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Abstract: Soil moisture is an important factor determining yield. With the increasing demand for
agricultural irrigation water resources, evaluating soil moisture in advance to create a reasonable
irrigation schedule would help improve water resource utilization. This paper established a continu-
ous system for collecting meteorological information and soil moisture data from a litchi orchard.
With the acquired data, a time series model called Deep Long Short-Term Memory (Deep-LSTM)
is proposed in this paper. The Deep-LSTM model has five layers with the fused time series data to
predict the soil moisture of a litchi orchard in four different growth seasons. To optimize the data
quality of the soil moisture sensor, the Symlet wavelet denoising algorithm was applied in the data
preprocessing section. The threshold of the wavelets was determined based on the unbiased risk
estimation method to obtain better sensor data that would help with the model learning. The results
showed that the root mean square error (RMSE) values of the Deep-LSTM model were 0.36, 0.52,
0.32, and 0.48%, and the mean absolute percentage error (MAPE) values were 2.12, 2.35, 1.35, and
3.13%, respectively, in flowering, fruiting, autumn shoots, and flower bud differentiation stages.
The determination coefficients (R2) were 0.94, 0.95, 0.93, and 0.94, respectively, in the four different
stages. The results indicate that the proposed model was effective at predicting time series soil
moisture data from a litchi orchard. This research was meaningful with regards to acquiring the soil
moisture characteristics in advance and thereby providing a valuable reference for the litchi orchard’s
irrigation schedule.

Keywords: soil moisture; LSTM; wavelet denoising; unbiased risk estimation; litchi; deep learning

1. Introduction

Litchi is a traditional fruit in China that has been cultivated for over 3500 years [1].
China’s litchi yield has reached about one-third of the world’s total yield [2]. It is an
economic crop that is also planted in many other countries, such as Australia, Thailand, and
India [3]. It requires suitable temperature and soil moisture conditions, as the temperature
has a significant influence on the flowering, fruit, and other indicators. At the same
time, a sufficient water supply is the basis for the growth of litchi, thereby ensuring good
cultivation [4]. Otherwise, the growth and yield are negatively affected by unreasonable
conditions.

With the growth of the global population and the increase in the consumption level,
the demand for agricultural crops is also increasing. The water supply is the basic resource
for agricultural production. Thus, the yield of crops is directly determined by the water
supply. As a subtropical fruit, litchi requires a significant amount of soil water [5]. China
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lacks water resources, while the consumption of agricultural irrigation water makes it
important to manage soil water in order to save water. Soil moisture is the direct index
representing the water status of the litchi orchard. Haley et al. [6] carried out a study on
water saving based on a soil moisture sensor. The results showed that a feedback irrigation
strategy based on a soil moisture sensor reduced water consumption by 65% compared to
the regular irrigation method in the same conditions. Therefore, the research showed the
important potential of soil moisture in terms of saving water. Carr et al. [7] pointed out that
litchi roots absorb soil water effectively at a depth of 40 cm below the surface, while the
water absorption efficiency decreased at a depth of 90 cm. Therefore, a soil moisture sensor
should be deployed in a reasonable location, which would be valuable for providing the
soil moisture status in a timely manner to help with irrigation management of the litchi
orchard. Gurav et al. [8] found that time-domain reflectometry (TDR) had the advantages
of rapid and accurate detection that was adapted to construct a portable soil moisture
measurement system. However, in the measuring process, various factors interfered with
the TDR soil moisture sensor, such as the change in soil compactness, soil temperature, etc.
Thus, the soil moisture data contained complex noise. The noise increased the dispersion
of data, which had a negative impact on the ability of the litchi orchard to obtain real
soil moisture.

With the development of machine learning methods, the prediction of soil moisture
has been widely applied in a great deal of research. Xie et al. [9] conducted an irrigation
scheduling study of a litchi orchard based on the back propagation neural network (BPNN)
with the genetic algorithm. The result indicated that soil moisture was an important factor
forming the basis of irrigation scheduling. However, soil moisture characteristics in the
whole growth stage of litchi have not yet been studied. Qiu et al. [10] conducted a multiple
regression model to predict soil moisture. The dataset contained 81 soil samples whose
dimensions were reduced using the principal components analysis (PCA) method. The
method performed well; the mean absolute error (MAE) of the study was only 0.5%. The
PCA was also effective at improving the data quality and reducing the computational
complexity of data preprocessing. However, the multiple regression method was unable to
extract the time series data features and was limited when predicting the dynamic change
in soil moisture. Gill et al. [11] proved the feasibility of predicting the soil moisture with me-
teorological data, including air temperature, air humidity, and mean solar radiation, from
a weather station with the support vector machine (SVM) algorithm. The determination
coefficient (R2) reached 0.9 and the root mean square error (RMSE) was 3.57%. However,
the data applied in this study were historic discrete series, and the generalization ability
for specific crops at different growth stages should be validated by further study. At the
same time, the soil moisture data were not denoised, which may be an important direction
for improving the model performance.

As a deep learning method, the long short-term memory (LSTM) neural network has
obvious advantages in handling long- and short-term dependency problems, causing it
to be widely applied in many fields. Adeyemi et al. [12] constructed a dynamic network
model based on LSTM with the data of three different weather stations to predict soil
moisture 1 day in advance. The data also fused soil moisture and precipitation data into
input features. The R2 between predicted and measured soil moisture achieved a maximum
of 0.99. However, the study did not validate the model in different crop growth seasons.
Gao et al. [13] proposed a bidirectional LSTM model to predict the soil moisture and
soil electrical conductivity of a citrus orchard. The data were collected in five Internet of
Things (IoT) nodes, and the model was designed based on environmental data such as air
temperature, air humidity, wind speed, and precipitation. The study proved the potential
of the bidirectional LSTM model to predict soil moisture. The R2 between the predicted
and measured values reached 0.964. Although the model was validated in five different
IoT nodes, the citrus plants in the study could produce fruit every year, meaning that the
water demand varied in different growing seasons. As a result, the change in soil moisture
was related not only to the environmental conditions but also to the water consumption
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of the citrus trees themselves [14]. Litchi is similar to citrus in that the fruiting period is
also 1 year, which means the soil moisture varies in different growth seasons. Therefore,
it is important to study the characteristics of soil moisture in different growth stages and
acquire the soil moisture in advance, which will be valuable for the irrigation scheduling of
litchi orchards. The main objects of this paper are as follows:

(1) To construct a data collection system in the litchi orchard. The system was aimed to
obtain a continuous air temperature, air humidity, wind speed, wind direction, precipitation,
and soil moisture.

(2) To reduce the noise of soil moisture sensor data, which would be helpful to improve
their quality.

(3) To predict the soil moisture of litchi orchard in different growth seasons with a
time series model based on deep learning method.

(4) To evaluate the performance of the proposed model on predicting soil moisture in
different growth seasons to help in acquiring soil status in advance.

2. Materials and Methods
2.1. Study Area and Data Collection

The study area was located in the Conghua litchi orchard (113◦36′50′′ E, 23◦35′8′′ N) in
Guangzhou, China, shown in Figure 1. According to the investigation, the orchard covered
an area of about 300 m2. The litchi in this orchard had four growth seasons, i.e., flowering
from February to April, fruiting from May to July, autumn shoots from August to October,
and flower bud differentiation from November to January. The average height of the litchi
trees was about 4 m, the diameter of the canopy was about 8 m, and the distance between
trees was about 5 m. The average precipitation in 1 year was about 2300 mm, while it was
only 40 mm in autumn and winter in the study area. In extreme cases, precipitation during
the dry season was only 25 mm. The precipitation was caused by the monsoon climate in
this region, with rain in the summer and less rain in the autumn and winter. When it came
to drought situations, the water supply was mainly conducted by manual irrigation, which
was lacking in data support.
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Figure 1. Study area. (a) Geographic location of Guangzhou within China; (b) location of litchi
orchard in Conghua area of Guangzhou; (c) top view of the litchi orchard taken by DJI Mavic Air 2.

The data collection equipment is shown in Figure 2. The EM50 data logger and GS1
soil moisture sensor (Decagon Co., Ltd., Pullman, WA, USA). were used to collect soil
moisture data at a depth of 40 cm below the surface. The measurement responding period
was 10 ms with a typical measurement accuracy of ±0.03 m3·m−3; the measurement range
was 0–100%. The data collection period was 10 min with EM50. At the same time, a
weather station WH-2081 (Misor Co., Ltd., Jiaxing, China) was also set in the litchi orchard
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to acquire meteorological data including air temperature, air humidity, wind speed, wind
direction, and precipitation. The data collection period of the weather station was also
10 min, and the data were transferred to the data storage server through General Packet
Radio Service (GPRS) wireless network. The server runs on a Windows 10 operating system
with Intel Core I7-6700HQ and a 512 GB hard disk drive. The MySQL database was applied
to store received data. The experiment lasted from 4 September 2019 to 3 September 2021,
during which the total number of data samples was 73,245. The data from 4 September
2019 to 3 September 2020 were used as a training dataset, and the remaining 36,721 data
from 4 September 2020 to 3 September 2021 were used to validate the model’s performance
in predicting soil moisture in the four different litchi growth seasons.
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2.2. Data Denoising

There may be noise in the data collected by the soil moisture sensor, caused by
stochastic changes in the external environment. It was necessary to denoise the sensor data
to improve the data quality. In terms of sensor noise processing, wavelet denoising is a
common method [15]. The three main steps of the wavelet denoising method applied in this
paper are wavelet decomposition, threshold determination, and wavelet reconstruction.

2.2.1. Wavelet Decomposition

The noise caused by the stochastic changes in the external environment had continuous
and nonlinear features. As a commonly used wavelet, the Symlet [16] wavelet function is
an improvement of the Daubechies (dbN) wavelet, which was based on multi-resolution
analysis and the multi-sampling filter algorithm. The main advantage of the symN wavelet
is the good symmetry in the process of decomposition and reconstruction. The support
range of symN is 2N−1, and the disappearance matrix is N (N = 2, 3, . . . , 8). Compared
to the dbN function, the symN has better regularity, causing it to reduce distortion when
processing nonlinear signals and improving the degree of restoration of the original data.
The wavelet function [17] is

Sym0(ω) =
1√
2

2N−1

∑
k=0

hke−jkω (1)

where hk is the response of the low-pass filter. Therefore, the essence of wavelet decomposi-
tion is the synthesis of feature extraction and low-pass filtering.

2.2.2. Threshold Optimization

According to Bayer et al.’s research [18], the threshold played a central role in wavelet
denoising. Liu et al. [19] had studied the chlorophyll content of maize canopy using wavelet
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denoising and SVR methods. The research pointed out that the threshold was critical for the
wavelet denoising process. The common threshold rules [20] were unbiased risk estimation
and the fixed threshold method. The fixed threshold was applied to the large signal noise
ratio (SNR) situation. The formula is

w′j,k =

wj,k

∣∣∣wj,k

∣∣∣ ≥ λ

0
∣∣∣wj,k

∣∣∣ < λ
(2)

where w′j,k and wj,k are the generated and original wavelet coefficients, and λ is the fixed
threshold. Thus, the fixed threshold method is suitable for situations in which the noise is
already known. The fixed threshold usually relies on empirical parameters to determine
a reasonable value. However, the nonlinear signal collected by the soil moisture sensor
was complex, limiting the application of the fixed threshold method. Compared to the
fixed threshold, the unbiased risk estimation was proposed based on the statistical analysis
of a large number of samples. Unbiased risk estimation is an unbiased inference using
sample statistics to estimate parameters. When the mathematical expectation is equal to
the real value of the estimated parameters, the estimator is called unbiased value; that is,
the systematic error is zero. The estimation steps [21] of unbiased risk estimation are:

Step 1: Assuming the signal vector S, of which the elements consisting of wavelet
coefficients are ordered from small to large, S is represented as

S = [s0, s1, · · · , sn−1] (3)

Step 2: The risk function of vector S is calculated as

Risk(s) =
n− 2i + ∑n−1

i=0 s(i) + (n− i) f (n− i)
n

(4)

where i = 0, 1, 2, . . . , n−1.
Step 3: The minimum risk function is the expected value with the wavelet coefficient

smin. Thus, the unbiased risk estimation threshold λ1 is as follows:

λ1 =
√

smin. (5)

2.2.3. Wavelet Reconstruction

The wavelet reconstruction was implemented with the threshold and wavelet function.
In this paper, the Symlet 8 (Sym8) function was used to transform the soil moisture sensor
data from the time domain to the frequency domain. Then the same function was applied to
reconstruct the transformed data into the time-domain signal. The wavelet reconstruction
restored the decomposed signal to the new time series data. The noise imposed by the
external environment in the process of acquiring soil moisture was removed from the new
time-series data. Therefore, the data quality improved, which accelerated the convergence
of the model.

2.3. Evapotranspiration Estimation of Litchi Orchard

Evapotranspiration is important to the water and energy balance of the crop, including
plant transpiration and soil water evaporation [22]. Soil moisture is related mainly to
precipitation, surface runoff, and evapotranspiration. Thus, evapotranspiration is one of
the factors of soil moisture change [23] that will affect soil moisture prediction. At present,
the most widely used method for estimating evapotranspiration was developed by the
Food and Agriculture Organization, i.e., the Penman–Monteith (FAO-PM) equation [24],
which is defined as

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(6)
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where ET0 is daily evapotranspiration (mm·d−1); Rn is net radiation (MJ·m−2·d−1); G is
soil heat flux density (MJ·m−2·d−1); T is mean air temperature (◦C); u2 is the wind speed
at a height of 2 m (m·s−1); es is vapor pressure (kPa); ea is actual vapor pressure (kPa); ∆
is the slope of the vapor pressure curve (kPa·◦C−1); and γ is the psychometric constant
(kPa·◦C−1). Owing to a lack of radiation data, the method to estimate it is the equation [25]

Rs =

(
as + bs

t
tmax

)
Ra (7)

where Rs is solar radiation (MJ·m−2·d−1); t is the sunshine duration (h); tmax is the max-
imum sunshine duration (h); as and bs are coefficients of the solar radiation estimation
equation, and the common constants are 0.25 and 0.5 [26], in that order, and Ra is the
extraterrestrial radiation (MJ·m−2·d−1).

2.4. Data Preprocessing

The collected meteorological data had different magnitudes; for example, the range of
air humidity was 0–100%, while the air temperature reached 35 ◦C. Thus, it was necessary
to normalize the data first. The linear normalization method [27] was applied to convert
the data into the same magnitudes [28]. The equation is

Xnorm =
X− Xmin

Xmax − Xmin
(8)

where Xmax and Xmin are the maximum and minimum values of the dataset, X is the sample
value. After the linear normalization, the data are transformed into the range (0, 1). The
transformed data are not distorted [29] because of the linear normalization.

The wind direction of meteorological data had eight statuses, which were discrete
variables. Thus, the Label Encoder [30] method was applied to handle wind direction data
in the preprocessing, fitting them with the numerical data. The Label Encoder method
converted the independent and discrete labels into continuous numerical variables. The
advantage of the encoder method was that the dimensions of the dataset and computation
did not increase [31].

According to the data collection periods (10 min), the total of data from 4 September
2019 to 3 September 2020 was 36,524, which was grouped as the training dataset. In this
paper, the meteorological data for every 10 min of the previous day were integrated into a
set of time series features. Additionally, the soil moisture data for the next day were used
as the target label. Considering that the soil moisture was changing slowly [32], the daily
mean value of the wavelet denoised soil moisture data was calculated as the target value
of that day. In the training process, the soil moisture after 7 days was predicted with the
current meteorological and soil moisture data to compare with the measured data. After
the processing, a supervised learning model based on time-series and the multi-feature
single target was constructed.

2.5. Time Series Model Based on Deep-LSTM Model

Time series data have continuous, time-varying, and nonlinear features that are used
mainly to describe the changing process of variables over time [33]. Therefore, time-series
data are related not only to the current state, but also to the historic state. A traditional
neural network, such as the BPNN [34], is not suitable for modeling time series issues. The
reason is that the output of the last layer can be transferred to the next layer in only one
direction, while the recurrent neural network (RNN) [35] is more flexible. The output of
the RNN neuron can not only be transferred to the next layer but also be transferred back
to itself, and the hidden layer state is saved at the same time. Thus, this feature of the RNN
enables it to combine new sample and historic information, which is used to deal with time
series problems. However, the disadvantage of the RNN is that the gradient of the network
spreads consistently with the increase in input data. Too few data lead to the problem
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of a vanishing gradient, making the model unconverged. Although the rectified linear
unit (ReLU) activation function [36] keeps the gradient above zero, solving the vanishing
gradient problem, the exploding gradient also affects the model converging through the
increase in the gradient.

As an improved RNN model, the LSTM model was proposed by Hochreiter et al. [37].
The summation is used instead of the gradient derivative to solve potential problems in
the gradient propagation of the RNN [38]. The basic unit of LSTM is shown in Figure 3.
The LSTM unit consists of four sections, i.e., forget gate, input gate, temporary cell state,
and output. The forget gate controls the information from the previous layer and the input
formation of this unit that needs to be forgotten. The updating equation is

ft = σ
(

W f g · [ht−1, xt] + b f g

)
(9)

where ft denotes the forgotten information, and W f g and b f g are the weight and bias of the
forget gate equation, respectively. ht−1 and xt are the output of the previous layer and the
input of this layer. The range value of the σ function is (0, 1), which controls the degree
of discarded information of the forget gate. Because of the nonlinear characteristic of the
σ function, the input data of the LSTM unit are transferred to nonlinear information. The
input gate is also updated with the σ function, which is defined as

it = σ
(
Wip · [ht−1, xt] + bip

)
(10)

where it denotes the input information, and Wip and bip are the weight and bias of the input
gate, respectively. The input gate combines the information of the previous layer and this
layer. Under the control of the σ function, only part of the information is calculated in the
later steps. The temporary cell state is updated using the tanh function, defined as

ct = tanh(Wtcs · [ht−1, xt] + btsc) (11)

where Wtcs and btsc represent the weight and bias of the temporary cell state, of which
input parameters are the output of the previous layer and this layer. The tanh function
converts the range value of cell state into (−1, 1), and the cell state Ct is determined with it
and ct. The equation is

Ct = ft ∗ Ct−1 + it ∗ ct. (12)

Equation (12) indicates that the cell state is calculated with the previous cell state,
forget information, and the temporary cell state of this layer, and the ∗ is Hadamard
product. Ct realizes the function of combining historic and current data, which is the key
characteristic of the LSTM model. The cell state is then transferred to the output gate with
the updating equation

ot = σ
(
Wop · [ht−1, xt] + bop

)
, (13)

ht = ot ∗ tanh(Ct) (14)

where Wop and bop represent the weight and bias of the output gate. ot is controlled by the
σ function with a range value of (0, 1). With this information, the historic and latest input
data with Ct are calculated using tanh as the output of this unit.

It can be seen from Figure 3 that the input data and previous cell state are in a parallel
state and both have information exchange and fusion with each section of the LSTM unit.
Therefore, to rapidly process a large amount of time series data and extract features of the
data, this paper constructed a Deep-LSTM model, shown in Figure 4. The Deep-LSTM
network consisted of five layers with two LSTM layers and two dense layers, constructed
with a TensorFlow deep learning framework based on Python. The output layer was a
single neuron to store data. The LSTM layer-1 was used to extract features of input time
series data to generate a high dimensional feature vector. LSTM layer-2 was used to reduce
the dimension of the previous layer to save more core features. Dense layer-1 was used to



Agriculture 2022, 12, 25 8 of 17

converge the nonlinear high dimensional features. Dense layer-2 was designed to generate
a one-dimensional vector so that the Deep-LSTM network could extract and learn input
data features to transform into a one-dimensional label and calculate training loss. After
several iterations, the training loss would be minimized, meaning the model had converged.
Finally, the generated one-dimensional vector would be converted into the target variable
to realize the prediction of soil moisture.
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2.6. Classic Models to Compare with Deep-LSTM
2.6.1. Elman Neural Network

The Elman neural network was a dynamic recursive model first proposed by Elman
et al. [39], as it contained local memory units. The model had the ability to deal with time
series problems. Thus, it was chosen for comparison with the proposed Deep-LSTM model.
The Elman model was based on the BPNN [40], but on the basis of a three-layer neural
network (input layer, hidden layer, output layer), a state layer was added to the network.
The key idea was that the state layer would receive computation results from the hidden
layer, and the state layer would also participate in the computation of the next layer. Thus,
the Elman model had the ability to temporarily store historic information. The activation
function of the Elman neural network was sigmoid; at the same time, back propagation,
and stochastic gradient descent (SGD) were applied to train the model.

2.6.2. Generalized Regression Neural Network (GRNN) Model

To compare the performance of the Deep-LSTM and regression model, the GRNN
model [41] was applied in this paper. As a classic regression model, the GRNN could
fit nonlinear data and converge to the regression curved surface, which made it widely
applicable in many fields. The GRNN was based on nonparametric regression [42] using the
sample data as a posterior condition. The model calculated network output according to the
maximum likelihood estimation and transmitted the results to the next layer. The GRNN
model took the probability density function as its basis, making it fit well in nonlinear
modeling. However, it was still necessary to select suitable hyperparameters in the training
process. Otherwise, the model would be overfitting. The training gradient and activation
function parameters of the GRNN were the same as those of the Elman model. To compare
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the performance of the models, this paper used Sklearn lib based on Python to analyze
the data and RMSE, R2, and mean absolute percentage error (MAPE) criteria [43] which
were commonly applied in agricultural research to evaluate the effect of the soil moisture
prediction of the litchi orchard. The equations are expressed as:

RMSE =

√√√√∑N
m=1

(
ypred − ycal

)2

N
(15)

R2 =
∑N

m=1

(
ypred − ycal

)2

∑N
m=1(ycal − ycal)

2 (16)

MAPE =
1
N

T

∑
i=1

∣∣∣ypred − ycal

∣∣∣
ycal

(17)

where ycal is the measured value, ycal is the mean of measured value, ypred is the predicted
value of the model.

3. Results
3.1. Results of Wavelet Denoising

As a step-in sensor data preprocessing, wavelet denoising played an important role in
reducing the sensor data noise and improving the data quality. Figure 5 shows the wavelet
denoising results of part of the soil moisture data. The original data were the soil moisture
values measured every 10 min. There were many mutations and spikes in the original data,
which increased the dispersion and reduced the smoothness of the data. Figure 5 shows
that the stochastic noise of the data was suppressed with the wavelet denoising method,
especially when the measured sensor data changed suddenly. The processed data remained
smooth compared to the original data. In this paper, the mean soil moisture in one day was
calculated as the modeling target. According to the field investigation results of the litchi
orchard in Section 2.1, the original data of soil moisture in four different growth seasons of
litchi and the data after wavelet denoising were compared and analyzed. The results are
shown in Table 1.
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Table 1. Statistical analysis results of original and processed soil moisture data.

Growth Season (Month)
Mean of Soil Moisture (%) Std of Soil Moisture (%)

Original Processed Original Processed

Season 1 (2–4) 17.59 17.53 2.97 1.34
Season 2 (5–7) 21.38 21.14 3.81 2.81

Season 3 (8–10) 15.79 15.74 3.10 2.43
Season 4 (11–12) 15.66 15.63 1.52 1.18

As can be seen in Table 1, the mean soil moisture from May to July was the highest of
the whole year because the summer season had the most precipitation in this period. In
contrast, the least precipitation occurred after November. The main soil water came from
manual irrigation activity. The mean soil moisture of the litchi orchard was different in
the four growing seasons, which may be related to the evapotranspiration consumption
except for precipitation and manual irrigation. Therefore, the mean soil moisture after
wavelet denoising was also significantly different. The mean soil moisture decreased by
0.06, 0.24, 0.05, and 0.03%, respectively, which indicated that the wavelet denoising resulted
in a small degree of loss to the original data [44]. In terms of the standard deviation (Std)
of the data, the wavelet denoising method reduced the Std by 1.63, 1.00, 0.67, and 0.34%,
respectively, in the four growing seasons. The degrees of the reduced Std were 54.88, 26.25,
21.61, and 22.37%, respectively. It can be concluded that the wavelet denoising method
had a significant effect on improving data quality with the decrease in the dispersion of
soil moisture. On the other hand, it can be inferred from the reduction in the Std that
when the litchi was in the growing season from February to April, the soil moisture sensor
detected the most significant noise in collecting data, which might have been caused by
environmental interference [45].

3.2. Performance of Models

Considering the different climate and water requirements of litchi in different growth
seasons, the soil moisture also differed according to the field investigation. Therefore, the
meteorological data and soil moisture data from September 2020 to September 2021 were
divided into four sections as referred to in Section 2.1. The RMSE, MAPE, and R2 between
predicted and measured soil moisture were used to evaluate the performance. For the
purpose of comparison with the proposed model, the RMSE, MAPE, and R2 of Elman and
the GRNN model were also calculated. The results are shown in Figures 6 and 7.
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In Figure 6, the RMSEs of the Deep-LSTM model were 0.36, 0.52, 0.32, and 0.48%,
respectively, in the four growth seasons. The lowest RMSE occurred in the third season,
which meant the model performed best in this season. The MAPEs of the Deep-LSTM
model were 2.12, 2.35, 1.35, and 3.13%, respectively, which had a similar trend over the
RMSE results, i.e., the MAPE followed the change of RMSE. As a recursive neural network
with local memory function, the RMSEs of the Elman model were larger than the Deep-
LSTM by 16.7, 38.5, 84.3, and 135.4%, respectively. However, the MAPE of the Elman model
had no significant trend with its RMSE values. The reason was that the Elman model had
only local memory, which made it less effective than the Deep-LSTM model in dealing with
the time series problem. When the external environment changed in the fourth season, with
decreased precipitation, the manual irrigation made soil moisture hard to predict using
the Elman model. In terms of the GRNN model, although it was theoretically suitable for
nonlinear fitting, the RMSEs of the model were 2.48, 1.83, 1.61, and 2.82%. Compared to
the Deep-LSTM model, the prediction values of the GRNN significantly deviated from
the real values. Thus, the MAPE of GRNN seemed the largest in the three models in each
growing season.

The R2 results are shown in Figure 7. They were used to represent the reliability of the
models. The R2 results of the Deep-LSTM model were 0.94, 0.95, 0.93, and 0.94, meaning the
proposed model performed similarly and well in different seasons. Thus, the Deep-LSTM
model was reliable in predicting time series soil moisture. The RMSE difference of the
Deep-LSTM reached a maximum of 0.2%, which meant that the RMSE had no direct relation
to R2. The R2 results of the Elman model were 0.61, 0.80, 0.79, and 0.68, which decreased
significantly compared to the Deep-LSTM model. Therefore, we inferred that although the
RMSE of the Elman model was better than that of the GRNN model, the R2 revealed the
disadvantages in that the Elman model lacked reliability in predicting soil moisture. The
R2 of the GRNN performed worst among the three models. Considering the largest RMSE
of the GRNN, the model had the worst performance in predicting time series soil moisture.
The results indicated that the model proposed in this paper had the best performance with
the least RMSE and largest R2 values, which were suitable and reliable for use in predicting
soil moisture.

3.3. Model Fitting Results

The predicted and measured soil moisture of the three models in the four seasons are
shown in Figure 8. Figure 8a shows the prediction result of season 1. The predicted values
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of the Deep-LSTM were close to the real values, while the difference between the predicted
and measured values of the Elman model reached a maximum of 4.37%; in addition, the
GRNN was 4.87%. The soil moisture in season 1 first increased and then decreased slowly.
The Deep-LSTM model followed the trend, indicating that the proposed model could deal
with the long-term dependency problem. Most of the predicted values of the Deep-LSTM
model were above the real values, an indication that the model tended to overestimate soil
moisture. The soil moisture in season 2 had a similar change to that of season 1. The mean
soil moisture in this stage was 19.92%, while in season 1 it was 15.01%. The reason was
that there was more precipitation in the summer. At the same time, the litchi matured with
more water requirements and evapotranspiration, which reduced the soil moisture after
June. The RMSE of the Deep-LSTM model increased in season 2 with the fluctuation range
reaching a maximum of 1.22%. Although 65% of the predicted values of the Deep-LSTM
model were below the real values, the deviations of the Elman and GRNN models were
2.64 and 2.99% compared to the Deep-LSTM model. The predicted values of the GRNN
in the latter part of season 2 became horizontal, meaning the model was unable to extract
time-series variation features. Season 3 in Figure 8c was the autumn shoot growth stage
of litchi. In this period, the precipitation decreased compared to the summer, with mean
soil moisture falling to 18.68%. The maximum and minimum soil moisture percentages
were 20.25 and 16.59%, where the change rate was the smallest among the four seasons.
This may be why the Elman and GRNN models deviated slightly from the real values.
The phenomenon showed an important relationship between model performance and
data distribution. Therefore, optimizing the noise of data was meaningful for improving
the model’s prediction accuracy. Figure 8d shows season 4, which was winter with little
precipitation. The soil moisture of the litchi orchard was reduced with evapotranspiration
and water consumption. The maximum fluctuation of the Deep-LSTM predicted value was
1.08%, and the predicted mean value was 13.19%, while the measured mean value of soil
water content was 12.88%. Thus, the Deep-LSTM tended to overestimate soil moisture. The
common characteristic of the two seasons was that they occur at the time of year with the
least precipitation, which indicated that the climate would have an impact on the model
performance. The Elman and GRNN models showed similar results in that they were not
reliable for predicting soil moisture compared to the proposed Deep-LSTM model.
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4. Discussion

Wavelet denoising was an effective method for studying the time-frequency signal.
In this paper, the Sym8 wavelet was applied to optimize soil moisture data quality, which
reduced the dispersion of soil moisture data and improved the data quality without af-
fecting the overall mean value of the original data. Deng et al. [46] applied the wavelet
denoising method to improve the soil moisture data quality of South China. The research
indicated that wavelet denoising had little effect on the original data features, and the
reconstructed soil moisture data were able to improve model prediction accuracy after a
suitable denoising process, whose conclusion was consistent with the results obtained by
the wavelet denoising method in this paper. Peng et al. [47] implemented a study using
the wavelet denoising method to predict soil moisture based on the Sym8 wavelet with
MATLAB. The difference was that the soft threshold estimation method was applied for
denoising and reconstructing, which caused the processed data to lose part of the high-
frequency information. The unbiased risk estimation method in this paper combined all the
original wavelet coefficients with statistical analysis to determine the threshold. In addition,
the Std of the denoised data was reduced by up to 54.88%. However, the soil moisture
may be affected by many factors; thus, further study is necessary to test more wavelet
denoising algorithms, such as the Morlet wavelet [48], Mallet wavelet [20], etc., regarding
the performance of denoising the soil moisture to decrease the distortion of high-frequency
information.

Using denoised soil moisture data, the Deep-LSTM model based on the time series
model was developed to predict the soil moisture of the litchi orchard. As the duration
of the test dataset was as long as one year, the dataset was divided into four seasons
considering climate change and the different growth stages. According to the fitting results,
the RMSEs and MAPEs of the Deep-LSTM model was different, which indicated that it was
reasonable to divide the dataset. The MAPEs were close to zero, meaning that the proposed
model was good for predicting target soil moisture in the four growing seasons. The RMSE
in season 2 was the largest, as the most precipitation occurred in summer. This meant



Agriculture 2022, 12, 25 14 of 17

that climate had a significant effect on the model performance. According to Yan et al.’s
research [49], which used a remote sensing satellite and the Particle Filter Markov Chain
Monte Carlo (PFMCMC) method to predict soil moisture, its RMSE was reduced to 1.1%,
while the RMSE of the proposed Deep-LSTM model had better prediction performance.
As the study used remote sensing data and the soil moisture of the sample was only 5 cm
below the surface, it was easily affected by the precipitation, evaporation, and surface
runoff. The soil sensor was set at a depth of 40 cm, which would not be affected by the
external environment and could also reflect the root area water status [50]. Gill et al. [11]
implemented a study on predicting soil moisture using the SVM method, of which the
R2 and RMSE were 0.90 and 3.57%, respectively. The advantage of our research was that
the wavelet denoising method was applied to optimize data quality. The limitation of
this paper is the significant computation complexity of the Deep-LSTM model because
of high-dimension feature extraction. At the same time, this paper did not implement
different time series steps to validate the prediction accuracy, which may be a limitation
in terms of potential model performance. Therefore, further study can be considered to
reduce the computation complexity and feature dimension and change the time series steps
to achieve a balance between complexity and model performance.

The predicted and measured soil moisture were compared based on the calculated R2,
RMSE, and MAPE of the models. The results showed that the proposed Deep-LSTM model
had the best performance among the three models. When the measured soil moisture
changed over time, the Deep-LSTM could follow the variation trend, which indicated the
RMSE and MAPE results of the four seasons. Hong et al. [51] used historical soil data to
evaluate the time series model. The overall R2 and RMSE were similar to those of this
paper, while the study did not discuss the soil moisture according to the crop at different
growth stages. As with the results in our paper, the soil moisture of the litchi orchard was
different and had different model parameters.

This paper proved that the wavelet denoising and Deep-LSTM model could accurately
predict soil moisture. However, the study area of this paper was a litchi orchard with a
data collection point. Thus, further study should focus on different areas to obtain more
data and thereby improve the model’s generalizability. In addition, this paper set a single
soil moisture sensor below the surface, which could not gauge the spatial soil moisture
distribution of the orchard. Therefore, more sensors should be applied at different distances
and depths to acquire multi-dimension soil data. According to Xie et al.’s [52] experiment,
suitable soil moisture is about 17%. Because soil moisture varies at different depths, it is
meaningful to model the soil moisture at different depths to get soil status in advance and
thus to manage orchards effectively.

5. Conclusions

This paper established the Deep-LSTM-based time series model to accurately predict
soil moisture of a litchi orchard in four different growth seasons. The litchi orchard was
chosen as the study area and the weather station and soil sensor were deployed to collect
meteorological and soil moisture data. Additionally, the evapotranspiration of the orchard
was calculated to generate the data with a time span of 2 years. To improve the data quality,
the Sym8 wavelet denoising method was applied to optimize the soil sensor data. The
Sym8 wavelet method combined the unbiased risk estimation threshold, which reduced
data dispersion and did not affect the original data distribution. Based on the above, the
generated data were preprocessed to the time series dataset. The data from the first year
was used as a training dataset that was divided into four different growth seasons. The data
from the second year was also divided into four sections to test the model performance.
The results showed that the RMSEs of the Deep-LSTM model were 0.36, 0.52, 0.32, and
0.48%, the MAPEs were 2.12, 2.35, 1.35, and 3.13%, and the R2 were 0.94, 0.95, 0.93, and
0.94, respectively, in the four different growth stages. The results proved that the proposed
model performed well in predicting the soil moisture of the litchi orchard. Compared to
the classic Elman and GRNN models, the results also indicated that the Deep-LSTM model
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performed best among the three models in the four growth seasons. Considering the high
dimension of the dataset with significant computational complexity, it is difficult to test
different time steps to study the upper limit of the model performance. On the other hand,
this paper set only one single data collection point, which was lacking in spatial soil data.
Thus, further study could focus on soil water at different depths and in different areas,
which would help in acquiring soil status in advance to provide valuable references for
managing litchi orchards.

Author Contributions: Conceptualization, P.G., H.Q. and J.L.; methodology, P.G. and H.Q.; software,
P.G. and H.Q.; funding acquisition, Y.L. and J.L.; formal analysis, P.G.; investigation, P.G., W.C. and
H.Q.; data curation, P.G.; writing—original draft preparation, P.G.; writing—review and editing, P.G.,
X.H., W.W., J.L. and Y.L.; visualization, P.G.; supervision, W.W. and X.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by the Key Area Research and Development Program of Guang-
dong Province (Grant No. 2019B020214003). It was also partly supported by the Basic and Applied
Basic Research Project of Guangzhou Basic Research Plan in 2022 Key Area Research and Devel-
opment Program of Guangzhou (Grant No. 202103000090), Key-Areas of Artificial Intelligence in
General Colleges and Universities of Guangdong Province (Grant No. 2019KZDZX1012); Interna-
tional Training Program for Outstanding Young Scientists in Universities in Guangdong Province
of China (Grant number 2020YQGP_BS011); National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1F1A1055992).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data can be found from the corresponding authors.

Acknowledgments: The authors would like to thank all authors for openly providing the source
codes used in the experimental comparison in this work. We are thankful to the Conghua litchi
orchard of Guangzhou, China.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiang, X.; Lin, H.; Shi, J.; Neethirajan, S.; Lin, Y.; Chen, Y.; Wang, H.; Lin, Y. Effects of a Novel Chitosan Formulation Treatment on

Quality Attributes and Storage Behavior of Harvested Litchi Fruit. Food Chem. 2018, 252, 134–141. [CrossRef] [PubMed]
2. Liang, C.; Xiong, J.; Zheng, Z.; Zhong, Z.; Li, Z.; Chen, S.; Yang, Z. A Visual Detection Method for Nighttime Litchi Fruits and

Fruiting Stems. Comput. Electron. Agric. 2020, 169, 105192. [CrossRef]
3. Xu, S.; Lü, E.; Lu, H.; Zhou, Z.; Wang, Y.; Yang, J.; Wang, Y. Quality Detection of Litchi Stored in Different Environments Using an

Electronic Nose. Sensors 2016, 16, 852. [CrossRef]
4. Ghosh, S.P. World Trade in Litchi: Past, Present and Future. Acta Hortic. 2001, 23–30. [CrossRef]
5. Tao, H.; Ge, H.; Shi, J.; Liu, X.; Guo, W.; Zhang, M.; Meng, Y.; Li, X. The Characteristics of Oestrone Mobility in Water and Soil by

the Addition of Ca-Biochar and Fe–Mn-Biochar Derived from Litchi chinensis sonn. Environ. Geochem. Health 2020, 42, 1601–1615.
[CrossRef]

6. Haley, M.B.; Dukes, M.D. Validation of Landscape Irrigation Reduction with Soil Moisture Sensor Irrigation Controllers. J. Irrig.
Drain. Eng. 2012, 138, 135–144. [CrossRef]

7. Carr, M.K.V.; Menzel, C.M. The Water Relations and Irrigation Requirements of Lychee (Litchi chinensis sonn.): A Review. Exp.
Agric. 2014, 50, 481–497. [CrossRef]

8. Gurav, M.; Sarik, S.; Singh, K.; Pendharkar, G.; Baghini, M.S. IITB_TDR: A Portable TDR System with DWT Based Denoising for
Soil Moisture Measurement. Sens. Actuator Phys. 2018, 283, 317–329. [CrossRef]

9. Xie, J.; Hu, G.; Lin, C.; Gao, P.; Sun, D.; Xue, X.; Xu, X.; Liu, J.; Lu, H.; Wang, W. Irrigation Prediction Model with BP Neural
Network Improved by Genetic Algorithm in Orchards. In Proceedings of the 2019 Eleventh International Conference on Advanced
Computational Intelligence (ICACI), Guilin, China, 7–9 June 2019; pp. 108–112.

10. Qiu, Y.; Fu, B.; Wang, J.; Chen, L.; Meng, Q.; Zhang, Y. Spatial Prediction of Soil Moisture Content Using Multiple-Linear
Regressions in a Gully Catchment of the Loess Plateau, China. J. Arid Environ. 2010, 74, 208–220. [CrossRef]

11. Gill, M.K.; Asefa, T.; Kemblowski, M.W.; McKee, M. Soil Moisture Prediction Using Support Vector Machines1. J. Am. Water
Resour. Assoc. 2006, 42, 1033–1046. [CrossRef]

12. Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic Neural Network Modelling of Soil Moisture Content for
Predictive Irrigation Scheduling. Sensors 2018, 18, 3408. [CrossRef] [PubMed]

13. Gao, P.; Xie, J.; Yang, M.; Zhou, P.; Chen, W.; Liang, G.; Chen, Y.; Han, X.; Wang, W. Improved Soil Moisture and Electrical
Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM. Agriculture 2021, 11, 635. [CrossRef]

http://doi.org/10.1016/j.foodchem.2018.01.095
http://www.ncbi.nlm.nih.gov/pubmed/29478523
http://doi.org/10.1016/j.compag.2019.105192
http://doi.org/10.3390/s16060852
http://doi.org/10.17660/ActaHortic.2001.558.1
http://doi.org/10.1007/s10653-019-00477-2
http://doi.org/10.1061/(ASCE)IR.1943-4774.0000391
http://doi.org/10.1017/S0014479713000653
http://doi.org/10.1016/j.sna.2018.09.065
http://doi.org/10.1016/j.jaridenv.2009.08.003
http://doi.org/10.1111/j.1752-1688.2006.tb04512.x
http://doi.org/10.3390/s18103408
http://www.ncbi.nlm.nih.gov/pubmed/30314346
http://doi.org/10.3390/agriculture11070635


Agriculture 2022, 12, 25 16 of 17

14. Mo, K.C.; Shukla, S.; Lettenmaier, D.P.; Chen, L.-C. Do Climate Forecast System (CFSv2) Forecasts Improve Seasonal Soil Moisture
Prediction? Geophys. Res. Lett. 2012, 39. [CrossRef]

15. Cheng, H.; Xie, Z.; Wu, L.; Yu, Z.; Li, R. Data Prediction Model in Wireless Sensor Networks Based on Bidirectional LSTM.
EURASIP J. Wirel. Commun. Netw. 2019, 2019, 203. [CrossRef]

16. Wang, X.; Gong, G.; Li, N. Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing,
Gradient Boosting Machine and Grid Search Optimizer. Sensors 2019, 19, 219. [CrossRef]

17. Kiranyaz, S.; Ince, T.; Zabihi, M.; Ince, D. Automated Patient-Specific Classification of Long-Term Electroencephalography.
J. Biomed. Inform. 2014, 49, 16–31. [CrossRef]

18. Bayer, F.M.; Kozakevicius, A.J.; Cintra, R.J. An Iterative Wavelet Threshold for Signal Denoising. Signal Process. 2019, 162, 10–20.
[CrossRef]

19. Liu, H.; Li, M.; Zhang, J.; Gao, D.; Sun, H.; Yang, L. Estimation of Chlorophyll Content in Maize Canopy Using Wavelet Denoising
and SVR Method. Int. J. Agric. Biol. Eng. 2018, 11, 132–137. [CrossRef]

20. Zhao, R.-M.; Cui, H. Improved Threshold Denoising Method Based on Wavelet Transform. In Proceedings of the 2015 7th
International Conference on Modelling, Identification and Control (ICMIC), Sousse, Tunisia, 18–20 December 2015; pp. 1–4.

21. Zhang, C.-J.; Huang, X.-Y.; Fang, M.-C. MRI Denoising by NeighShrink Based on Chi-Square Unbiased Risk Estimation. Artif.
Intell. Med. 2019, 97, 131–142. [CrossRef]

22. Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howell, T.A.; Snyder, R.; Brown, P.; Echings, S.; et al.
ASCE’s Standardized Reference Evapotranspiration Equation. In Proceedings of the Watershed Management and Operations
Management 2000, Fort Collins, CO, USA, 20–24 June 2000; pp. 1–11.

23. Liu, C.; Sun, G.; McNulty, S.G.; Kang, S. An Improved Evapotranspiration Model for an Apple Orchard in Northwestern China.
Trans. ASABE 2015, 58, 1253–1264. [CrossRef]

24. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO
Irrigation and Drainage Paper 56; FAO: Italy, Rome, 1998; Volume 300, p. D05109.

25. Rallo, G.; González-Altozano, P.; Manzano-Juárez, J.; Provenzano, G. Using Field Measurements and FAO-56 Model to Assess
the Eco-Physiological Response of Citrus Orchards under Regulated Deficit Irrigation. Agric. Water Manag. 2017, 180, 136–147.
[CrossRef]

26. Feng, Y.; Peng, Y.; Cui, N.; Gong, D.; Zhang, K. Modeling Reference Evapotranspiration Using Extreme Learning Machine and
Generalized Regression Neural Network Only with Temperature Data. Comput. Electron. Agric. 2017, 136, 71–78. [CrossRef]

27. Jain, S.; Shukla, S.; Wadhvani, R. Dynamic Selection of Normalization Techniques Using Data Complexity Measures. Expert Syst.
Appl. 2018, 106, 252–262. [CrossRef]

28. Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97,
105524. [CrossRef]

29. Jin, J.; Li, M.; Jin, L. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks. Math.
Probl. Eng. 2015, 2015, 931629. [CrossRef]

30. Jiang, D.; Lin, W.; Raghavan, N. A Novel Framework for Semiconductor Manufacturing Final Test Yield Classification Using
Machine Learning Techniques. IEEE Access 2020, 8, 197885–197895. [CrossRef]

31. Zhang, Q.; Lu, H.; Sak, H.; Tripathi, A.; McDermott, E.; Koo, S.; Kumar, S. Transformer Transducer: A Streamable Speech
Recognition Model with Transformer Encoders and RNN-T Loss. In Proceedings of the ICASSP 2020—2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 7829–7833.

32. Huang, X.; Shi, Z.H.; Zhu, H.D.; Zhang, H.Y.; Ai, L.; Yin, W. Soil Moisture Dynamics within Soil Profiles and Associated
Environmental Controls. Catena 2016, 136, 189–196. [CrossRef]

33. Fu, T. A Review on Time Series Data Mining. Eng. Appl. Artif. Intell. 2011, 24, 164–181. [CrossRef]
34. Tseng, F.-M.; Yu, H.-C.; Tzeng, G.-H. Combining Neural Network Model with Seasonal Time Series ARIMA Model. Technol.

Forecast. Soc. Change 2002, 69, 71–87. [CrossRef]
35. Yi, D.; Bu, S.; Kim, I. An Enhanced Algorithm of RNN Using Trend in Time-Series. Symmetry 2019, 11, 912. [CrossRef]
36. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys.

Nonlinear Phenom. 2020, 404, 132306. [CrossRef]
37. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
38. Sahoo, B.B.; Jha, R.; Singh, A.; Kumar, D. Long Short-Term Memory (LSTM) Recurrent Neural Network for Low-Flow Hydrological

Time Series Forecasting. Acta Geophys. 2019, 67, 1471–1481. [CrossRef]
39. Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
40. Kumar, N.; Adeloye, A.J.; Shankar, V.; Rustum, R. Neural Computing Modelling of the Crop Water Stress Index. Agric. Water

Manag. 2020, 239, 106259. [CrossRef]
41. Specht, D.F. A General Regression Neural Network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef]
42. Tomandl, D.; Schober, A. A Modified General Regression Neural Network (MGRNN) with New, Efficient Training Algorithms as

a Robust ‘Black Box’-Tool for Data Analysis. Neural Netw. 2001, 14, 1023–1034. [CrossRef]
43. Yan, J.; Liu, J.; Yu, Y.; Xu, H. Water Quality Prediction in the Luan River Based on 1-DRCNN and BiGRU Hybrid Neural Network

Model. Water 2021, 13, 1273. [CrossRef]

http://doi.org/10.1029/2012GL053598
http://doi.org/10.1186/s13638-019-1511-4
http://doi.org/10.3390/s19020219
http://doi.org/10.1016/j.jbi.2014.02.005
http://doi.org/10.1016/j.sigpro.2019.04.005
http://doi.org/10.25165/j.ijabe.20181106.3072
http://doi.org/10.1016/j.artmed.2018.12.001
http://doi.org/10.13031/trans.58.11088
http://doi.org/10.1016/j.agwat.2016.11.011
http://doi.org/10.1016/j.compag.2017.01.027
http://doi.org/10.1016/j.eswa.2018.04.008
http://doi.org/10.1016/j.asoc.2019.105524
http://doi.org/10.1155/2015/931629
http://doi.org/10.1109/ACCESS.2020.3034680
http://doi.org/10.1016/j.catena.2015.01.014
http://doi.org/10.1016/j.engappai.2010.09.007
http://doi.org/10.1016/S0040-1625(00)00113-X
http://doi.org/10.3390/sym11070912
http://doi.org/10.1016/j.physd.2019.132306
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1007/s11600-019-00330-1
http://doi.org/10.1207/s15516709cog1402_1
http://doi.org/10.1016/j.agwat.2020.106259
http://doi.org/10.1109/72.97934
http://doi.org/10.1016/S0893-6080(01)00051-X
http://doi.org/10.3390/w13091273


Agriculture 2022, 12, 25 17 of 17

44. Zubaidi, S.L.; Al-Bugharbee, H.; Ortega-Martorell, S.; Gharghan, S.K.; Olier, I.; Hashim, K.S.; Al-Bdairi, N.S.S.; Kot, P. A Novel
Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach.
Water 2020, 12, 1628. [CrossRef]

45. Nagahage, E.A.A.D.; Nagahage, I.S.P.; Fujino, T. Calibration and Validation of a Low-Cost Capacitive Moisture Sensor to Integrate
the Automated Soil Moisture Monitoring System. Agriculture 2019, 9, 141. [CrossRef]

46. Deng, J.; Chen, X.; Du, Z.; Zhang, Y. Soil Water Simulation and Predication Using Stochastic Models Based on LS-SVM for Red
Soil Region of China. Water Resour. Manag. 2011, 25, 2823–2836. [CrossRef]

47. Peng, S.; Li, T.; Wang, F. Time Series Prediction Model of Soil Moisture Based on Wavelet De-Noising. In Proceedings of the 2009
International Conference on Management and Service Science, Wuhan, China, 16–18 September 2009; pp. 1–4.

48. Lee, E.; Kim, S. Wavelet Analysis of Soil Moisture Measurements for Hillslope Hydrological Processes. J. Hydrol. 2019, 575, 82–93.
[CrossRef]

49. Yan, H.; DeChant, C.M.; Moradkhani, H. Improving Soil Moisture Profile Prediction with the Particle Filter-Markov Chain Monte
Carlo Method. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6134–6147. [CrossRef]

50. Su, Z.X.; Li, R.F.; Huang, J.; Zhang, R.; Chen, H.B. Effect of Ground Mulching on Flowering and Fruit Development of Litchi. Acta
Hortic. 2014, 237–243. [CrossRef]

51. Hong, Z.; Kalbarczyk, Z.; Iyer, R.K. A Data-Driven Approach to Soil Moisture Collection and Prediction. In Proceedings of the
2016 IEEE International Conference on Smart Computing (SMARTCOMP), St Luis, MO, USA, 18–20 May 2016; pp. 1–6.

52. Xie, J.; Gao, P.; Mo, H.; Yu, G.; Hu, J.; Wang, W. Design and Optimization of Intelligent Irrigation Decision System in Litchi
Orchard Based on Fuzzy Controller. Trans. Chin. Soc. Agric. Mach. 2018, 49, 26–32. [CrossRef]

http://doi.org/10.3390/w12061628
http://doi.org/10.3390/agriculture9070141
http://doi.org/10.1007/s11269-011-9840-z
http://doi.org/10.1016/j.jhydrol.2019.05.023
http://doi.org/10.1109/TGRS.2015.2432067
http://doi.org/10.17660/ActaHortic.2014.1029.28
http://doi.org/10.6041/j.issn.1000-1298.2018.08.003

	Introduction 
	Materials and Methods 
	Study Area and Data Collection 
	Data Denoising 
	Wavelet Decomposition 
	Threshold Optimization 
	Wavelet Reconstruction 

	Evapotranspiration Estimation of Litchi Orchard 
	Data Preprocessing 
	Time Series Model Based on Deep-LSTM Model 
	Classic Models to Compare with Deep-LSTM 
	Elman Neural Network 
	Generalized Regression Neural Network (GRNN) Model 


	Results 
	Results of Wavelet Denoising 
	Performance of Models 
	Model Fitting Results 

	Discussion 
	Conclusions 
	References

