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Abstract: The agricultural sector remains a key contributor to the Moroccan economy, representing
about 15% of gross domestic product (GDP). Disease attacks are constant threats to agriculture and
cause heavy losses in the country’s economy. Therefore, early detection can mitigate the severity
of diseases and protect crops. However, manual disease identification is both time-consuming and
error prone, and requires a thorough knowledge of plant pathogens. Instead, automated methods
save both time and effort. This paper presents a contemporary overview of research undertaken
over the past decade in the field of disease identification of different crops using machine learning,
deep learning, image processing techniques, the Internet of Things, and hyperspectral image analysis.
Additionally, a comparative study of several techniques applied to crop disease detection was carried
out. Furthermore, this paper discusses the different challenges to be overcome and possible solutions.
Then, several suggestions to address these challenges are provided. Finally, this research provides a
future perspective that promises to be a highly useful and valuable resource for researchers working
in the field of crop disease detection.

Keywords: machine learning; deep learning; image processing; hyperspectral image analysis

1. Introduction

Agriculture is the mainstay of many countries. Due to population growth, the demand
for food is steadily increasing. To satisfy this pressing need, it is necessary to increase agri-
cultural productivity and protect crops. Nevertheless, crops are highly prone to different
diseases due to a large number of pathogens present in their environment. Some of these
disease pathogens are virus organisms, whereas others are fungal or bacterial [1]. Crop
diseases can reduce productivity by 10% to 95% [2], resulting in a significant decrease in the
quantity and quality of agricultural production. Therefore, early identification of diseases is
crucial to avoid huge losses and reduce the excessive use of pesticides, which can harm hu-
man health and the environment. In most cases, and especially in developing countries and
small farms, farmers identify crop diseases with the naked eye based on visual symptoms.
This is a tedious task that requires expertise in plant pathology and excessive treatment
time [3]. Moreover, if the field is attacked by a rare disease, farmers seek expert advice to
obtain an accurate and efficient diagnosis, which obviously generates additional treatment
costs [4]. Thus, this method of visual observation is not practical and feasible for large farms
and may even yield erroneous predictions due to biased decisions [5]. The restrictions of the
traditional approach have motivated researchers to develop technological proposals for the
early identification of crop diseases in an accurate, fast, and reliable manner, and in order
to meet the increasing demands of consumers and alleviate the environmental impact of
chemical inputs on the environment and health. In this regard, several methods [6–9] have
been proposed to automate the process of disease detection. These methods for automatic
recognition of crop diseases are divided into two groups, direct and indirect methods [10].
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Direct methods comprise molecular [11] and serological techniques [12,13] that provide
accurate and direct detection of the pathogens triggering the disease, although these tech-
niques require a significant amount of time for the collection, processing, and analysis of
the collected samples. By comparison, optical imaging techniques [14,15] are among the
indirect methods that are able to identify diseases and predict the health of the crop through
different parameters such as morphological change and transpiration rate. Fluorescence
and hyperspectral imaging [16] are some of the most widely used indirect methods for
early disease identification. Although hyperspectral images are a valuable source of data
and contain more information than ordinary photos [17], hyperspectral devices are very
expensive, bulky, and difficult to obtain for low-income farmers. Alternatively, other types
of digital cameras are available at reasonable prices in electronics stores. As a result, most
of the automatic identification processes considered so far are focused on visible domain
images, which enables the use of very accurate and fast algorithms. Hence, this review
focuses on various approaches based on image processing techniques and spectroscopy for
automatic crop disease detection using numerous approaches and algorithms using deep
and machine learning, fuzzy logic, and transfer learning.

The main objectives of this paper are, first, to identify the major issues that have
not yet been properly explored in previous studies on the automation of the disease
recognition process; and, second, to highlight future directions that may help circumvent
these challenges. The upcoming sections are structured in the following order. Section 2
provides an insight into the current state of the art in disease recognition. Then, Section 3
is devoted to the comparative study of the various techniques used, identifying their
advantages and drawbacks, followed by Section 4, in which the results are discussed and
analyzed. In Section 5, the gaps in the existing literature are addressed. These shortcomings
constitute possible avenues to explore in future research, which is addressed in Section 6.
Eventually, the conclusion is drawn in Section 7.

2. Background

Manual identification of crop diseases is both fastidious and inaccurate, meaning it
is only feasible in small farms [5]. In contrast, automatic disease detection is significantly
more accurate and takes less time and labor [18]. As a result, numerous studies [19–22]
have been conducted and are discussed in detail below. This section provides a review of
different techniques applied in the identification of crop diseases, presents the taxonomy of
various crop diseases, and describes the concept of image processing and machine learning.
It also demonstrates the application of hyperspectral imagery, the Internet of Things, and
deep and transfer learning in the field of disease recognition.

2.1. Taxonomy of Crop Diseases and Their Symptoms

The leaves of crops are highly prone to diseases, which are a natural phenomenon [23].
However, if corrective measures are not taken at the right time to stop the spread of
the disease, it leads to a significant reduction in the quality and quantity of agricultural
products [24]. Crops are affected by various pathogens [1] such as viruses, bacteria, fungi,
and deficiencies. Thus, the pathogens responsible for the disease are classified into two
categories [25]: autotrophs, which thrive on living tissue, or saprophytes, which dwell on
dead tissue. The symptoms of the disease adversely affect the development and growth of
crops and are easily visible. Leaf discoloration is the first symptom of disease in plants. In
addition, the shape and texture of the leaves are highly useful in detecting various diseases.
Therefore, different diseases, such as mildew, rust, and powdery mildew, can be detected
by processing images of the leaves [26,27].

The following is a brief description of the three common types of plant diseases [28]
that are illustrated in Figure 1 and described in Table 1:

• Virus diseases [1]: Among all plant diseases, those caused by infection are difficult to
identify and diagnose; moreover, these symptoms are mistaken for signs of nutritional
deficiency or injury, as there is no preconceived indicator that can be constantly
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monitored. Whiteflies, leafhoppers, aphids, and cucumber crawling insects are regular
carriers of virus diseases.

• Fungal diseases [1]: Foliar diseases are caused by a fungus, such as downy mildew,
anthracnose, and powdery mildew. It initially appears on old lower leaves, which
have gray-green spots or are soaked in water. As the parasite matures, these spots
darken and cause fungus to grow on them.

• Bacterial diseases [1]: Pathogens cause serious diseases in vegetables. They do not
directly enter the vegetation, but rather through injuries or apertures in the crop. Crop
injuries result from various pathogens, insects, and agricultural implements during
tasks such as picking and pruning.

Figure 1. Different types of pathogens: viruses, fungi, and bacteria.

Table 1. Classification of some leaf diseases with their symptoms.

Plant Leaf Diseases Symptoms Pathogen Category

Rice
- Brown spot/Bipolaris oryzae
- Blast leaf/Pyricularia oryzae Cavara

- Whitish-gray center
- An irregular dark brown - Fungi

Cotton

- Faliar leaf/Stemphylium solani
- Areolate mildew/Cercospora
- Leaf spot/Alternaria spot
- Bacterial blight/Xanthomonas campestris

- Spot of light-yellow color with dark
brown margins

- Tanned brown spot
- Circular dark brown leaf spots to black
- Halo yellowish green

- Fungi,
bacterial,

- virus
- Fungi
- Fungi
- Bacterial

Citrus
- Melanose/Diaporthe citri
- Greasy spot/Amycosphaerella africana
- Canker/Xanthomonas citri subsp

- The leaf becomes rough to the touch
- Blister yellowish-brown
- Includes flattened, swollen, cracked, round

to irregular sunken

- Fungi
- Fungi
- Fungi,

bacterial

Tomato

- Early blight/Alternaria tomatophila
- Late blight/Phytophthora infestans
- Powdery mildew/Leveillula taurica
- Yellow curl/tomato infectious chlorosis virus

- Dark ring spot around it yellow
- The dark spot is growing rapidly
- Curly and yellowish leaf
- Soaked in the water ringed by a yellow halo

- Fungi
- Fungi
- Fungi
- Virus

Maize - Stalk rot/Erwinia carotovora - Yellowing of dull green leaves and the
lower parts of the stem - Fungi

Wheat
- Rust/Puccinia triticina Erikss.
- Powdery mildew/Blumeria graminis
- Bacterial blight/Pseudomonas syringae

- Pale leaves spots
- While gray or brown spot
- Halo yellowish green

- Fungi
- Fungi
- Bacterial

Watermelon
- Anthracnose/Colletotrichum obiculare
- Downey mildew/Pseudoperonospora cubensis

- Irregular yellow patches
- Yellow to white spots - Fungi

2.2. Application of Machine Learning and Image Processing in Disease Identification

Foliar images are an excellent and rich source of data on plant pathology and mor-
phological behavior; thus, these data must be thoroughly extracted and analyzed. Image
processing plays [28] a crucial role in the diagnosis and analysis of leaf diseases. The proce-
dure adopted in this leaf disease identification process is illustrated in Figure 2, showing
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an insight into the different techniques employed by the authors to detect the disease by
means of image processing and artificial intelligence.

Figure 2. Different approaches for the identification of leaf diseases.

The primary step [29] in identifying diseases is the acquisition of images. In most cases,
images can be fetched either from a digital camera or an imaging system. As raw images
tend to contain noise, removing these impurities is required. As a result, the second step
is known as image pre-processing, and involves the removal of unwanted distortions, in
addition to contrast enhancement, to clarify and brighten the image features. For example,
a Gaussian function that creates soft blur is commonly used to lessen the noise in the image.
Subsequently, image segmentation [30] is the third step in which the image is segmented
from its background, whereas the region of interest (ROI) is partitioned to emphasize the
prominent features. The fourth step is feature extraction [31], which unveils the information
and details of an image. As a side note, the leaf features usually include shape, texture,
and color, which are used to diagnose the crop. Thus, these chosen features form an
input feature vector which is then fed into the classifier. Using this vector, it is possible to
discriminate one class of objects from another. The final step is classification [32]. Note that
the choice of a suitable classifier depends on the specific problem. The classifier’s aim is to
recognize the images by sorting them into several predefined classes based on the resulting
feature vector obtained in the fourth step. For this purpose, the classification task contains
two phases, namely, training and testing. The training operation trains the classifier on
a training dataset; thus, the greater the number of training sets, the better the accuracy
obtained. It should be noted that the result, which is the crop’s healthy state or diseased
state associated with the species name, must be achieved as swiftly as possible.

2.3. Application of Deep and Transfer Learning in Disease Recognition

Over the past decade, deep learning [33–35] and transfer learning [19,36] applications
in agriculture have gained widespread success and yielded highly promising outcomes due
to their capability to reliably learn and discern visual features. Numerous intriguing stud-
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ies [33,35,37–40] have been published on the employment of these promising approaches for
identifying diseases. Of particular note, the use of transfer learning is a trend that is becom-
ing increasingly popular and is widely used by researchers [41,42]. Furthermore, transfer
learning is not a sole technique, but rather a set of fine-tuned techniques, which enables the
development of highly accurate models on a more restrictive specialized dataset, such as
those for plant diseases. Mohanty et al. [43] showed that the fine-tuning approach is far
better than a CNN model that is trained from scratch. Another model is the Neural Network
(NN), which is broadly employed and recommended to analyze hyperspectral data for the
premature detection of diseases. Its basic mechanism was inspired by the human nervous
system, and it possesses specific capabilities such as learning and generalization that aid
in crop disease diagnosis. In contrast to other machine learning methods, it has a more
accurate diagnostic capability because it is better able to combine training sets. Another
similar comparative study was undertaken by Zhu et al. [44], wherein back-propagation
neural networks (BPNNs) were tested with the support vector machine (SVM), random
forest (RF), latent Dirichlet allocation (LDA), extreme learning machine (ELM), LS-SVM,
and partial least squares discrimination analysis (PLS-DA) for pre-symptomatic detection
and classification of tobacco mosaic virus (TMV) disease with the use of hyperspectral
imaging. Similarly, Zhu et al. [45] studied the feasibility of hyperspectral imaging as a
non-invasive technique for early detection of TMV disease with machine learning classifiers
and the variable selection technique. The results revealed that the back-propagation neural
network model (BPNN) achieved 95% accuracy, whereas the chemometric models achieved
an accuracy of 80%. It is worth mentioning that it is possible to implement pattern identifi-
cation methods such as the random forest and support vector machine by utilizing a new
pattern recognition technique, named the Artificial Intelligent Nose. Cui et al. [46] provided
a review of different invasive and non-invasive techniques, including their advantages
and drawbacks, in which the authors noted that the smart nose is a non-invasive and fast
method for plant disease diagnosis. In essence, neural networks ensure the highest quality
and unaltered spectral information for hyperspectral data analysis. The most well-known
study of the ANN spawned the concept of deep learning, which has recently become
popular in farming applications. Deep learning has received increasing and widespread
interest from many researchers, particularly since 2018, as shown in Table 2. Researchers
have made remarkable progress in crop image classification; some of the most typical
and representative models are the convolutional neural network (CNN), auto-encoder
(AE) recurrent neural network (RNN), and restricted Boltzmann machine (RBM). Many
fascinating studies have been published on deep learning for crop disease classification
and detection. Among these works, that of Ma et al. [47] presented a deep convolutional
neural network (DCNN) model able to detect over four types of cucumber disease. In a
comparison with other traditional methods, such as the support vector machine, naive
Bayes, and AlexNet, the DCNN was capable of identifying the different cucumber diseases
with very high accuracy of up to 93.41%. Similarly, Tran et al. [48] offered a monitoring
system for tomato growth and to maximize tomato yield. This system was able to classify
nutritional deficiencies and diseases during growth. Thus, agricultural experts evaluate the
symptoms based on the results to protect tomato crops. In a similar manner, to effectively
monitor apple tree growth at each stage and estimate the yield, Tian et al. [49] deployed a
dense YOLOV3 model that utilizes techniques for data augmentation to prevent overfitting.
Their approach was found to be valid and applicable to apple orchards, although their
study included wavy lights, interlaced fruit, and complex backgrounds.
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Table 2. A brief summary of different research on transfer and deep learning since 2018 for identifying
crop diseases.

Year Authors Model
Dataset

Accuracy
Crop Name Nb of Classes Nb of Images Name of Dataset

2020 Singh et al. [37] MobileNet, R-CNN 13 types 27 2598 PlantVillage 70.53%

2020 Al-bayati et al. [38] DNN, SURF, GOA Apple 6 2539 PlantVillage 98.28%

2019 Arsenovic et al. [39] CNN-Multichannel 12 species of crops 42 79,265 PlantVillage 93.67%

2019 Costa et al. [40]
InceptionV3 and CNN
using a Hierarchical
Approach

Apple,
Tomato, peach 16 24,000 PlantVillage 97.74%

2019 Geetharamani et al. [35] 9-layer deep CNN 14 species of crops 39 61,486 Leaf disease dataset 96.46%

2018 De Luna et al. [50] CNN, Faster R-CNN Tomato 4 4923 Own 91.67%

2018 Ferentinos et al. [33] Overfeat, VGG16,
AlexNet 25 species of crops 58 87,848 Open Dataset 99.53%

2.4. Hyperspectral Imaging Applied to Disease Recognition

The hyperspectral imagery method has been strongly developed during the past two
decades [51], and used to identify abiotic and biotic stresses in cultivated plants [52]. Hy-
perspectral imaging is a technique combining spectroscopy and imagery, making it possible
to simultaneously obtain the spatial and spectral information of an object. Disease infection
causes changes in plant biochemical and biophysical properties, such as transpiration rate,
tissue structure, water, and pigment content. These changes can then alter plant spectral
properties, intercellular space, and water content [53]. However, the hyperspectral system
is able to capture these spectral features. Zhu et al. [44,45] conducted a similar study to
detect TSWV infection growth in tobacco, in which the authors reported that hyperspectral
reflectance was gathered in the visible and near-infrared range to distinguish between
healthy and infected TSWV tobacco leaves using statistical analysis methods. Primarily,
the TSWV presence was identified at 14 DPI. Moreover, Zhu et al. [45] demonstrated that
hyperspectral imaging is able to detect the tobacco mosaic virus (TMV) infection before
showing any symptoms, while utilizing SPA for the selection of the effective EW wave-
length and, most significantly, for identifying various diseases. Due to the huge number of
spectral values that are highly correlated in the hyperspectral dataset, high dimensionality
and multi-collinearity frequently appear in hyperspectral data [54,55]. Accordingly, the
selection of EWs is crucial for hyperspectral analysis in order to lessen the computational
complexity, increase the efficiency of using hyperspectral data, and reduce the computa-
tional complexity. Thus, to address this multi-collinearity issue, a variety of approaches and
methods have been presented, such as the successive projection algorithm (SPA) [45,56],
partial least squares regression (PLSR) models [54] and genetic algorithms (GAs).

2.5. Application of IoT in the Field of Leaf Disease Recognition

The Internet of Things (IoT) has improved agricultural capabilities. IoT applications
can help farmers at any time during their farming activities and keep them updated with
the latest crop and weather information to remotely monitor their fields. By means of IoT
applications [57–59], farmers can make plans for the next season’s harvest. Furthermore,
they can detect crop diseases at an early stage to curb the spread of disease and save their
yield. Agricultural IoT apps clearly play a major role in increasing agricultural production
and decreasing crop losses due to diseases. In this context, a large amount of research has
been conducted to identify diseases, as shown in Table 3. Truong et al. [60] devised an
IoT-based system made up of various devices that is able to deliver real-time environmental
information and send it to the cloud to be stored. These environmental data are processed
and scrutinized to predict weather conditions by means of the SVM algorithm deployed
in the cloud in order to detect crop fungal diseases. In addition, better results have been
achieved when the Internet of Things and image processing have been combined and
implemented in the area of disease recognition. Krishna et al. [58] implemented an IoT
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system featuring SMS alerts that enables automatic disease detection and pesticide spraying
using the NodeMCU.

Table 3. Summary of the literature survey on Internet of Things systems.

Researchers Detection Techniques and Algorithms Parameter Evaluation

M. Mishra et al. [39]
2021

An IoT-based automated plant disease monitoring and
detection system, using the median filter and a modified
optimizer called the SCA-based RideNN Cycling
Neural Network

The RideNN model based on SCA achieved accuracy of 91.56%

Devi et al. [37]
2019 IoT system using GLCM, RFC, and k-means clustering The overall accuracy of disease detection and classification

based on RFC-GLCM was almost 99.99%

Krishna et al. [38]
2019 IoT system using SVM and k-means clustering An immediate SMS alert to the farmer

Chen et al. [36]
2019 RiceTalk platform using an AI model and IoT devices Net prediction accuracy was 89.4%

Win et al. [41]
2018

IoT-based remote rice monitoring IoT system using deep
learning and transfer learning Real-time monitoring of environmental parameters

Truong et al. [40]
2017 IoT system using SVM Real time analysis

3. Comparison of Various Crop Disease Detection Techniques

The primary objective of this section is to provide an overview of research carried
out during the past decade for identifying crop diseases. Table 4 provides an outline of
several methodologies adopted by researchers in the field of crop disease using machine
learning, image processing, the Internet of Things, transfer learning, and deep learning
techniques. It also indicates the limitations and gaps that need to be filled to help develop
an automatic, efficient, accurate, and faster system in the future. Thus, in the conducted
research, the authors conclude that deep learning provides accurate and highly promising
results compared to other classification and detection methods. Additionally, the use of
preprocessing techniques significantly improves segmentation accuracy. The k-means
algorithm is the most widely and commonly used technique [29,58,61–63] for segmenting
diseased leaves and classifying crop diseases. In practice, no generalizable algorithm is
able to solve all issues, so choosing a suitable learning algorithm for a specific problem
is a crucial step for the model efficiency. Note that the extracted texture features are
the most relevant and most useful for representing the disease-affected regions in the
images, which are then employed to train the support vector machine (SVM) and neural
network (NN) classifier. It is further emphasized that these texture features are arithmetical
parameters that are automatically calculated by means of the gray level co-occurrence
matrix (GLCM) [64,65], as stated below:

1. ASM: The second angular momentum that stands for the total sum of squares in the
GLCM.

Energy = ∑N−1
i,j=0

(
Pi,j

)2 (1)

2. Contrast: Denotes the sum of the difference in local intensity, where i 6= j.

Contrast = ∑N−1
i,j=0 Pi,j(i− j)2 (2)

3. Entropy: The quantity of image information necessary for the compression.

Entropy = ∑N−1
i,j=0− ln

(
Pi,j

)
Pi,j (3)

4. Correlation: Refers to the linear dependence of the adjacent pixels’ gray levels.

Correlation = ∑N−1
i,j=0 Pi,j(i− µ)(j− µ)/σ2 (4)
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where Pi,j is the i, j component of the GLCM normalized symmetric matrix and N denotes
the number of gray levels. σ2 is the intensity variation of all pixels as given below:

σ2 = ∑N−1
i,j=0 Pi,j(i− µ)2 (5)

Moreover, the average of GLCM is µ given by:

µ = ∑N−1
i,j=0 iPi,j (6)

5. Homogeneity feature: Represents the homogeneity of the voxel pairs of the gray level,
and is equal to 1 for a diagonal GLCM.

Homogeneity = ∑N−1
i,j=0 Pi,j/1 + (i− j)2 (7)

Ultimately, the models for identifying and classifying crop diseases were evaluated
by means of various metrics, which were specific to the model used in each study, such
as sensitivity, precision (P), recall (R), quality measure (QM), and F1-score. The statistical
evaluation measures used to analyze the quantitative performance of crop disease detection
models with deep and transfer learning can be calculated as follows:

Precision =
TP

(TP + FP)
(8)

where Precision (P) is the fraction of true positives (TP) to the total amount of relevant
results, that is, the sum of TP and false positives (FP). For multi-class classification problems,
P is averaged across the classes.

Sensitivity =
TP

(TP + FN)
(9)

Sensitivity/Recall (R) is the fraction of TP to the total amount of TP and false negatives
(FN). For multi-class classification problems, R obtains the average of all classes.

Speci f icity =
TN

(TN + FP)
(10)

Specificity is the proportion of true negative (TN) samples to all healthy samples (true
negatives and false positives). This measure is utilized to evaluate the performance of a
proposed model in forecasting true negatives.

Accuracy =
TP + TN

(TP + TN + FP + FN)
(11)

Accuracy is the proportion of correctly classified samples to the total number of clas-
sified samples. This measure is employed to assess the overall performance of a sug-
gested model.

F1_score =
2× (Sensitivity× Precision)
(Sensitivity + Precision)

(12)

F1-score is the harmonic average of both precision and recall. For multi-class classifica-
tion problems, F1 is averaged across all classes, where:

TP: represents the number of true positive image samples that are perfectly identified as infected.
FP: is the number of false-positive image samples that are incorrectly classified as infected.
TN: is the number of true-negative image samples that are correctly classified as healthy.
FN: is the number of false-negative image samples that are incorrectly identified as uninfected.
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As revealed in the previous studies [66], it was found that accuracy was the most
widely adopted metric; it was widely used in 72% of the articles reviewed, followed by
the confusion matrix, then precision, recall, and the F1 measures. Some research has
examined the root mean square error (RMSE), mean absolute error, R-squared, and mean
squared error (MSE), among others. The authors note that it is difficult, if not impossible,
to make a comparison across papers because different metrics were used for different tasks,
different models, datasets, and parameters; in addition, different crops and diseases were
analyzed under different conditions. Furthermore, it is very important to examine whether
the researchers tested their implementation on an identical dataset (e.g., by splitting the
dataset into training and validation sets), or whether they used different datasets to test
their solution.

Table 4. Related work in the area of crop disease identification.

Title Methodology Advantages Disadvantages

Tomato plant disease detection using
transfer learning with C-GAN

synthetic images
(Abbas et al., 2021)

[19]

This research paper provides a DL-based method
for detecting tomato disease that uses the C-GAN
to generate the synthetic images of tomato leaves

for data augmentation purposes. Then, a
pre-trained DenseNet121 model is fine-tuned on

synthetic and real images to classify tomato leaves
images into ten disease categories.

- The proposed method reached an accuracy of up to
99.51%, 98.65% and 97.11% in classifying tomato
leaf images to the categories of 5, 7 and 10,
respectively. It is shown that this method
outperforms the current methodologies.

- The C-GAN prevents overfitting and
- enhances the network generalization

- The tomato disease detection was executed on the
leaves, but other plant areas such as stems, and
branches must be highly involved.

- The study was only done on tomato plant disease.

MEAN-SSD: A novel real-time detector
for apple leaf diseases using improved

light-weight convolutional
neural networks

(Sun et al., 2021) [21]

- This paper proposes a lightweight CNN
detection model suitable for mobile
device deployment, namely MEAN-SSD,
to detect apple leaf diseases in real time.
Data annotation and augmentation
techniques were used to generate 26,767
disease spot images for training by
collecting 2230 original images with
simple backgrounds from the laboratory
and complex backgrounds images
collected from the orchard.

- The model is capable of automatically
extracting the features of five common
disease spots from apple leaves.

- The results showed that the MEAN-SSD model is
able to detect apple diseases accurately by reaching
83.12 mAP and a speed of 12.53 FPS.

- The MEAN block is used as a basic module to boost
the detection speed and shrink the model’s size.

- Disease detection was only devoted to apple leaf
diseases and more specifically to 5 types of disease
spots, such as Brown spot, grey spot, Mosaic,
Alternaria blotch, and Rust.

Detection of oil palm leaf disease based
on color histogram and

supervised classifier
(Hamdani et al., 2021)[20]

- A new method for detecting oil palm
leaf disease is proposed in this paper to
discriminate between two leaf classes:
healthy and diseased. Then, feature
extraction is carried out in the RGB (R,
G, and B), LAB (a and b), HSI (H and S),
and HSV (H and S) color spaces by
splitting the histogram of the 8-bin color
channel. This is further performed on
the segmented leaf regions resulting
from the k-means clustering. A total of
41 selected features are produced using
PCA and subsequently fed into the
ANN classifier.

- The classification results have shown that the
proposed method performs satisfactorily, as
evidenced by the high specificity, sensitivity, and
accuracy values, which reach 100%, 99.3%, and
99.67% respectively.

- The applied method produces a smaller number of
features with discriminatory and more
powerful characteristics.

- According to the classification outcomes, an error
occurred due to a leaf being misclassified as a
healthy one.

- The study was only conducted on the oil palm
leaf disease.

Detection of Rice Leaf Diseases Using
Image Processing

(Pothen et al., 2020)
[22]

The proposed system identifies three diseases
(bacterial leaf blight, leaf smut, and brown spot)

that affect rice plant leaves using IP and ML
techniques. This system, in turn, helps farmers

save their crops at an early stage. As a first step in
the process sequence, the images are collected and

further pre-processed to ensure that the image
features are upgraded and undesired distortions

are eliminated, followed by segmenting the
images through the Otsu thresholding algorithm.
Using the segmented area, a range of features are

extracted using the LBP and HOG. Then, these
obtained features are classified using the SVM and

reached 94.6%.

- SVM + HOG with polynomial kernel function can
be used to detect other plant diseases.

- The proposed work is relevant, offering better
precision (of 94.6%) compared to other work.

- One downside of the LBP fundamental operator is
its inability to capture certain prevailing features.

Image Processing Technologies for
Automatic Detection of Plant Disease

and Alerting System in
Agricultural Farms

(Mugithe et al., 2020) [7]

The authors developed a system able to detect leaf
diseases and alert the farmer in case of the need to

promptly act to circumvent the spread of the
disease in the field. They employed IP techniques
that entail six steps. Firstly, the leaf images were

taken in real time via a webcam connected to
RaspberryPi. Secondly, the images were

pre-processed, segmented, and clustered using the
k-means clustering algorithm, then features (e.g.,

perimeter and light intensity) were retrieved from
the images. Lastly, these extracted features were
evaluated to classify the leaf diseases. Once the

disease is detected, the buzzer rings and an alert is
generated so that the farmer can intervene

promptly. Note that this system works in two
ways, namely in the GUI and in real time.

- The results of the disease Alternaria Alternata
achieved precision of 95.16313% in the
graphical interface.

- The use of a warning system when detecting
a disease.

- The authors did not address any other disease and
not even the reported results are obvious.
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Table 4. Cont.

Title Methodology Advantages Disadvantages

Plant Disease Detection Using Internet
of Thing (IoT)

(Usman et al., 2020)
[67]

This paper presents the innovation of the IoT in
agricultural infection and insect pest control. Data
on insects and diseases are collected using a WSN,
so an IoT-based control framework was proposed

to obtain horticultural data from a farm with
levels of trees and three frameworks. First, a

computation framework was deployed to deem
whether the plant is healthy or affected and

second, an automated framework determined the
disease closeness in the plants, and a mechanized

framework was then set up to recognize the
diseases through humidity, temperature, and
shade sensors. Thus, through its sensors, the

plants’ progress is registered and then dissected
using Arduino programming. Then, this collected
information is transmitted to the cloud by WIFI to

be processed and analyzed. Eventually, this
information is compared to the whole data to

determine if the studied plant is healthy
or affected.

- The proposed IoT-based model is low-cost.
- Low-income farmers can purchase it and take

benefit of it for curtailing the disease spread.

- The authors restricted their model to only the three
following parameters: temperature, moisture, and
leaf shade. Another constraint is that the evaluated
features for the considered parameters are not
accurate. Moreover, a range of features was taken
from these parameters that may fluctuate
unexpectedly depending on the
environmental conditions.

- The leaves of diseased plants are not classified, so
the disease types are still not able to be known.

Detection of Plant Leaf Disease using
Digital Image Processing

(Mojjada et al., 2020)
[29]

This article focuses on the early identification of
plant leaf diseases by image analysis. Thus,

automated disease detection reduces the work for
monitoring agricultural sites. The identification of

diseases is carried out through various IP
techniques and ML; in particular, a genetic

optimization algorithm was used after image
segmentation by k-means to obtain optimized

results and they also exploited SVM for
disease classification.

- The algorithm used was tested with an accuracy of
75% in five classes of infected leaf images identified
for corn, tomato, bell pepper, peach, and grape.

- Very common methods were used in the paper.

Precision Method for Pest Detection in
Plants using the Clustering Algorithm in

Image Processing (Reddy et al., 2020)
[68]

This work presents an accurate method for
detecting pests in plants using the k-means

clustering algorithm. Disease recognition involves
steps such as image acquisition, image

preprocessing, segmentation, and classification.
First, the RGB leaf images were converted to HSV

for partitioning, and then the median filter and
boundary detection algorithm were both applied

during the pre-processing step to suppress the
clamor. Finally, the k-means clustering was

employed to cluster the images.

- This paper provides an efficient and accurate
framework for the detection of affected images.

- The k-means clustering provides high accuracies
compared to other methods and takes less time for
the processing.

- Very typical and old techniques were considered in
this paper.

Detection and Classification of Plant
Diseases Using Image Processing and

Multiclass Support Vector Machine
(Khan et al., 2020)

[69]

The authors described a framework for plant
disease using ML and IP techniques. First, the
suggested algorithm is applied to a 148-image

dataset which contains 5 types of leaves diseases,
namely, Alternaria, fire blight, Anthracnose, and
Cercospora leaf spot, and the plant images were
split up into two sets. A training set is composed
of 73 images and a testing set is composed of 75

images. Then, image segmentation is performed to
isolate the pathogenic parts of the leaf. Then, 13

texture features were extracted from the image, of
which, nine features (standard deviation, variance,
mean, entropy, smoothness, skewness, RMS root

mean square, inverse difference, and kurtosis) are
calculated using the assigned segment in RGB

color space. The other four features (homogeneity,
contrast, energy, and correlation) are determined
from a grayscale image. Finally, the healthy and

diseased leaves are classified based on the feature
vector extracted using SVM.

- The obtaining results for plant disease detection
showed that the proposed method yields a highly
accurate rate of up to 92.8571%.

- The intervention of the operator is crucial to select
the segment affected by the disease because this
operation is not automatically executed in the
system rather, it is performed by visual examination
of the three segments.

Evolutionary feature optimization for
plant leaf disease detection by deep

neural networks
(Al-bayati et al., 2020)

[38]

The researchers used a DNN for apple leaf disease
identification, namely black rot, apple scab, and

cedar rust, by applying the GOA and Robust
Accelerated Feature SURF, where GOA was

employed for feature optimization and SURF was
applied for feature extraction. Prior to the
implementation of DNN, many steps were

performed, such as the image improvement in the
pre-processing process and the ROI segmentation.
Then, the features were extracted using the SURF

descriptor, followed by the optimization by the
GOA algorithm, and, finally, the disease

classification was carried out by the use of DNN.

- The experiments showed that the method based on
DNN optimized by SURF provides a higher mean
value of 98.28% in comparison with the other
techniques; hence the accuracy of the model
increases by 18.03%. Thus, the basic model has
better transferability compared to the metric model.

- Only foliar diseases of apples were addressed in
this paper.

Leaf Disease Detection using Image
Processing (Karthikeyan et al., 2020) [65]

This research used IP techniques along with the
SVM classifier to detect plant diseases. The

identification of plant diseases requires the steps
of transforming an RGB image to grayscale, then

enhancing the image using the adaptive color
histogram AHE, extracting 13 textural features

using the GLCM and, finally, using SVM to
classify the different types of diseases. Note that

more than 500 images were taken for training and
testing with intensity values ranging from 0 to 255.

- The system reveals the presence of disease in the
leaves in a shorter time and at a lower cost than
conventional systems.

- The accuracy rate is not given; also, the structure of
the algorithm is complicated.

Plant disease detection using
image processing

techniques(Sawant et al., 2020)
[70]

An IM and DL techniques-based approach was
proposed for plant disease identification. First,
pictures of healthy and unhealthy leaves are
acquired and then stored in the database for
preprocessing. Additionally, the images are

pre-processed using different techniques such as
histogram equalizer, Contrast Limited AHE, and

image resizing. Then, once the RGB image is
converted to CLAHE, it is resized to 70 × 70 for
better resolution. Moreover, the leaf features are

extracted and released to the CNN using the
SoftMax function for plant disease classification.

Note that the first layer has 1000 neurons.

- The CNN method enables accurate detection and
classifies diverse plant diseases using IP techniques. - Results were not provided in this paper.
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Table 4. Cont.

Title Methodology Advantages Disadvantages

Convolutional neural network for
automatic identification of plant diseases

with limited data
(Afifi et al., 2020)

[6]

Several approaches were developed in this study
to identify plant diseases with little data. A DAML

and triplet network approach was set up using
three architectures of CNN (ResNet50, 34, and 18).
Using a large dataset, the approaches were trained
and then fitted from 5 to 50 images per disease for

detecting new diseases.

- The model reached an accuracy of up to 99% when
the change from the source domain to the targets
was slight, but when the change was significant, the
accuracy was up to 81%.

- The results showed a significant error rate for
DAML methods of 22.2 per 50 shots and 42.6 per 5
shots compared to the other methods.

- The basic model lags significantly behind the
other methods.

Leaf disease detection using
machine learning
(Fulari et al., 2020)

[71]

An efficient method for the identification of a
healthy or infected leaf was presented using IP

and ML techniques. The data were taken from the
Kaggle website which contains more than 12,949
images. The method implies different steps such

as image preprocessing, segmentation of the
image, feature extraction (shape, color, and

texture) with the use of GLCM, and classification
with the use of SVM.

- The SVM offers a number of advantages over other
classifiers, as it is efficient in
high-dimensional spaces.

- The SVM yielded an accuracy of up to 80% while
the CNN provided an accuracy of up to 97.71%.

- The presented method, based on the CNN, provides
good accuracy. Nevertheless, it is tedious and a lot
of time is required to train the model.

Deep transfer learning models for
tomato disease detection

(Ouhami et al., 2020)
[72]

The authors conducted a study to identify the
most suitable DL model for identifying tomato
diseases based on RGB leaf images, which were

split into 6 different kinds of infections and
parasitic attacks. Thus, two architectures of DL

models, namely DensNet121 with 161 layers and
VGG16, were used to perform the study.

- The results obtained were very promising with an
accuracy of up to 95.65%, 94.93% and 90.5%
respectively for the DensNet161, DensNet121, and
VGG16 models, which shows that DensNet161 with
20 training periods surpassed the other two
architectures.

- DensNet models require significantly fewer
parameters and calculations to achieve
optimum performance.

- Adverse transfer can occur and may dramatically
lower the model’s accuracy.

A new segmentation method for plant
disease diagnosis

(Gurrala et al., 2019)
[64]

IP and AI methods were used for the recognition
of diseases such as scab, anthracnose, blight, and

spots on plants. First, the RGB image was
converted to grayscale, and the image was then
segmented using the k-means and the modified

CPDA algorithm. Thus, from the result obtained, a
comparison was made between these two
segmentation algorithms. The statistical

parameters of the segmented image were
calculated using the GLCM method; that is, the
characteristics (entropy, mean, variance, type,

RMS, contrast, correlation, energy, homogeneity,
regularity, kurtosis, asymmetry, IDM moment of

difference). Finally, the SVM classifier was trained
with a dataset of about 100 images of leaves

affected by the disease.

- The proposed modified CPDA detection algorithm
yields more accurate results than the
k-means clustering.

- Even if a disease is detected in a shorter time, the
accuracy is limited.

IoT Enabled efficient Detection and
Classification of Plant Diseases for

Agricultural Applications
(Devi et al., 2019)

[61]

The authors proposed a simple and efficient
IoT-based solution for the detection of bunch top
and Sigatoka diseases in banana tree located on

hills. First, 80 hill banana plant images are
captured and then resized to 256 × 256 in the

image preprocessing phase. Then, the
preprocessed image is converted to a gray image.

Thus, the histogram equalization technique is
used to equalize the histogram of the resized gray
image so that the intensities of the image are better

distributed for better segmentation, which is
performed by k-means clustering. From the
segmented image, the GLCM features are

extracted and uploaded to the cloud for further
analysis. From these extracted characteristics, the
hill banana diseases are classified using the RFC

technique. Finally, the data is collected and
analyzed by agricultural experts. In addition, this

system allows remote monitoring of
environmental parameters such as soil humidity
and temperature to prevent diseases caused by

climate change and pathogens
as much as possible.

- The performance results showed an overall
detection accuracy of 99.99% and demonstrate that
RFC-GLCM-based leaf disease classification works
best for the hill banana dataset.

- Agricultural experts provide solutions to farmers in
case of plant disease or massive changes in
environmental parameters on the agricultural field.

- The accuracy of the system depends on the ambient
conditions of the agricultural field, such as the angle
of image capture and the lighting in the field.

A Preprocessing Approach for Accurate
Identification of Plant Diseases in Leaves

(Deepa et al., 2018)
[73]

In this paper, the proposed method takes RGB
images as the input and applies the preprocessing

methods, such as image sharpness and median
filters, to eliminate the noise from images, and for
deblurring and edge detection. Then, these images

were segmented using k-means clustering. It
should be mentioned that they used the peak
signal-to-noise ratio in order to measure the

quality of the images.

- The results show that the method adopted allows
better identification of plant leaf diseases.

- They studied only three diseases: Alternaria
Alternata disease, Bacterial Blight, and
Anthracnose disease.

- They did not consider extracting characteristics or
classifying diseases into different groups.

AI and IoT methods for plant disease
detection in Myanmar

(Win et al., 2018)
[74]

The researchers developed two prototypes. The
first is a mobile application that classifies diseases

on rice plants. With this simple application, the
farmer can easily identify the diseases or pests on

rice plants, without using agronomists. The
second is a system for monitoring temperature,

atmospheric pressure, water level, and the
sunlight level of rice fields. Using this system, the
intensive work is reduced by remotely monitoring

this environmental data from anywhere an
Internet connection is available. For the

development of the mobile app, they collected 6
kinds of rice pictures, of bacterial leaf blight,

brown spot, rice blast, mice attack, insects, and
healthy rice. In addition, they used the Arduino

nano to turn off/on the solenoid valve, which was
directly connected to the Raspberry Pi every 30

min, to ensure efficient power and a long system
runtime. Diseases were classified using TL and

DL models.

- They developed a simple Android app to monitor
the temperature and battery level on a SensorTag.
Thus, the farm sensor data reading can be easily
viewed on smartphones or PCs.

- They installed 8 SensorTags in different areas. The
distance between them and the Raspberry Pi was
less than 50 m. To monitor a wide range of many
rice fields, another type of communication system,
rather than the Bluetooth technology of the
SensorTags, must be considered. A problem was
encountered with the SensorTag coil battery, Under
normal conditions, the batteries last at least a year
while keeping the SensorTag alive. However,
firmware level changes were added to the
SensorTag to advertise all the time so, the LEDs on
the SensorTags blink and the batteries only last a
few weeks. Hence, they needed to replace the
button batteries many times.
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Table 4. Cont.

Title Methodology Advantages Disadvantages

Plant diseases recognition based on
image processing technology

(Sun et al., 2018)
[75]

A multiple linear regression-based plant disease
identification system is presented, along with a

histogram-based segmentation method for
accurate and automatic threshold calculation. The

proposed system is based on IP techniques
including four steps: preprocessing, image

segmentation, feature extraction, and regression
model. First, the spatial domain image denoising

is used to filter the noise. Then, an improved
histogram-based segmentation method is

developed to distinguish lesions from normal
foliage, which automatically determines the

threshold and optimizes the segmentation process.
Next, the regional growth method is used for

multi-point selection to extract certain
disease-affected areas. Then, lesion feature

extraction is performed in terms of shape, texture,
and color. Finally, a multiple linear regression

model is implemented to determine the type of
disease, and then the least-squares estimation

algorithm is used to calculate the coefficients and
confidence intervals to set up the disease

recognition system.

- The obtained results proved that the proposed
recognition system has high accuracy, reliability,
and effective recognition ability of plant diseases.

- The histogram segmentation method has great
advantages, such as speed, efficiency, and accuracy.

- The error rate increases progressively as the disease
state becomes more complex because, as the disease
worsens, the characteristic parameters become more
complex and so the results become unstable.

An IoT based smart solution for leaf
disease detection

(Thorat et al., 2017)
[76]

This paper presents a solution based on a smart
farming technique using WSN, a Raspberry PI

module, and a camera to establish wireless
communication. In addition, CV techniques were
used, such as masking, segmentation, and feature

extraction to identify leaf diseases.It should be
noted that they used the Apache server to retrieve

and send data.

- The proposed system allows remote monitoring of
the farm. Thus, the recognition of different leaf
diseases was carried out successfully.

- The power supply of the system is limited, so the
whole process stops if the system fails, which is an
inconvenience. Moreover, the images taken during
the day can be affected by excessive sunlight or
reflections, which means the leaf color cannot be
identified by the camera or captured clearly at night.

Plant disease detection using
hyperspectral imaging

(Moghadam et al., 2017)
[77]

The authors used hyperspectral imaging (SWIR
and VNIR), ML techniques, and IP for detecting

tomato wilt virus in capsicum plants. First, images
were acquired from a hyperspectral imaging

system consisting of two Headwall push-broom
hyperspectral cameras, namely the SWIR

hyperspectral camera that provides a spatial
resolution of 384 pixels and a spectral range of 900

to 2500 with 168 spectral bands, and the VNIR
hyperspectral camera, which provides a spatial

resolution of 384 pixels. Then, these images were
pre-processed using different pre-processing

techniques such as the space-adaptive filtering
approach for detection and grid removal. In

addition, these images were segmented using an
unsupervised k-means clustering algorithm.

Further, discriminative feature extraction was
performed using the full spectrum, VNIR, SWIR,

and vegetation indices. Finally, these features were
employed to train classifiers for discriminating

leaves obtained from inoculated and healthy
plants.They also used other techniques in the

process of disease identification as follows:They
used the KL divergence or relative entropy to

estimate the distances between two distributions
of the control group and of the inoculated

group.Note that the high-pass filter used is a
third-order Butterworth FIR filter, which is

applied to flatten the power spectral density of the
image in order to detect a known signal corrupted

by additive white noise.

- The obtained results showed excellent
discrimination based on the full spectrum.

- The effectiveness of feature extraction techniques
used for automatic disease classification in
greenhouse experiments.

- The cluster analysis was able to successfully classify
the image spectra into two classes by using the
significant difference in spectral profile between the
vegetation and its surroundings.

- The researchers treated only one disease, TSWV.
- They were not able to correlate the reduction in

overall values of SWIR dissimilarity with a plant
pathogenic biophysical interaction for DAI 7 and 10.

Deep Learning for Image-Based Cassava
Disease Detection

(Ramcharan et al., 2017)
[41]

A new model for the identification of plant
diseases is proposed based on TL to train a CNN
using a dataset of 2756 images in order to identify

two types of damage caused by pests and three
diseases. This model was deployed on a mobile

application.

- The CNN avoids the tedious and complex step of
extracting features from images to train models on a
mobile device. The results proved that the TL
approach offers greater precision in cassava, and is
also an affordable, fast, and easily deployable
strategy for digital devices. The model accuracy
was 96% for RMD and CMD, 95% for GMD, and
98% for brown spot and cassava.

- Due to several factors, such as the lighting in a
complex environment, accurate identification of
diseases is challenging.

Early detection and classification of
tobacco leaves inoculated with tobacco

mosaic virus based on hyperspectral
imaging technique
(Zhu et al., 2016)

[44]

The authors proposed a procedure for the early
detection of tobacco disease infected with the

mosaic virus by different ML algorithms based on
hyperspectral imaging techniques. Images of

healthy leaves inoculated with TMV for a period
of 7 days, i.e., after inoculation, were acquired by a
hyperspectral imaging system every day with the

VNIR wavelength region 380–1023 nm. In
addition, the spectral reflectance of the predefined
ROI was extracted from the hyperspectral images

using the ENVI software. The different ML
algorithms, namely, RF, SVM, BaBPNN, LS-SVM,

PLS—DA, ELM, and LDA were used to
quantitatively classify the stages of tobacco disease

using EW that were selected using the SPA.

- BPNN and ELM models successfully detected
healthy and diseased tobacco leaves (2 DPI, 4 DPI, 6
DPI); the detection rates were 98.33% and
96.67%, respectively.

- The classification accuracy of the training set and
the test set was 84.17% and 75% respectively.

- They used a single VNIR component from the
electromagnetic spectrum.

- Generation of average spectra from a single ROI
rather than all pixels.

- The performance of the SPA-PLS-DA model was
relatively poor compared to other models and the
accuracy was slightly lower 75%.

Plant disease detection using image
processing (Khirade et al., 2015)

[78]

This article discussed IP-based methods for the
detection of plant diseases, in particular

segmentation and feature extraction algorithms.
Concerning the segmentation techniques, they
exploited the k-mean clustering, boundary and

spot detection algorithm, and the Otsu threshold
algorithm. Regarding the feature extraction

techniques, they studied various methods, such as
the color co-occurrence method, and regarding the

disease classification phase, they used various
algorithms such as ANN, BBPN, and SVM to

accurately classify various leaf diseases.

- A variety of IP and machine learning (ML)
techniques are discussed.

- The authors did not suggest any system and no
results were given.
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Table 4. Cont.

Title Methodology Advantages Disadvantages

Detection of unhealthy region of plant
leaves and classification of plant leaf

diseases using texture features
(Arivazhaga et al., 2013) [79]

A software solution is proposed for the detection
of unhealthy regions and the automatic

classification of diseases using the extracted
texture characteristics. Thus, the scheme of the

process consists of four steps. First, the acquired
RGB leaf images were converted to HSV format.

Then, the green pixels were masked and removed,
followed by a segmentation process. Further, the
texture characteristics were computed using the

Color-Co-Occurrence Matrix and, finally, the
classification was first performed using the

minimum distance criterion, which yielded a gain
of 86.7%. Results were then improved by the

SVM classifier.

- The proposed method was tested on ten species of
plants: beans, mango, lemon, jackfruit, banana,
sapota, potato, and tomato. The results gave an
accuracy of 94.74% using the SVM classifier.
Therefore, the proposed approach can classify leaf
diseases with little computational effort.

- Various reasons lead to an erroneous classification,
namely, the identifying vectors of the taken features
have to be optimized, and the symptoms of the
diseased plant leaves vary from the early to the
late stage.

Early detection of diseases on leaves by
image processing

(Han et al., 2013)[80]

The authors worked on images of vine leaves
affected by mildew at different stages that were

acquired by photographic sensors. They were able
to detect diseases that are visible and barely visible

to the naked eye using techniques based on the
image representation in color space, and hybrids
including information on both color and texture.

Thus, for visual plant diseases, they were oriented
towards changing the color space, in particular, to
facilitate detection. To ensure better visualization,
they were interested in the bands of each image
(the V band of the YUV color space). Regarding
diseases barely visible to the eyes, as a solution,

they used the image analysis method that
combines color and texture information.

Otherwise, the most relevant challenge was the
disease detection at an early stage. As an optimal
solution, they worked on thermal imaging, which
is very effective in detecting water stress. Finally,

they calculated the Mahalanobis distance for
image segmentation.

- As an advantage of the texture analysis (conversion
of the image into hybrid space), they discerned 3
classes of textures and, for each class, 20 learning
patches, to choose from.

- The use of a thermal imaging device allows the
premature detection of leaf diseases.

- They only treated mildew disease.
- The downside of using the color space change

method is that when the mildew stains are at the
early stage, this method does not work well; hence,
the need to couple this type of color treatment with
one based on texture analysis.

- They did not calculate the area infected with
mildew disease.

Classification of cotton leaf spot disease
using image processing edge detection

techniques (Revathi et al., 2012)
[81]

This article describes how to identify the part
affected by leaf diseases using IP techniques. First,
to segment the image, the authors used the Canny

and Sobel edge detection technique and finally,
they proposed an HPCCDD to analyze the images

and classify the different diseases.

- The percentage was indicated to reduce leaf
diseases.

- The validation was undertaken via MATLAB.
- The authors only discussed cotton crops.

Color image segmentation using
K-Medoids

Clustering(Yerpude et al., 2012)
[82]

A color image segmentation method was
proposed using k-medoids clustering; the idea is
to find groups of objects by finding the medoids

for each group. The main objective of this paper is
the critical analysis of different disease

segmentation techniques.

- The obtained result shows the effectiveness of the
k-medoids algorithm on different types of images,
such as grayscale images. Moreover, the proposed
method is not sensitive to noise.

- The segmented images are highly reliant on the
centroids. However, they did not consider finding
the optimal number of segments to obtain more
accurate results.

- The k-means algorithm is very sensitive to outliers,
as the data distribution can be significantly
distorted if an object has an extremely large value.

Color transform-based approach for
disease spot detection on plant leaf

(Chaudhary et al., 2012)
[83]

A comparison was made between the effect of
YCbCr, HSV, and CIELAB color spaces in the

disease spot detection process since disease spots
are different in color but not in intensity level.

First, the different images of wheat, soybeans, rice,
corn, cotton, mustard, apple, magnolia, and cherry

leaf were taken. Then, these RGB images were
converted to YCbCr color space using the color
transformation formula and further to CIELAB
and HSV color space. Then, for smoothing and

enhancing the image, a median filter was applied.
Finally, the segmentation of the image was carried
out using the Otsu method on the components of
the color space: Cr for filtered YCbCr, component

H for the filtered HSV space, and component A for
the LAB filtered color space.

- The experimental results show that the noise
generated by the camera flash, background, and
vein can be effectively removed using the CIELAB
color model.

- Unfortunately, due to an imbalance in pigment
formation and micronutrient deficiency, the color of
the vein is different from the leaf spots. Thus, in
some cases, these disease spots cannot be detected
with precision using the CIELAB method.

Fast and accurate detection and
classification of plant diseases

(Al-Hiary et al., 2011)
[84]

The acquisition of the leaf RGB images is
undertaken to perform color space transformation.

Once the segmentation of these images is
performed using k-means clustering, the value of

the green pixels is masked using the threshold
obtained through Otsu’s method. In addition, the

affected clusters were converted to the hue
saturation value. For texture analysis, the SGDM

matrix is used for the formation of each image.
Finally, the disease recognition process is

performed by the ANN classifier.

- The color occurrence method is an advantageous
strategy that gives exact precision.

- The methodology can be improved to increase the
recognition rate of the classification process and to
automatically estimate the severity of the
disease detected.

Early detection of Fusarium infection in
wheat using hyper-spectral imaging

(Bauriegel et al., 2011) [85]

In this paper, Fusarium head disease was detected
by spectral analysis in wheat, barley, oat, and rye

plants. The PCA distinguishes affected from
healthy tissue in the wavelength ranges 927–931
nm, 682–733 nm, 560–675 nm, and 500–533 nm.

The SAM method is used to classify the degrees of
infection. Finally, the best time to identify ear

blight is the stage between 71–85 on the BBCH
scale. They analyzed 292 spectra and 80 spectra for
diseased and healthy tissue, respectively, in time

series experiments. Smoothing was performed for
these spectra with the “proc expand” function.

Then, the first derivative was calculated and 104
individual spectra were subjected to PCA to assess

the relevant wavelengths for discriminating
between healthy and blight-infected tissue.

- The robustness and efficiency of the proposed
algorithm are proved by experimental results of a
database of about 500 plant leaves.

- The SAM image analysis method correctly classifies
the degree of disease at 87%, and the visual
assessment error is 10%.

- The SAM method yields accurate classification
results; it is not practical for an online application
because the analysis of 512 spectral bands involves
a significant amount of computation.

- It is impossible to distinguish between different
degrees of infection using only spectral analysis,
due to the lack of symptoms.

- The disadvantage of using the SAM method is that
it is time consuming. Indeed, it involves the
configuration of the reference spectra for the
classification and, at the same time, the analysis of
all the spectral bands.

• The Difference between machine learning and deep learning

The difference between machine and deep learning lies [86] first in the fact that ma-
chine learning algorithms deal with quantitative and structured data and, second, the
operator is responsible for choosing the right algorithm to extract the features that will



Agriculture 2022, 12, 9 14 of 29

influence the prediction. Deep learning algorithms deal with unstructured data and the
algorithm is trained to extract the influential elements in the prediction as shown in Figure
S1 in the Supplementary Materials. It should be noted that deep learning algorithms, com-
pared to ML algorithms, demand a large amount of data and high computational power.

4. Discussion

In this paper, the authors reviewed many research articles and identified 129 studies
eligible for systematic review using the PRISMA statement as presented in Figure S2 in
the Supplementary Materials, these studies involve methodologies in image processing,
machine learning, and deep learning particularly focused on the identification and classifi-
cation of plant diseases. The study showed that the techniques most used in the literature,
in general, are the support vector machine [22,59,61,65] (SVM), random forest [87] (RF),
artificial neural network [84] (ANN) and convolutional neural network (CNN) [35,39,50].

Additionally, many scientific contributions have focused on the prediction of ma-
jor diseases affecting wheat, rice, and potatoes, such as powdery mildew [88,89], late
blight [90,91], and blast [92,93]. The challenging aspect of this work is the evaluation and
investigation of the computational efficiency of each study compared to other studies,
because each paper applies different metrics to a variety of diseases in different crops. In
addition, many techniques and pretreatment approaches are used to predict disease pres-
ence or severity. Accordingly, it is nearly impossible to generalize and compare different
articles because it is paramount to follow the same experimental conditions. Thus, the
present comparison of the different approaches used was strictly constrained, for example,
by considering the types of crops on which the work was undertaken, in addition to the
kinds of diseases considered during the work. Therefore, based on these constraints, from
the results obtained in related works, it is observed that deep learning-based models have
outperformed the classical approaches such as random forest, support vector machine,
and k-nearest neighbors classifiers, knowing that the performance of these algorithms
has been proven and validated using metrics such as accuracy, sensitivity, specificity, and
F1-score etc.

Table 4 shows that several researchers applied spectral analysis using thermal and
optical remote sensing images, in addition to multispectral and hyperspectral images. As
shown by Duarte-Carvajalino et al. [94], multispectral images were found to be relevant
for the early-stage detection of disease, whereas hyperspectral images, which are the
most widely used in the existing literature, can predict disease even before symptoms are
visible to the naked eye. Note that this difference is due to the spectral resolution used
by the two technologies. However, compared to hyperspectral imaging, multispectral
imaging offers less data complexity [95]. However, hyperspectral image analysis has
various limitations. Several authors have highlighted the high dimensionality of the data
as one of the difficulties encountered. As pointed out by Mahlein et al. [95], the high
degree of interband correlation leads to information redundancy, generating convergence
instability in multivariate prediction models. It is observed that the dataset used by most
of the researchers is taken from PlantVillage, and, in the image preprocessing process,
most researchers used the histogram equalization to improve the contrast, and the median,
Gaussian filter, and Gabor filter for denoising and image enhancement. Furthermore, for
image segmentation, researchers have focused on the hue using the k-means and fuzzy
c-means algorithm to segment the images; this procedure enables extraction of the region
of interest from the given image. Using this, plant features such as texture, shape, and color
have often been extracted using the gray-level co-occurrence matrix (GLCM), local binary
patterns (LBPs), and histogram of oriented gradients (HOG). This is the most prominent
step in the classification process. The researchers used different classification algorithms
based on machine learning, and deep and transfer learning, for the classification phase,
such as the decision tree classifier (TC), random forest (RF), naive Bayes (NB), support
vector machine (SVM), artificial neural network (ANN), probabilistic neural network
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(PNN), back-propagation neural network (BPNN), convolutional neural network (CNN),
and InceptionV3.

The SVM and NN are mainly used in disease classification. The main advantage of
NNs is that they can tolerate noise and are built from available data. The SVM, in turn,
offers outstanding classification performance because it nonlinearly maps the input feature
vector into a high dimensional space where it can be easily separated. Nevertheless, SVMs
are not suitable when the data is very noisy. Hence, when many redundant variables form
the input vector, it is possible to the use principal component analysis (PCA) dimensionality
reduction method, as used by Kadir et al. [96]. In addition, the convolutional neural network
(CNN), faster R-CNN, Vgg16, and ResNet50 models have been used to fully automate the
classification process. Moreover, a new approach employed by Turkoglu et al. [97] is the
extreme learning machine (ELM), which offers faster learning and better performance and
generalization with lower computational cost. The advantages and disadvantages of the
classifiers used in the literature are summarized in Table 5.

Table 5. Comparison of various classifiers.

Classifier Advantages Drawbacks

Artificial Neural Network
ANN Faster and more accurate than KNN and MMC Strict because the data can only belong to 1 class

Random Forest Can classify a large data set with excellent accuracy Constraints on storage and processing time

Multiclass-Support Vector Machine Helps to classify the data in several classes Not suitable when the data is noisy

Least-Square SVM Fast and not complicated Pruning techniques must be applied to be sparse

K-Nearest Neighbours
KNN No time spent on training

More time spent on testing and it is expensive to
test each instance as well sensitive to noise and

yields

Extreme learning machine
ELM Faster training and better generalization Overfitting (occurs when a complex model has

several parameters)

Naïve Bayes
Less training data is required. It works better than

its counterparts when the assumption of an
independent variable is true

Conditional independence may reduce accuracy

Penalized Discriminant Analysis
PDA

Beneficial when the problem has a large number of
noisy features High calculation cost

Bag of Words Uncomplicated, robust, efficient It supposes that all words are independent of each
other

CNN/Deep learning It removes the need for a feature extraction step
and classification time is shortened

A large amount of data is required for training and
it is expensive to compute.

They require better hardware such as Graphical
Processing Unit (GPU).

Transfer Learning This helps to apply CNN to problems with a small
amount of training data

The pretrained model may not have classes with
the desired labels all the time

In this regard, a study was carried out by Ngugi et al. [98] to compare the performance
of 10 deep learning models using the PlantVillage dataset, namely AlexNet, ResNet-101,
GoogleNet, DenseNet201, Vgg16, Inceptionv3, InceptionResNetv2, SqueezeNet, ShuffleNet,
and MobileNets. We present the results obtained by the different architectures for all the
performance measures in Table 6 below.
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Table 6. The test set performance of 10 models considered in this comparative study.

Architecture Recall F1-score Precision Accuracy Specificity

AlexNet 0.9843 0.9856 0.9871 0.9897 0.9997

InceptionV3 0.9906 0.9916 0.9926 0.9948 0.9999

GoogleNet 0.9874 0.9881 0.9891 0.9899 0.9997

SqueezeNet 0.9791 0.9787 0.9785 0.9837 0.9996

DenseNet201 0.9965 0.9961 0.9958 0.9973 0.9999

VGG16 0.9932 0.9930 0.9928 0.9951 0.9999

ResNet101 0.9936 0.9929 0.9924 0.9851 0.9999

ShuffleNet 0.9901 0.9897 0.9895 0.9929 0.9998

MobileNetv2 0.987 0.9862 0.9895 0.9905 0.9997

InceptionResNetv2 0.9887 0.9893 0.9901 0.9930 0.9998

According to Table 6, the DenseNet201 model is the most suitable because it requires
less storage and has the advantage of having the best performance measures (accuracy =
0.9973, precision = 0.9958, recall = 0.9965, specificity = 0.9999, F1 score = 0.9961). However,
it requires a longer learning time (82 h) compared to the InceptionV3 and ResNet-101
models; nonetheless, their accuracies are slightly lower than those of DenseNet201. There-
fore, special care should be taken when choosing between these three architectures, as
each model has certain advantages and limitations. By comparison, the small MobileNet,
SqueezeNet, and ShuffleNet architectures are desirable in embedded and mobile applica-
tions where computing resources are limited, due to their short learning times and low
storage requirements, while still achieving high accuracy.

In this regard, another comparative study of four machine learning algorithms—k-
nearest neighbors, decision tree, naive Bayes, and logistic regression—was performed by
Ahmed et al. [99] to detect three rice plant diseases where the images were taken from the
same PlantVillage database.

As shown in Figure 3, the best accuracy (over 97% by applying it to the test dataset)
was obtained by the decision tree algorithm after 10 cross-validations.

Figure 3. Comparison between machine learning algorithms.

To briefly summarize this section, it is inferred that multispectral and hyperspectral
imagery represents a valuable source of useful information for developing autonomous non-
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invasive systems to predict abiotic and biotic stresses in plants. Additionally, the integration
of multiple data sources will strengthen and increase the stability and generalization
capabilities of the algorithms. Furthermore, from the results obtained in the literature, it
appears that the automatic extraction of leaf features performed by deep learning-based
models is more relevant and efficient than the process of extracting these features using
traditional approaches such as the grey level co-occurrence matrix (GLCM), area-based
techniques (ABTs), and scale invariant feature transform (SIFT). However, it is noted that
there is a lack of validation of the models used in real-world scenarios. Therefore, proper
validation is necessary for the studies to have an accurate and general impact.

5. Unresolved Challenges in the Crop Disease Detection Field

The above section presents a wealth of promising research undertaken in the past few
years in the area of crop foliar disease recognition and detection using a range of techniques.
In the existing literature to date, there are numerous unresolved challenges that remain
to be address and overcome to derive robust and feasible crop disease detection systems
that can operate accurately under various field conditions. The most prominent of these
highlighted challenges are:

5.1. Insufficient Data

The major problem in the use of deep learning models for plant disease detection is the
insufficiency of datasets in terms of both diversity and size [100] because these models have
extremely large data requirements. In the majority of cases, the identification of plant dis-
eases has been performed under ideal and controlled conditions [43], such as the presence
of a single disease with a homogeneous background. In addition, environmental conditions
are not considered; hence, the accuracy rate obtained will be higher than that actually
obtained in a practical application. Additionally, image labeling is a very laborious and
tedious task. Due to these factors, the production of a reliable, efficient, and comprehensive
dataset is extremely challenging. At present, there are six ways to deal with the lack of
a dataset: data augmentation techniques, data sharing, citizen science, transfer learning,
synthetic data, and few-shot learning.

5.2. Imbalanced Data

The most commonly used datasets for crop disease detection are cleaned or their
unbalanced nature is ignored to fully concentrate on training algorithms and avoid being
distracted by other problems. However, in real-world settings, the distribution across
classes is skewed and unbalanced [101], ranging from mildly biased to severely unbalanced.
This poses a challenge for predictive modeling and may require specialized techniques, such
as re-sampling techniques, because the machine learning algorithms typically employed
for classification are built around the assumption of an equal number of examples for each
class. As a result, some of the models have poor predictive performance, especially for the
minority class which is more susceptible to misclassification than the majority class.

5.3. Vanishing Gradient Problem

Hochreiter’s work [102] showed an issue called the “vanishing gradient problem” that
arises during the training phase when employing back-propagation learning techniques
with neural networks. Specifically, each weight of the neural network is updated based
on the current weight and is proportionally related to the partial derivative of the error
function. However, this updating of the weights may not take place in some cases due to
an extremely small gradient that approaches zero. As a result, the gradient descent does
not converge to the optimum and the neural network stops completely [103].

5.4. Exploding Gradient Problem

The opposite problem to the vanishing problem is the gradient explosion problem [104].
Specifically, the gradients become increasingly larger as the back-propagation algorithm
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advances. This will lead to extremely large updates of the network weights and causes the
gradient descent to diverge, which means that the system becomes unstable [103]. Thus,
the model will lose its ability to learn efficiently. In general, as we move up the network
during back-propagation, the gradient grows exponentially by repeatedly multiplying the
gradients. As a result, the weight values can become incredibly large and spill over to
become a non-numerical value (NaN).

5.5. Overfitting and Underfitting Problem

Learning models have excessively high chances of overfitting and underfitting the
data in the training stage due to the large number of parameters involved, which are
correlated in complex ways. Such situations reduce the ability of the model to perform well
on the tested data. Thus, it is considered that a learning algorithm is underfitting when it is
unable to grasp the underlying trend in the data. Its occurrence simply means high bias,
low variance, and that the model does not fit the data well enough. This usually occurs
when fewer data are available to build an accurate model and also when a linear model
is attempted to be built with non-linear data. Conversely, a model is said to be overfitted
when it is trained with a large quantity of data; it then learns from noise and inaccurate
data inputs in the dataset. Then, the model does not correctly categorize the data due to
excessive detail and noise. Its occurrence simply means low bias and high variance. The
overfitting occurs in nonlinear and nonparametric approaches, as these kinds of learning
algorithms have greater leeway in setting up an unrealistic model. Ideally, both of these
should not exist in models, but they are generally challenging to eliminate. This problem
was noted by Ahmad et al. [105], whose model based on efficient convolutional neural
networks tends to overfit during the training of the first epochs.

5.6. Image Acquisition: Conditions of Image Capture (Lighting, Spatial Location, Wind and
Camera)

Ideally, images should be captured under similar conditions. However, in practice,
this may only be feasible in the laboratory because it is extremely difficult to monitor the
conditions of capture. Thus images may present unpredictable characteristics, making
disease identification a daunting task. Moreover, the variable capture conditions have
proven to be a challenging issue in measuring the severity of citrus leaf canker [106] and in
identifying citrus diseases [107]. In light of this, several endeavors have been undertaken
to develop methods of invariant illumination [108]. Nevertheless, their success to date is
still relatively modest.

• Lighting Issue

Crops grow in natural environments that fluctuate greatly. Thus, images are im-
pacted by numerous factors, such as wind, illumination, and other climatic conditions.
Consequently, lighting issues are inevitable, and completely eliminating the variations is
almost impossible. Nevertheless, certain endeavors have been made to mitigate them, e.g.,
Pourreza et al. [109] developed a system to detect real-time citrus Huanglongbing disease
using a narrow-band imaging and polarizing filter set. Specular lighting, the simultaneous
presence of light and shadow, is the most difficult problem to deal with. However, the
presence of specular lighting can be lessened by changing either the angle at which the
image is taken or the leaf position, although this likely causes some degree of reflection.
Furthermore, specular reflections and shadows were noted by Zhou et al. [110] as the main
source of error in monitoring Cercospora leaf spot on sugar beets, which occurred because
of the automatic captures that complicate the prevention of lighting problems.

• Camera

The image resolution is one of the crucial factors that has a direct influence on the
image features. A higher resolution enables the detection of small lesions and spores.
Moreover, the device being used to capture the image also influences these features.
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5.7. Image Preprocessing

During the preprocessing and storage of leaf images, more information is lost as the
compression ratio is increased. This may not dramatically influence the analysis of large
lesions, but may severely distort small symptoms. Therefore, compression should be kept
to a minimum or even avoided, especially if the symptoms are tiny.

5.8. Image Segmentation and Symptom Discrimination

In general, symptoms do not have clear boundaries; they gradually disappear in nor-
mal tissue, making the distinction between healthy and diseased areas highly ambiguous.
This clearly affects the accuracy of the threshold and extracted features. Although manual
and visual representation cannot clearly determine the edges, any machine-based represen-
tation will be prone to many subjective issues. Notably, the issue of subjective delineation of
affected regions was first addressed by Olmstead et al. [111] and later by Moya et al. [112],
who emphasized that some sort of external reference needs to be established for proper
validation of disease identification methods. However, without the use of a reference,
Oberti et al. [113] observed for leaf powdery mildew that the number of false negatives or
positives seen on the symptom discolored zones is too high. In summary, few solutions
have been suggested for this problem because inconsistencies are intrinsic to the process.
Furthermore, other difficulties are encountered when segmenting and locating regions of
interest (ROIs):

- A leaf may overlap with another leaf or other parts of the plant, and they may even be
tilted or covered with dew or dust.

- Images with complex backgrounds can render the segmentation of ROIs where symp-
toms appear challenging and intricate.

5.9. Feature Selection and Extraction

Although some plant species can be identified on the basis of leaf shape, other species
have similar leaf shapes. Furthermore, symptoms do not necessarily arise in zones that are
easily accessible; in practice, they can frequently be under the leaves or covered by other
obstructions, or diseases can appear on the stems, fruits, or even flowers. Unfortunately, the
latter problem has not attracted enough attention on the part of researchers. Furthermore, it
is observed from the literature to date that researchers have mainly focused on the disease
detection on the upper leaf surface. Nevertheless, Fuentes et al. [34] suggested using the
faster network R-CNN for detecting a number of tomato plant diseases in several locations.

5.10. Disease Classification

In many of the cases listed below, the classifier used to identify plant diseases may not
be able to distinguish between them; for example, if the symptoms presented by different
diseases are visually very similar, as both Ahmad et al. [114] and Wiwartet al. [115] have
stated. In addition, the difficulties stated below are highly relevant to measuring the disease
severity:

• Differences in disease symptoms: According to the disease development stage, a
specific disease can present very distinct characteristics in the symptoms’ shape,
color, and size, causing serious identification problems. It should be noted that
many different diseases can occur at the same time, making it extremely complex
to distinguish between combinations of symptoms and individual symptoms. This
problem was noted by Camargo et al. [116] when handling symptoms produced by
black streak disease on banana leaves, and Moya et al. [112] when evaluating powdery
mildew severity on squash leaves.

• Diseases can occur simultaneously with many disorders, such as nutritional deficien-
cies, pests, and diseases: Typically, most techniques consider that there is only a single
disease per image when, in reality, several other diseases can be present at the same
time, in addition to other kinds of disorders, such as nutritional deficiencies and pests.
These simultaneous symptoms can be either separate or physically combined, making
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disease identification a significant challenge. In this regard, Bock et al. [106] observed
the simultaneous presence of symptoms arising from different diseases and noted that
this can lead to identification issues, and that more advances will be required to cope
with this issue.

• The symptoms’ similarity between different disorder types: Symptoms resulting from
various disorders, such as diseases, phytotoxicity, presence of parasites, and nutritional
deficiencies, can be visually similar. As a result, it can be extremely difficult to
determine a symptom’s source with certitude, particularly if only the visible spectrum
is used in the identification process. This forces methods to rely on tiny differences to
discriminate between the symptoms. Numerous researchers have stated that some
disorders have close similarities, leading to major issues of discrimination. In this
regard, Ahmad et al. [114] reported that symptoms resulting from Fusarium, Mosaic
Potyvirus, Alternaria, and Phomopsis in soybean were very similar, and their classifier
was unable to discern between them. This explains why the majority of studies
conducted to date have chosen to tackle only diseases whose symptoms are quite
dissimilar and, even then, their choices remain a significant challenge.

5.11. Other Challenges

Some other challenges facing automatic plant disease identification techniques cannot
be categorized in the same way as those mentioned above. These challenges include
reducing complexity, in addition to computational and memory demands [117], because
low-cost computers and cameras have a very limited computational resource. At the same
time, as image resolution is increasing, the computational resources are also growing.
Another major concern is the lack of properly labeled [37] and sufficiently large datasets
with high variability. This is notably the biggest hurdle when training recurrent neural
network (RNN) models for plant disease detection, because collecting images in the field
is not only a laborious task but also requires the guidance of agricultural experts for
accurate annotation. Nevertheless, two free datasets exist [118]—PlantVillage and the Image
Database of Plant Disease Symptoms dataset PDDB. Moreover, at present, no appropriate
technology has been developed to automatically crop the leaf images around the affected
area. A further issue is that hyperspectral data contain more than one hundred adjacent
spectral bands and thus cannot be linearly trained [119]. Furthermore, these bands in
different spectral regions are highly redundant [54,55] when extracting information to form
an artificial neural network (ANN).

6. Future Work and Possible Solutions to Ongoing Limitations

In the previous section, gaps in the existing literature were highlighted to orient future
research in this area. Thus, future work should first aim at acquiring diverse and large-size
datasets to further promote research in this direction. Moreover, it is highly desirable
to develop compact convolutional neural network CNN-based models that can achieve
higher accuracy and promote the use of these technologies in the embedded platforms.
Secondly, more emphasis should be placed in future research on the development of
reliable methods and techniques to remove backgrounds and incorporate other forms of
data, such as meteorological trends, disease occurrence history, and spatial location, to
enhance the accuracy and reliability of disease identification systems. Additionally, disease
recognition at different locations on plants and trees, such as the stems, blooms, and fruits,
should receive greater attention from researchers due to its tremendous importance. One
possible means to circumvent some of the limitations is to implement constraints to restrict
variations in image capture conditions. However, even with very tight restrictions, many
challenges will remain.

Some of the key challenges can be mitigated through the use of the most sophisticated
approaches borrowed from the machine learning and computer vision fields. These in-
clude Markov random fields, mean shift, graph theory, and large margin nearest neighbor
classification (LMNN), among other methods that have not yet been properly harnessed.
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In this regard, the proposed solutions to remedy the challenges presented above can be
summarized as follows.

6.1. Data Augmentation Techniques

If the aim is to avoid the overfitting problem and expand the size of the dataset without
manually collecting new images, data augmentation techniques are a possible solution
for any limited data problem [120,121]. Data augmentation incorporates a collection of
methods that improve the attributes and size of training datasets. Thus, DL models can
perform better when these techniques are exploited, such as rotation, canny edge detection,
shear, image noise addition, shift, and flipping.

6.2. Tackling Overfitting Problem

Overfitting is one of the fundamental problems encountered when using learning
models, and occurs due to the sensitivity to the scale of the cross-entropy loss and the
continuous updating of the gradient. Three classes exist to avoid the overfitting problem.
The first acts on both the model parameters and the model architecture. This includes
the most familiar approaches, such as batch normalization [122], weight decay [123], and
dropout [124]. Weight decay is the technique that is commonly used by default in all
algorithms as a universal regularizer. The second class operates on model inputs such
as data augmentation and corruption. One of the causes of the overfitting problem is
the lack of training data; as a result, the learned distribution does not exactly reflect
the real distribution. In contrast, the marginalized corrupted feature (MCF) exclusively
improves the solution in data augmentation. MCF is a new approach to combat overfitting
in supervised learning [125]. The main idea of the MCF is to allow the models to be
regularized by training them on corrupted data copies, without raising the computational
complexity. The final class works on the output of the model. A technique was recently
proposed by Pereyra et al. [126] based on penalizing confident output distributions for
model regularization. This method has demonstrated its high capacity to regularize CNN
and RNN models. Hence, it will be judicious to explore these techniques in the field of crop
disease detection.

6.3. Few-Shot Learning

In cases in which the dataset is extremely small, the techniques mentioned above may
not be useful; that is, if there is a task in which the classification must be built with only
one or two samples per class, and each sample is difficult to find. In such a case, innovative
approaches are needed; one of these is few-shot learning (FSL) [127]. This is a relatively
recent subfield of machine learning that needs more refinement and research. FSL allows
the classification of new data when there are only a few training samples with supervised
information. The approach of building an FSL classifier is suitable for solving the kind of
problem related to rare plant pathologies, in which images are lacking for use in the training
set. Typically, two major approaches are implicated in solving one-shot or few-shot machine
learning issues, namely, the data-level approach and the parameter-level approach.

6.4. Transfer Learning

Recent research has revealed the extensive use of deep CNNs, which require a large
quantity of data to perform effectively. The common challenge associated with the use of
such models concerns the lack of training data. Specifically, collecting a large volume of
data is an exhausting task, and no successful solution is available at this time. Therefore,
in order to solve the fundamental dilemma of insufficient data, it is advisable to use TL
models, which are highly effective in such cases [128]. In simple terms, transfer learning is
the process by which the model trained for a specified task is reused as the starting point
for training a new model. It attempts to transfer information from the original domain to
the destination domain. This learning process is illustrated in Figure 4.
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Figure 4. Transfer learning process.

Forthcoming research endeavors can be devoted to automatically estimate the detected
disease severity, and expanded to attain the highest accuracy and speed via developing
hybrid approaches such as genetic algorithms (GAs) and neural networks (NN) to increase
the disease recognition rate, and combining particle swarm optimization (PSO) with other
tools, such as gradient search techniques, to ensure a much higher speed. In addition,
advanced and appropriate preprocessing techniques should be adopted to prevent noise
interference in disease detection, in addition to partitioning the training and test data by
employing more advanced techniques, such as stratified sampling, in order to create a well-
balanced data partition, and avoid underfitting and overfitting. In addition, optimizing
feature vectors should be contemplated to increase the disease recognition rate in these
various stages, and recurrent neural network (RNN) models and the long-term memory
function should be used to extract memory and temporal dimensions that can subsequently
be harnessed for plant growth estimation. Finally, a web application can be designed with
a range of features, such as displaying the identified diseases in the crops from leaf images
taken by a smartphone camera. A discussion forum can also be developed for agronomists
and farmers to talk about treatment and early preventive measures for the encountered
diseases. Moreover, plant electrophysiology is a promising avenue for future research [129],
i.e., the electrical signal response produced in plants can be used for real-time disease
detection. This approach is based on the fact that plants perceive the environment, and
this perception is translated by a generation of electrical signals that essentially represent
changes in their underlying physiological processes. Under the influence of stress, the
metabolic activities of plant tissues and cells are unstable, which is inevitably reflected
in the plant’s physiological electrical properties. As a result, the extraction of substantial
characteristics from the generated electrical signals, such as impedance, varying capacitance,
and conductivity, would be a highly interesting research direction for the classification of
diseases in plants and crops.

7. Conclusions

Crop diseases are one of the main challenges in the farming sector. Thus, there is
a need to identify crop diseases at the earliest stage to lessen disease severity and to
curb disease propagation on farms. Accordingly, prominent and advanced research has
been conducted in recent years on several kinds of disease identification techniques, as
presented in this work. The main difference between other surveys and the present paper is
the thorough technical analysis of the individual papers, and the approaches that have been
applied to date. This provides a guideline and references to scientific communities. This
paper also provides readers with insights into the automatic crop disease detection process
and the key factors, namely the lack of sharp edges around the symptoms; fluctuating
imaging conditions; variable symptoms presented by diseases; similar symptoms presented
by different disorders; and the concomitant presence of symptoms arising from various
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disorders. These issues have a relevant impact on the effectiveness of both the image
processing methods and the analytical tools that have been introduced to date. From this
survey, it is concluded that image preprocessing directly impacts the segmentation process.
Moreover, the k-means clustering algorithm was found to be the most suitable technique
for segmenting disease-affected leaves. In addition, convolutional neural network (CNN)
models were revealed to be extremely powerful and proficient in locating visual patterns in
images. Notably, the use of computer vision and artificial intelligence in crop diagnostics
in the agricultural sector is still recent, which implies that their numerous alternatives
and opportunities remain to be explored, which may help mitigate the above-mentioned
challenges. Additionally, with the increase in available computing power, previously
demanding strategies can now be easily executed. Thus, based on this in-depth study of
the existing literature on crop foliar disease automatic detection, in upcoming work the
researchers intend to develop an efficient, accurate, low-cost, and swift system capable of
identifying crop diseases from foliar images. In addition, this identifying system will be
implemented in a mobile application, allowing an alert to be sent to the farmer once the
disease is detected to enable him to intervene as soon as possible.
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ELM Extreme Learning machine
NB Naïve Bayes
VGG Visual Geometry Group
ResNet Residual Neural Network
C-GAN Conditional Generative Adversarial Network
GPU Graphics Processing Unit
MEAN block Mobile End Apple Net block
FSL Few-Shot Learning
GOA Grasshopper Optimization Algorithm
GA Genetic Algorithms
PSO Particle Swarm Optimization
PCA Principal Component Analysis
LDA Linear Discriminant Analysis
PLS—DA Partial Least Squares Discrimination Analysis
SPA Successive Projection Algorithm.
SAM Spectral Angle Mapper
BBCH Biologische Bundesanstalt, Bundessortenamt and CHemical industry
RBM Restricted Boltzmann Machine
AE Auto-Encoder
EW Effective Wavelengths
GLCM Gray Level Cooccurrence Matrix
CPDA Color Processing Detection Algorithm.
GUI Graphical User Interface
LBP Local Binary Patterns
HOG Histogram-Oriented Gradient
HSV Hue Saturation Value
RoI Region of Interest
HPCCDD Homogeneous Pixel Counting technique for Cotton Disease Detection
CMD Cassava Mosaic Disease
RMD Red Mite Damage
GMD Green Mite Damage
TMV Tobacco Mosaic Virus
VNIR Visible and Near-Infrared
SWIR Short Wavelength Infrared
ENVI Environment for Visualizing Images
KL Kullback Leibler
ABT Area-Based Techniques
SIFT Scale Invariant Feature Transform
MFC Marginalized Corrupted Features
LMNN Large Margin Nearest Neighbor
PRISMA Preferred reporting items for systematic reviews and meta-analyses
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