of five different plant species were collected, including cucumber, tomato, 

eggplant, orchid grass, and pennywort (30 images for each plant). Images of eggplants 

and tomato were collected outdoor. Data augmentation method was also used to expand 

the leaf image number to 300 per plant for training. 

As can be seen from Figure 9, the improved CenterNet shows the best overall per-

formance for these test plants, with the detection accuracy for Pennywort of 96%, which 

is about 3% higher than the detection accuracy of YOLOV4. Figure 10 gives the visual 

detected results on the leaves of six plant species mentioned above. From Figure 10 we 

can see that the orchid grass has slender leaves, the pennywort leaves are generally 

rounded, the cucumber leaves are small at early stage, but become larger and overlapped 

at late stage, with some leaves being only partially visible to the camera. The improved 

CenterNet presents a good detection performance with high detection accuracy and 

speed. Even in the case for late stage leaves with significant overlapping, the detection 

accuracy of the improved CenterNet is still above 87%. 

 

Figure 9. Average detection accuracy for leaves of different plants. 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 10. Visual detected results on different plants; (a) individual cucumber; (b) orchid grass; (c) pennywort; (d) egg-

plants; (e) tomato; (f) group cucumber. 

3.5. Detection Performance for Leaves under Different Light Condition and Background 

For images collected under different light conditions, the background and leaf col-

or/texture usually have significant influence on leaf detection. Therefore, light condition 

and background are usually the most critical issues for detecting leaves in natural envi-

ronments. To explore the possible influence of light condition and background, we used 

eggplant as a representative, and took images every 2 h between 6:00–18:00 under in-

door/outdoor environments (both under sunny weather condition). These images were 

detected by the improved CenterNet detector to record subtle differences within these 12 

h (the light condition is most sufficient at 12:00, while most uniform at 8:00). The average 

detection accuracy is shown in Figure 11. 

 

Figure 11. Average detection accuracy for leaves of different plants. 

The four charts in Figure 12 showed a general satisfactory detection performance for 

both indoor and outdoor images, indicating that our model is not sensitive to back-

grounds under sufficient light conditions. While by comparing the results with the same 

background, more leaves can be detected under sufficient light conditions. The robust-

ness of our model is further demonstrated by the proper detection of many overlapped 

leaves, despite the influence of shadows. 
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(a) (b) 

  

(c) (d) 

Figure 12. Detection results of eggplant leaf under different indoor and outdoor light conditions: (a) weak indoor light; 

(b) sufficient indoor light; (c) weak outdoor light; (d) sufficient outdoor light. 

In Figure 11, the detection at moderate light condition shows higher accuracy than 

that at 12:00 with high-intensity direct light. Table 2 shows that leaf detections at 10:00 

and 14:00 also provide relatively high accuracy with low false alarm and missed detec-

tion. Comparing the data of correct detection ratio, false alarm ratio and missed detec-

tion ratio in Table 2, the improved CenterNet shows better performance than the original 

CenterNet. 

Table 2. Comparison of leaf detection accuracy for images acquired at different outdoor time periods. 50 images were 

collected for each time period, each image contains 60 leaves. 

Acquisition Time 

Correct Detection Ratio (%) False Alarm Ratio (%) Missed Detection Ratio (%) 

Original 

CenterNet 

Improved 

CenterNet 

Original 

CenterNet 

Improved 

CenterNet 

Original 

CenterNet 

Improved 

CenterNet 

8:00 83.33 86.67 8.33 3.33 16.67 13.33 

10:00 81.67 93.33 3.33 0 18.33 6.67 

12:00 85 90 6.67 6.67 15 10 

14:00 86.67 93.33 5 1.67 13.33 6.67 

16:00 83.33 91.67 8.33 5 16.67 8.33 

18:00 78.33 85 10 6.67 21.67 15 
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4. Conclusions 

The segmentation-based object detection algorithms for leaf counting employed by 

previous studies have relatively high false rates and cannot provide clear segmentations 

for dense and overlapped leaves. Additional preprocessing is required due to the limita-

tion of these algorithms in terms of specific light conditions and leaf shapes, which gen-

erates high costs and low efficiencies. Consequently, it is still a key challenge to develop 

an algorithm that can circumvent the overlapping problem for leaf detection and leaf 

counting. To address this issue, here we developed the improved CenterNet, i.e., a 

key-point-based one-stage object detection deep learning detector. Some specific contri-

butions and conclusions of the improvement can be reached as follows: 

(1) Our proposed improved CenterNet included three major improvements: (i) a 

space-to-depth module was added to the inputs of the network in the original  

CenterNet, for converting the input images into different depth modules; (ii) a 

convolutional block attention module (CBAM) was adopted to detect leaf edge in-

formation at different resolutions; and (iii) atrous spatial pyramid pooling (ASPP) 

was also adopted to extract image receptive field features at different scales, in case 

of preserving the characteristics of dense and irregular leaves; 

(2) The improved CenterNet focused on the key points of the target area instead of the 

entire image, thereby spared the need for target segmentation and improved the 

accuracy and speed of detection. Apart from that, accurate detection of overlapped 

leaves necessitated the edge information of each leaf, along with specific constraints 

to suppress the background noise of the image. Traditional target detection algo-

rithms did not make full use of the feature information of the target, as most of these 

algorithms used multi-scale fusion, deep network structure and loss function to ob-

tain target features. Compare to traditional algorithms, our improved CenterNet 

leveraged a space-to-depth module and an attention mechanism module to enable 

the detection network to focus on the edge characteristics of leaves, thus facilitating 

the extraction of edge feature information and leaf counting. 

(3) The improved CenterNet detector proposed in this work accurately detected leaves 

at different growth stages, under different light conditions, and of different shapes 

and sizes. A better detection performance was achieved, compared to the commonly 

used deep learning-based algorithms (including Mask R-CNN, Faster R-CNN, 

YOLOv4 and original CenterNet) and traditional machine learning algorithm (ExG + 

SVM), which had almost the highest detection speed and the minimal training time 

on precision and recall. The detection accuracy of the improved CenterNet detector 

on images of the early growth stage was better than that on images of the late 

growth stage. The reason can be mostly attributed to fact that there are more leaves 

and occlusion in the canopy at the late growth stage of plant. Additionally, the de-

tection accuracy of indoor images was slightly higher than that of outdoor images at 

different time nodes during daytime. This may result from good light conditions of 

the indoor images, which eliminated the influence of the bright sunlight. 

Overall, this study verified the superiority of the improved CenterNet detector for 

detecting and counting dense and overlapped plant leaves. We believe this improved 

CenterNet detector will be a powerful tool in leaf detection, which is a key step in the 

automatic acquisition of architectural phenotypic parameters. In this study, the test was 

conducted only on six plant species. It is expected to verify the method on more plant 

species with different densities and shapes of leaves. This verification has been included 

in our future work. In addition, this method should be further integrated into a robotic 

arm with automatic control functions to continuously monitor the growth rate of plants. 

Another further attempt should be made to identify smaller organs such as flowers and 

early fruits. 
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