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Abstract: At present, the wide application of the CNN (convolutional neural network) algorithm has
greatly improved the intelligence level of agricultural machinery. Accurate and real-time detection for
outdoor conditions is necessary for realizing intelligence and automation of corn harvesting. In view
of the problems with existing detection methods for judging the integrity of corn kernels, such as low
accuracy, poor reliability, and difficulty in adapting to the complicated and changeable harvesting
environment, this paper investigates a broken corn kernel detection device for combine harvesters by
using the yolov4-tiny model. Hardware construction is first designed to acquire continuous images
and processing of corn kernels without overlap. Based on the images collected, the yolov4-tiny
model is then utilized for training recognition of the intact and broken corn kernels samples. Next,
a broken corn kernel detection algorithm is developed. Finally, the experiments are carried out to
verify the effectiveness of the broken corn kernel detection device. The laboratory results show that
the accuracy of the yolov4-tiny model is 93.5% for intact kernels and 93.0% for broken kernels, and
the value of precision, recall, and F1 score are 92.8%, 93.5%, and 93.11%, respectively. The field
experiment results show that the broken kernel rate obtained by the designed detection device are in
good agreement with that obtained by the manually calculated statistic, with differentials at only
0.8%. This study provides a technical reference of a real-time method for detecting a broken corn
kernel rate.

Keywords: corn; broken corn kernel detection; yolov4-tiny; harvest

1. Introduction

Corn is an indispensable food crop for people; corn kernels are damaged in the
process of harvesting, threshing, transport, and storage. In particular, the corn kernel
breakage rate is one of the important indexes to evaluate the harvest quality, and reflects
the performance of harvesting machinery. For a long time, corn harvesters have lacked
detection of the kernel breakage rate, and usually rely on the experience of drivers to control
working parameters to avoid damaged corn kernels as much as possible. However, this
method is extremely inefficient and unsatisfactory, and severely restricts the development
of intelligent corn combine harvesters.

At present, scholars worldwide have done much work in agricultural product quality
inspection. Nevertheless, due to the extremely harsh working environment of corn harvest-
ing, the large feed amount of corn ears, and the scattered distribution of dust, bracts, and
damaged mandrels, it is difficult to detect the small corn kernels that accumulate, overlap,
and shield in the vehicle-mounted environment, which is unfavorable to harvest efficiency.
Therefore, a real-time broken corn kernel detection device is necessary for improving
combine harvester working performance, and the rationality, response speed, and accuracy
of the recognition algorithm, together with the reliability, convenience, and stability of the
hardware structure should be fully considered in the design scheme.
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The technology of deep learning represented by convolutional neural networks has de-
veloped rapidly. Perugachi-Diaz et al. [1] collected the growth images of more than 10,000
Chinese cabbage seedlings in 14 days, and the growth prediction model was constructed
by AlexNet to predict the success rate of Chinese cabbage growth. Chen et al. [2] utilized
VGGNet to identify the leaf disease images of rice and corn plants, which can accurately
identify rice diseases in complex environments, with an accuracy rate of 92%. Altuntaş
et al. [3] used VGG19 to distinguish haploid and diploid seeds; the accuracy rate reached
94.22%, which indicated that the VGG19 algorithm had higher accuracy in identifying
small differences of corn seeds. Mohanty et al. [4] compared the effects of AlexNet and
GoogLeNet in virus detection of crop leaves; the results showed that GoogLeNet was
more effective. Flores et al. [5] adopted several CNN algorithms to learn and distinguish
RGB and CIR images of corn and soybean, and it was found that GoogLeNet is an ef-
fective discrimination method with an accuracy of 99.9% and calculation speed of 20 ms.
Rasmussen et al. [6] employed Faster R-CNN to detect broken corn silage particles after
harvesting; the results showed that the detection accuracy was 45.2%, which could identify
large particles from miscellaneous ones. Monhollen et al. [7] developed a corn kernel loss
rate detection program based on Faster R-CNN, which achieved an average accuracy of
0.90, the additional field tests obtained the accuracy of 0.91. Suo et al. [8] used yolov4
to study the transfer of kiwifruit detection, and obtained the highest mAP of 91.9% with
an image processing speed of 25.5 ms. Zhang et al. [9] proposed a water-meter pointer-
reading recognition method based on improved yolov4; the detection accuracy of this
method reached 98.68%, which indicated that the lightweight algorithm could quickly and
accurately identify targets. Li et al. [10] proposed a rapid detection model for green pepper
based on yolov4-tiny, the average precision is 95.11%, the model size is 30.9 MB, and the
frame rate is 89 FPS. The CNN algorithms used in this research have reached a high level
of accuracy in identifying crop characteristics, which can provide a good research basis for
the detection of broken corn kernels. Compared with the above algorithms, yolov4-tiny
has fewer input parameters, a simpler network structure, and a faster processing speed,
which make the method feasible for mobile and embedded devices.

In order to meet the needs of a fast and portable corn kernel detection method, this
paper designed a broken corn kernel detection device based on the yolov4-tiny algorithm,
which provides a new approach for quick and accurate identification and classification
of broken corn kernels. First, the hardware structure was designed, considering the
antiblocking design of corn kernels, including a closed detection environment with a
sufficient light source; the images of corn kernels are captured by the CCD camera, and
transported by the monolayer mechanism and the convey belt. The monolayer mechanism
is designed to eliminate the influence of a large feed quantity during the detection process.
This scheme ensures the continuity of the detection process, and it is suitable for a vehicle-
mounted environment and large harvesting quantities of corn kernels. Then, in view of the
obvious differences in the contour features of intact corn kernels and broken corn kernels,
and lack of an effective algorithm to detect the kernels with a large feeding amount, the
yolov4-tiny model is utilized to ensure portability and real-time detection. The experiment
results show that the broken corn kernel detection device has high accuracy, reliability, and
stability, thus providing a solution for real-time detection of corn harvest effects in a field
operation environment.

2. Materials and Methods
2.1. Design of Broken Corn Kernel Detection Device

Owing to the harsh working environment, large vibration of the machine body, and
easy accumulation of corn kernels during transport, it is difficult to realize real-time
detection of corn kernels used existing recognition algorithms. In order to solve the
problem, the hardware structure of a broken corn kernel detection device was designed, as
shown in Figure 1. The detection device is mainly composed of the frame, feeding system,
monolayer mechanism, power system, image acquisition system, and image processing
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system. Among them, the feeding system includes the collection hopper, blanking trough,
round sieve holes of corn kernels, and slide-out plate for corn kernels; the power system
includes the DC motor, conveyor belt, and belt wheel; the belt wheel is driven by the DC
motor to impel the conveyor belt rotating at linear speed of 0.3 m/s. The feeding system
consists of a collecting hopper, blanking trough, flow-regulating plate and sieve plate; the
image acquisition system includes a CCD camera, LED light, and Gigabit network cable.

Figure 1. Diagram of broken corn kernel detection device. (a) Structure of broken kernel rate detection device. 1—Convey
belt; 2—Baffle for single layer; 3—CCD camera; 4—Collection hopper; 5—Frame of baffle for single layer; 6—Kernel flow
regulating plate; 7—Sieve; 8—Blanking trough; 9—Driving shaft; 10—Baffle; 11—Tension shaft; 12—Drive shaft. The red
arrows represent the direction of corn kernel flow, the blue arrow represents the direction of pulley rotation, and the yellow
dotted lines represent the LED light source. (b) Diagram of the broken kernel detection device.

The monolayer mechanism is designed to ensure the CCD camera can capture the images
of individual corn kernels, prevent the corn kernel accumulation and overlap from adversely
affecting the acquisition process and image processing effect, as shown in Figure 2. The single



Agriculture 2021, 11, 1238 4 of 17

and discrete distribution of corn kernels falling on the conveyor belt mainly depends on a
sieve with round holes; the sieve is obliquely installed in the blanking trough. The round
holes have the same size as corn kernels, so the falling speed of corn kernels slows when
passing through the round holes; the corn kernels fall on the conveyor belt and distribute
in a single layer, while the remaining corn kernels repeatedly collide with sieve plates
and bounce back to the granary. By adjusting the position of the sieve on the frame, and
then adjusting the installation angle, the amount of corn kernels can be controlled. The
periphery of the blanking trough is a closed structure to prevent the corn kernels from
falling outside or entering the synchronous belt.

Figure 2. Diagram of the monolayer mechanism. 1—Collection hopper; 2—Blanking trough; 3—Sieve
with round holes; 4—Slide-out plate for corn kernels.

2.2. Working Conditions

The working conditions of each key component mechanism follow.

(1) The LED light source is composed of 4 LED tubes, fixed in the inner side at the
top of the frame, and located on both sides of the CCD camera; it provides a stable
illumination intensity in the closed detection box to ensure the stability of the color
characteristics of the collected corn kernel images, as shown in Figure 1a.

(2) The DC motor (Baikong, 57BL115S21-230TF9, Shanghai, China) operates the drive
shaft to rotate the synchronous belt, which transports the corn kernels to the image
acquisition area.

(3) The image acquisition system adopts a CCD camera (Medway Vision Company, MV-
GE200C-T). It is perpendicular to the timing belt and fixed above the device by a
bracket. The images of corn kernels collected by CCD camera are transmitted to the
image processor system through the Gigabit network cable.

(4) The image processing system is the Jeston TX2 Development Board of NVIDIA
Corporation, which adopts NVIDIA PascalTM GPU architecture, has 56 NVIDIA
CUDA cores, and 8 GB of running memory [11]. The board has the advantages
of small size and fast processing speed, and meets the requirements of onboard
application for real-time, convenient installation, and processor portability.

2.3. Working Principle

The broken corn kernel detection device installs in the granary of a corn combine
harvester, as shown in Figure 1b. When the broken corn kernel rate device is operating, the
corn kernels are harvested in the granary by the auger, then enter the collection hopper
of the device and fall to the convey belt through the monolayer mechanism. At the same
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time, some corncobs and bracts can be screened out of the detection area by the sieve
plate, which reduces the interference of impurities in the image and improves the detection
accuracy.

2.4. Experiment Method

In order to test the reliability and accuracy of the broken corn kernel detection de-
vice under different working conditions, based on the corn kernel direct harvester, the
verification experiment was carried out on 29 September 2021. The verification experi-
ment followed “GB/T 21962-2020 Corn combine harvesters” and “GB/T 21961-2008 Test
Methods for Maize Combine Harvester” [12,13] protocol. The working width of the corn
harvester was 4 m; we randomly selected an area with a length of 20 m without lodging
corn plants.

The working parameters of the corn kernel direct harvester are shown in Table 1; the
threshing cylinder speed was selected with 3 levels: 300, 350, and 400 r/min; the concave
clearance was selected with 3 levels: 35, 40, and 45 mm, and the traveling speed was also
selected with 3 levels: 3.0, 3.5, and 4.0 km/h. The test scheme was designed in Design
Expert software using the BBD (Box–Behnken design) method [14,15]. Design Expert is
commonly used test design software embedded with the BBD method. The 3 test factors
and 3 levels were added into Design Expert, which automatically generated 17 groups
of experiments, of which 4 groups were repetitive. However, this study only utilized
the software to provide an experiment, so the repeated groups were eliminated, and a
total of 14 groups of experiments were conducted, and each group was repeated 3 times.
Additionally, the Box–Behnken design method can be used for experiments with 3–7 factors,
in which the nonlinear influence of factors can be evaluated. It is applicable to tests in
which all factors are measured values. When used, many continuous tests are not needed;
there was no axial point in the design, which was suitable for this verification experiment.

Table 1. The working parameters of the corn kernel direct harvester.

Number Threshing Cylinder
Speed/(r·min−1)

Concave
Clearance/mm

Operating
Speed/(km·h−1)

1 300 35 3.0
2 300 40 3.5
3 300 35 4.0
4 300 30 3.5
5 350 35 3.5
6 350 40 3.0
7 350 30 4.0
8 350 35 3.5
9 350 40 4.0
10 350 30 3.0
11 400 35 4.0
12 400 35 3.0
13 400 40 3.5
14 400 30 3.5

After the experiment, we randomly weighed more than 500 g of corn kernels from
the granary 3 times. The average value of the broken corn kernel rate statistic, calculated
manually, is recorded as R1; the calculation method is shown in Equation (1), while the
broken corn kernel rate obtained by the detection algorithm is recorded as R2:

R1 =
1
3

i=3

∑
i

mi
mgi
× 100% (1)

where mi is weight of the broken corn kernels sample, i = 1, 2, 3, g; mgi is weight of all corn
kernels sample, i = 1, 2, 3, g.
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2.5. Image Acquisition

For ensuring the rationality and scientific of the data set, a total of 3000 images
showing samples of intact and damaged kernels were collected for training the detection
algorithm. The image resolution was 1200 × 1600 and the image format jpg. Figure 3
shows a part of collected images of corn kernels for training.

Figure 3. Images of samples: (a) complete kernels; (b) broken kernels; (c) part of the images of the
data set.

Under the action of the vibrating screen and threshing cylinder, severe vibration would
still occur. In addition, some fragments of straw and bract enter the detection device, which
led to some salt-and-pepper noise points in the collected image, as shown in Figure 4a. If
the image was detected directly without pretreatment, the detection accuracy would be
reduced. By comparing the effects of a Gaussian filter [16], mean filter [17], and median
filter [18], it was found that there were still some salt-and-pepper noise points in the images
after the mean filter, and the images after the Gaussian filter were not sufficiently clear to
reflect the characteristic information of the corn kernels accurately. Obviously, the median
filter can effectively remove salt-and-pepper noise in the corn images; the images were
relatively clear and the details of corn were completely preserved. Therefore, median



Agriculture 2021, 11, 1238 7 of 17

filtering was adopted as the noise processing method in this paper. The basic principle of
median filtering is to randomly select an m × m matrix as the pixels of each channel of the
collected RGB image of kernel, then arrange these m2 pixel values in the order from small
to large and take the median of the series to replace the pixel values in the center of the
matrix [19]. Images of corn kernels after filtering are shown in Figure 4b. After median
filtering, the images were obviously improved and clearer; the salt-and-pepper noise points
were filtered out, which provides a good basis for subsequent broken kernel identification.

Figure 4. Image filtering: (a) before filtering; (b) after filtering.

2.6. Training of the Yolov4-Tiny Model

In addition to the classic CNN such as LetNet, AlexNet, VGG19, ResNet50, and
GoogleNet, the yolov4-tiny algorithm proposed by Bochkovskiy et al. [20] in June 2020 is a
lightweight and fast target detection algorithm that is a compressed and improved version
based on yolov4. The process of using the transfer learning training model is shown in
Figure 5a. The layers of the yolov4-tiny model are reduced from 162 to 38 layers, and the
training parameters are only one-tenth that of yolov4. The yolov4-tiny network extracts
corn kernel image features through the backbone feature extraction network, and uses a
feature pyramid to fuse different ranges of kernel feature information [21–23].

With the increase in the depth of the network, the detection accuracy of the model
becomes increasingly higher. However, when the network model is too complex, network
degradation occurs, and the training accuracy of the model drops rapidly, becoming
even worse than that of the shallow network and resulting in a decline or disappearance
of the gradient. As shown in Figure 5b, CSPDarknet53 adds a residual module based
on Darknet53 [24,25], and the residual network is connected by skipping layers, which
makes it easier to optimize the broken kernel rate detection model during training. Some
features of the corn kernel images pass through residual blocks, while the other part passes
through convolution layers, which transfers the fused corn kernel features to the next
stage and makes full use of the spatial structure information of the corn kernel feature
image. The feature extraction network is used to extract the feature information from the
input corn kernel image, which increases the depth of the network, reduces the calculation
amount, solves the problem of gradient disappearance in the deep network, improves the
classification accuracy of the detection model, and reduces the memory requirement, thus
improving the learning ability of the network.
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Figure 5. Cont.
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Figure 5. Diagram of the yolov4-tiny model: (a) structure of yolov4-tiny for broken kernel rate detection; (b) structure of
CSPBlock.

The higher the level, the wider the network receptive field is, and the more infor-
mation contained in the corn kernel images. However, the resolution of the images is
relatively low. After many convolution operations, the image features of many corn ker-
nels become blurred, which makes it impossible to accurately represent the corn kernel
feature information. If the model classifies corn kernels according to the features of the
last layer, many details of the corn kernels are lost. Although this operation has little
effect on large-sized objects, for small-sized objects such as corn kernels, the area of one
corn kernel in the image is relatively small, and there is less pixel information, which
easily leads to the loss of feature information in the down sampling process, resulting
in a decrease in detection accuracy. In order to solve the problem of missing features in
small-sized target detection, the detection accuracy is improved by fusing the features
of corn kernels in different receptive fields of the upper and lower layers. The output
feature matrix can better display the feature information of high-level corn kernels and the
location coordinates of low-level corn kernels. Yolov4-tiny model up samples the output
13 × 13 feature images through the convolution layer, and then fuses it with the 26 × 26
feature images, and then superimposes convolution, finally outputting 13× 13 and 26 × 26
scale feature images. These feature images are used to classify and predict corn kernels at
different scales, thereby improving the detection accuracy of corn kernels as small targets.

The processing steps of corn kernel images follow. Firstly, as shown in Figure 6, the
images are labeled with LabelImg, and the corn kernels are divided into a two-class test
sample set. Then, a rectangular region containing the seeds is framed in the image. The
label of intact kernels is 1, while the label of broken kernels is 2. The file information is
saved in xml format. The xml file contains the coordinate position and tag information
of all kernels. The corn kernels contained in the image set are divided into a training set
and a test set according to the proportion 7:3. The system training processing steps follow.
(1) Preprocessing and labeling the collected images provides the position information and
labeling information of the kernels. (2) The sample set is randomly divided into training,
verification, and detection sets, according to the ratio 0.7:0.15:0.15. The network parameters
are initialized and the initial learning rate is set to 0.001, the number of iterations is set to
40, and the learning rate attenuation value is set to 0.0005. (3) Through the trunk feature
extraction network, the training set images are convoluted to obtain the texture feature
map, and the texture feature data information of each layer is normalized in batches. (4)
Maximum pooling is performed on the feature map obtained in step (3) to produce a
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generalized image of corn kernels. (5) The gap between the recognition result and the tag
is calculated, and the network training parameters are updated. (6) When the loss rate falls
within the set range or reaches the maximum number of iterations, the training is finished.

Figure 6. Labeled image of corn kernels.

2.7. Evaluation of the Yolov4-Tiny Model

The 3000 images of corn kernels were trained in the yolov4-tiny model after prepro-
cessing. In order to simplify the calculation process, Leaky ReLU was used as the activation
function of CSPDarknet [26,27]. The expression of Leaky ReLU is shown in Equation (2):

yi =

{
xi xi ≥ 0
xi
ai

xi ≤ 0 (2)

where, ai ∈ (1, +∞) are a set of constant parameters.
A cross-stage partial connections structure is used; the CSPBlock divides the input

feature map into two parts and concatenates the two parts in the cross-stage residual edge.
In the multifeatured fusion stage, the yolov4-tiny model constructs a feature pyramid
network to extract feature maps. Through the feature pyramid network, we obtain two
effective feature maps of different sizes. The detections are then estimated; the yolov4-tiny
model utilizes the fused feature maps by the classification and location of the targets.
The detections with a confidence score lower than the preset threshold is removed. The
confidence score for each detection is defined by Equation (3):

Con f = Pr(object)× IoUtruth
pred (3)

where Pr(object) is the possibility that the detection box contains an object, and IoUtruth
pred is

the IoU between the predicted bounding box Rpred and the ground-truth box Rtruth, which
is defined by Equation (4):

IoUtruth
pred =

∣∣∣Rpred ∩ Rtruth
∣∣∣∣∣Rpred ∪ Rtruth
∣∣ (4)
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Next, the yolov4-tiny model adopts the classification loss function to measure the
category error between the predicted box and the ground-truth box. The classification loss
function is shown as Equation (5).

Lcls = −
S×S

∑
i=0

Iobj
ij ∑

c∈classes
[ p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))] (5)

Later, the yolov4-tiny model uses the CIoU loss function for bounding box regression.
The CIoU loss function is defined as Equation (6).

LCIoU = 1− IoUtruth
pred +

ρ2
(

bpred, btruth
)

c2 +
16
π4

(
arctan wtruth

htruth − arctan wpred

hpred

)4

1− IoUtruth
pred + 4

π2

(
arctan wtruth

htruth − arctan wpred

hpred

)2′ (6)

where ρ2(·) is the Euclidean distance; bpred and btruth are the central points of Rpred and Rtruth,
respectively; c is the diagonal length of the smallest enclosing box covering Rpred and Rtruth;
and w and h are the width and height of the bounding box, respectively.

In order to accurately evaluate the performance of the model, the AP, precision, recall,
and F1 core were utilized to examine the yolov4-tiny model. The precision and recall
have four states after the test sample is predicted: true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). The definition of these indexes is shown in
Equation (7). The sample dividing threshold is 50%.

precision = TP
TP+FP

recall = TP
TP+FN

F1 = 2×precision×recall
precision+recall

(7)

3. Results and Discussion
3.1. Laboratory Experiment Results

This section evaluates the proposed broken corn kernel detection algorithm, based on
the yolov4-tiny model, and its running environment is shown in Table 2. The loss curve
of the training set and Val-loss curve of testing set are shown in Figure 7. The batch size
of training and verification is set to 32, and the established CNN is trained on the GPU
platform. After 40 iterations, the classification accuracy is stable at 97% on the test set. It
can be seen from the loss curve that the loss rate drops rapidly by epoch 5, followed by a
gentle decline stage during which there is no large fluctuation, and the final loss value is
7.8, showing that the model fits well in the learning process.

Table 2. Experimental environment.

Configuration Parameter

CPU HMP Dual Denver; ARM Cortex-A57
Quadcore

GPU 256 core NVIDIA Pascal
Accelerated environment CUDA10.1

Development environment Ubuntu 20.04.3 LTS
Operating system Linux
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Figure 7. Labeled image of corn kernels.

In addition, we randomly selected 800 corn kernels to verify the accuracy of the
yolov4-tiny model in the laboratory environment, including 400 intact kernels and 400 bro-
ken kernels. After starting the equipment, we manually feed corn kernels into the device,
counting the correctly identified intact corn kernels and broken corn kernels. The recog-
nition results are recorded and compared with the judgment detection results to obtain
the model recognition accuracy. The results are shown in Table 3; the recognition accuracy
of the model was calculated as 93% for broken corn kernels and 93.5% for intact corn
kernels, which basically met the requirements of real-time detection; it has high accuracy
and reliability.

Table 3. Detection result of 800 corn kernels.

Category
Number of

Identified as Intact
Corn Kernels

Number of
Identified as Broken

Corn Kernels

Accuracy of
Detection Model/%

Intact corn kernels 374 (TP) 26 (FN) 93.5%
Broken corn kernels 29 (FP) 372 (TN) 93.0%

The correctly identified intact corn kernels are marked as TP, the incorrectly identified
are marked as FN; meanwhile, the correctly identified broken kernels are marked as TN and
the incorrectly identified marked as FP. According to Equation (7), the precision, recall, and
F1 score are calculated as 92.8%, 93.5%, and 93.11%, respectively. The F1 score combines
the results of precision and recall; when F1 is higher, it shows that the yolov4-tiny model is
more effective.

3.2. Field Experiment Results

In order to verify the working effect of the broken corn kernel detection device, a field
experiment was carried out based on a corn grain direct harvester; the results of the broken
corn kernel detection algorithm for groups 2, 3, 7, and 8 are captured and shown in Table 1
and Figure 8a–d. The correctly detected corn kernels are marked by a blue box, while the
erroneously detected corn kernels are marked by a red box. The first number on the top of
the box represents the type of corn kernels; the second number represents the confidence.
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Figure 8. Testing results of the broken corn kernel detection algorithm. (a) The detection interface for group 2, (b) group 3,
(c) group 7, and (d) group 8. (e) The P–R curve of corn kernel detection results of partial images.



Agriculture 2021, 11, 1238 14 of 17

In Figure 8a, the corn kernels all were intact, while there were none erroneously
detected as broken. In Figure 8b, a corn kernel is marked by a red box, with confidence of
0.40, indicating that this corn kernel was intact but incorrectly identified as broken. Other
kernels were detected correctly. In Figure 8c, four corn kernels were incorrectly identified as
broken, with confidence smaller than 0.5; this may be due to the vibration of the harvester
in the field operation, or the impact of a large number of corn kernels thrown by the screw
on the device, which led to a short-term dimming of the LED light source, thus worsening
the detection environment; this problem can be actively overcome by adding damping
devices, rather than passively eliminating only the tires of the harvester. In Figure 8d,
a broken corn kernel was correctly predicted as an intact corn kernel, and its confidence
was only 0.33, which means that the characteristics of this broken corn kernel were very
similar to those of a intact corn kernel. The detection algorithm had classification errors;
thus, the recognition accuracy of this subtle difference needs to be improved.

Figure 8e shows the P–R curve of five images during the detection process, which are
randomly captured to calculate the value of AP; the results are 97.18%, 86.11%, 96.59%,
95.42%, and 94.51%, and the fps is capped at about five frames per second. In the report
of Li et al. [10], the green pepper detection algorithm, based on an improved yolov4-tiny
model, is 95.11%, and the frame rate is 89 FPS; the difference is mainly reflected in the
size of the model. The detection algorithm proposed in this paper has a smaller volume,
so it has a fast calculation speed and suitable for the real-time requirements of a vehicle-
mounted environment. We captured the calculation results of the broken corn kernel
detection algorithm during 14 groups of experiments; in each experiment, we selected five
images to count the values of TP, FP, and TN, and calculated the value of precision and
recall; the results are shown in Table 4. The average precision and recall are 92.53% and
92.4%, respectively, showing that the broken corn kernel detection device has satisfactory
detection accuracy in the laboratory and vehicle field environment, and it is proved that this
detection device can operate stably and reliably in a complex and changeable environment,
with severe dust and other extreme conditions.

Table 4. The evaluation indexes of the field experiment result.

Number TP FP FN Precision Recall

1 82 4 6 95.35 93.18
2 103 11 4 90.35 96.26
3 89 4 4 95.70 95.70
4 77 7 4 91.67 95.06
5 102 12 10 89.47 91.07
6 105 6 8 94.59 92.92
7 94 8 7 92.16 93.07
8 92 4 6 95.83 93.88
9 81 6 6 93.10 93.10

10 112 10 16 91.80 87.50
11 107 9 14 92.24 88.43
12 96 7 12 93.20 88.89
13 91 11 8 89.22 91.92
14 88 9 7 90.72 92.63

In addition, Table 4 shows the results of the broken kernel rate statistic calculated
manually and that read by the broken corn kernel detection device. Under different work-
ing conditions, the broken kernel rate has obvious differences. The higher the threshing
cylinder speed, the smaller the concave clearance; the faster the operating speed, then the
more broken kernels. According to the requirements of the standard, the broken kernel
rate should be less than 2%; groups 6 and 8 reached this standard, and the results of the
broken kernel rate detection device were 1.5% and 1.8%, respectively. At the same time,
these results are in good agreement with the broken kernel rate obtained by manually
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calculating the statistic, which prove the reliability and accuracy of the designed detection
device and the algorithm.

As shown in Table 4, according to previous experimental experience, the broken kernel
rate is significantly affected by the harvester traveling speed, threshing cylinder speed, and
concave clearance. The faster the traveling speed, the higher the threshing cylinder speed
and concave clearance, the larger the broken kernel rate. The model utilized in this paper
can be applied to the detection of the broken corn kernel rate of a corn combine harvester in
the field environment, and solved the problems that the defects of low detection accuracy,
harsh working conditions, and low automation degree of most detection algorithms,
provided support for the research of intelligent control of corn combine harvesters. The
broken corn rate detection device could identify corn kernels well; however, the detection
accuracy of some corn kernels with small broken and overlapping parts was reduced to a
certain extent, especially some corn kernels with irregular shapes that easily caused a false
detection, which needs further investigation.

Figure 9 shows the experiment results of the manually calculated statistic and the
broken corn kernel detection device. The average broken kernel rate of the detection device
R2 is 5.22% and the average broken kernel rate by manual R1 is 4.42%. The broken kernel
rate detected by the detection device is slightly higher than the manually calculated statistic
result R1, and the average differential is 0.80%, which avoids the deficiency of subjective
feature selection in machine vision detection methods. The difference is mainly caused by
the broken corn kernels that are small relative to other crops, such as vegetable leaves and
fruits, resulting in inaccurate identification. This matter can be improved by the detection
accuracy of the yolov4-tiny model through enlarging the number of kernel training sets
and different types of kernels. Besides these reasons, the backbone network has insufficient
feature extraction capabilities, and this may also be due to a slight mistake in the manually
calculated statistic, which can be within the acceptable range.

Figure 9. The experimental results of the manually calculated statistic and the broken corn kernel
detection device.

During the harvesting process of the corn combine harvester, it is necessary to ensure
the accuracy of the detection results and the real-time performance of the detection. The
detection system is usually located in an embedded system or mobile device, which
requires high memory storage of the model, so the calculation amount should not be too
large. Many detection models have large network depth and high detection accuracy,
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but their detection speed is slow, which cannot meet real-time detection requirements in
practical applications. The yolov4-tiny detection model not only ensures that the detection
accuracy of the model meets the detection requirements, but also has good detection
speed and meets the requirements of real-time detection of the broken corn kernel rate.
Considering the working environment of real-time detection of broken corn kernel rate
and the operation ability of the embedded development board, the yolov4-tiny algorithm
met the requirements of the corn kernel detection process.

4. Conclusions

In this paper, we proposed a target classification algorithm based on the yolov4-tiny
model to detect broken corn kernels. The yolov4-tiny model strengthens the detection of
small-particle size crops; the accuracy of the detection algorithm was verified by laboratory
experiment. In addition, we also designed a broken grain detection device that meets
the requirements of mobile and embeddable vehicle-mounted equipment, and verified its
working performance through field experiment. The accuracy rate of intact corn kernels
was 93.5% and that of broken corn kernels was 93.0%. The evaluation indexes of precision,
recall, F1 score, and AP reflected that the broken corn kernels can be well distinguished,
but detecting tiny damage was somewhat difficult. The broken kernel detection model
can automatically and effectively learn corn kernel features from images; the average
differential between the manually calculated statistic result and the broken corn kernel
detection device test result was only 0.80%. Experiments showed that the yolov4-tiny
model can not only ensure detection speed of the lightweight model, but also improves the
detection performance and realizes the performance standard of large-scale target detection
model.

In future corn combine harvester application, we will focus on research that increases
the variety and quantity of samples, improves the detection accuracy, and develops the
working reliability of the detection system. Through intelligent detection, it is helpful to
realize the intelligent and automatic control of the corn harvest process.
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