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Abstract: Internet of Things (IoT) can be seen as the electricity of 21st century. It has been reshaping
human life daily during the last decade, with various applications in several critical domains such as
agriculture. Smart farming is a real-world application in which Internet of Things (IoT) technologies
like agro-weather stations can have a direct impact on humans by enhancing crop quality, supporting
sustainable agriculture, and eventually generating steady growth. Meanwhile, most agro-weather
solutions are neither customized nor affordable for small farmers within developing countries.
Furthermore, due to the outdoor challenges, it is often a challenge to develop and deploy low-cost yet
robust systems. Robustness, which is determined by several factors, including energy consumption,
portability, interoperability, and system’s ease of use. In this paper, we present an agile AI-Powered
IoT-based low-cost platform for cognitive monitoring for smart farming. The hybrid Multi-Agent
and the fully containerized system continuously surveys multiple agriculture parameters such as
temperature, humidity, and pressure to provide end-users with real-time environmental data and
AI-based forecasts. The surveyed data is ensured through several heterogeneous nodes deployed
within the base station and in the open sensing area. The collected data is transmitted to the local
server for pre-processing and the cloud server for backup. The system backbone communication is
based on heterogeneous protocols such as MQTT, NRF24L01, and WiFi for radio communication. We
also set up a user-friendly web-based graphical user interface (GUI) to support different user profiles.
The overall platform design follows an agile approach to be easy to deploy, accessible to maintain,
and continuously modernized.

Keywords: smart farming; IoT; WSN; containerization; multi-agent; neural network; LSTM

1. Introduction
1.1. Smart Farming

Nowadays, the traditional crop management practices remain insufficient to follow
the persistent global needs for food. This challenge is mainly driven by the exponential
population growth, climate change, and bad agriculture practices. The UN estimates that by
2050, the world population will stand between 9.4 and 10.1 billion. The population numbers
will continue rising through the years, and it will reach between 9.4 and 12.7 billion by
2100 [1]. Thus, food production is expected to grow by 70% by 2100 to meet the population’s
expansion [2]. Meanwhile, the impact of climate change, is putting productive lands
and production under tremendous stress [3], with yearly damages expected to range
between 0.1 and 1.0 percent of the gross world product by 2100 [4]. Furthermore, farmers’
mismanagement of crops and the extensive exploitation of resources often lead to soil
deterioration through acidification, erosion, and heavy metals pollution [5,6]. Thus, farmers
must use different resources such as fertilizers, water, and nutrients in a very optimized
way for sustainable food production [7]. Therefore, smart farming presents a tremendous
opportunity for farmers to overcome agricultural challenges and protect the environment.
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Smart farming is described as the application of information and communication technology
(ICT) to the agriculture industry in order to improve crop management efficiency. The
idea behind this concept consists of combining the most relevant trends in monitoring
technologies with the best field practices to assist farmers to overcome the agriculture
challenges [8].

Internet of Things (IoT) based systems for smart farming are considered to be the
backbone of the fourth industrial revolution. It consists of the implementation of IoT-based
systems for continuous monitoring and data analysis. Different heterogeneous sensor nodes
are deployed across yields for key environmental processes’ monitoring. Sensor nodes that
communicate continuously using wireless sensor networks (WSN) technology to overcome
various geographical constraints that wired technologies have in topographic features such
as deserts, mountains, rivers, valleys, and lakes. The wireless sensor network is the skeleton
for an IoT-based system. It is based on a set of wirelessly connected nodes for network
establishment as presented in Figure 1. The wireless nodes are the front gate elements
for environmental sensing, data collection, and it can even play the role of the actuator
through activities automation such as pumps control, irrigation, etc. However, sensor
nodes with limited size and resources, such as power supplies, CPUs, and memory, require
an additional optimization layer for optimum efficiency [9–11]. Therefore, techniques
such as wireless network clustering, as investigated in our work in [12], can improve
considerably the network’s energetic performance through the creation of sub-networks
and multi-hope communication to limit distances between remote IoT nodes and base
stations. Thus, avoiding energy dissipation in long distances. Additionally, the usage
of light communication protocols dedicated for IoT sensor nodes, and decentralization
where operations that consume the system’s resources are not performed on the sensor
node’s level but the BS level side are part of the optimization approaches that enhance
different performance.

Sensor Node (SN) SN SN

SN

SN SN

SN

SN

SN

Figure 1. High level presentation of wireless sensor network.

Undoubtedly, IoT-based solutions for smart farming are tremendously requested by
large facilities. However, the penetration of such solutions within small farms is considered
limited, especially in the developing economies [13]. This limitation is mainly due to
the expensive costs, the complications of maintenance, and the overall performance of
different solutions and services. Moreover, the lack of technological knowledge presents a
barrier for IoT adoption among farmers [14]. Nevertheless, many researchers around the
globe are continuously developing low-cost systems for small farmers, different solutions
were gathered in detailed reviews such as [15–19]. In [20], the authors present a low-
cost-based agro-ecological management system for smart farming in India. The system
performance was tested using the OMnet++ simulation tool. OMnet++ which stands for
Objective Modular Network Testbed in C++, is a framework and library based on C++
language. The framework is allowing researchers to create and simulate wireless networks’
communication. In Egypt, the authors of [21] present an agriculture monitoring system
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based on IoT and artificial intelligence (AI) for decision making. The implemented expert
system enables the proposed framework to mimic the ability of a human expert to make
decisions on plant diseases. In [22], the authors present a real-time monitoring system for
farmers, the “Expert Advisory System” is developed to improve the crop productivity in
Uzbekistan. This is can be achieved based not only on the provided environment’s data that
supports farmers for their expert judgment (weather status, plant’s diseases, etc.), but also
to evaluate precisely the soil needs for healthy plants and therefore good crop and better
natural resources’ preservation. The simulation was conducted using Contiki Simulator.
In [23], the authors proposed an IoT-based low-cost system for smart irrigation. The system
is based on MQTT, HTTP, and Neural Network (NN) for intelligent decision-making.
Another low-cost prototype has been presented in [24] in which authors have created a
user-friendly system for smart farming. In South Korea, the authors of [25] proposed an
adaptive network mechanism for a reliable smart farming system. The technique feature
is based on the ability to choose suitable transmission protocols based on the network
condition. The system implements Long Range Wide Area Network (LoRa-WAN) and
IEEE protocols for transmission. As a smart farming system, the framework allows having
a salable transmission system to scale out the platform performance in large farms. Using
such as transmission approach will guarantee continuous communication between sensor
nodes and the base station. Therefore, it will provide a continuous hands on the farm and
its environmental parameters such as humidity, temperature, etc. Additionally the paper
investigates some metrics such as latency and data reliability for the system’s validation.
The authors of [26] presented an experimental analysis of energy harvesting for IoT devices,
as well as a comparison of various wireless technologies for agriculture systems in Canada.
IEEE 801.11 g, IEEE 802.15.4, and LoRaWAN protocols are also being investigated. In [27],
an IoT system has been proposed for precise ecological monitoring in agriculture domains.
The proposed platform is based on different views for different end-users. According to the
authors, the architecture is open for an extra layer of protocols and it can be implemented
on different servers and cloud-based architectures. In Turkey, an architectural approach
based on Farm Management Information System (FMIS) has been introduced in [28].
In [29], the authors proposed an energy-efficient weather station, the system focused on the
algorithm optimization to deal with the energy consumption dilemma such as devices high
power’s consumption in data sending, data receiving, wireless communication, energy
dissipation in different bands within different ranges, etc. Thus, the algorithm focused on
the optimization in data transmission through the deployment of asynchronous algorithms
that is based on measurement threshold and sleep mode approach. The station considers
measurement data is ready when the anemometer’s rotations are reaching a certain value.
Thus, if no rotation is detected the BS puts the system in sleep mode for 500 ms. When data
is ready, the transmission module doesn’t send the measurement of wind speed unless if it
is greater than a predefined threshold. According to the authors, the optimized algorithm
had the potential to optimize the energy consumption of the station by more than 60%.
In Tunisia, the authors of [30] proposed a low-cost monitoring system for smart farming
based on IoT and Unmanned Aerial Vehicles (UAVs). The proposed platform relies on a set
of under and above-ground environmental sensors.

To the best of our knowledge, current monitoring systems focus on providing systems
to the researchers’ community, rather than providing customized solutions to farmers for
their crops management on a real-time basis. The proposed solutions do not address the
energy consumption dilemma since most papers focus on technologies comparisons rather
than hardware and software enhancement. Current platforms principally rely on light
communication protocols to control the energy consumption issue and improve network
lifetime. Additionally, the studied solutions in this article rely on very basic approaches
when handling the operation and maintenance (OAM) of different components and services.
In addition, current systems don’t answer the security dilemma. Some of the most common
challenges in IoT are presented in Table S1 (see Supplementary Materials). Additionally,
different authors propose low-cost solutions without breaking down the proposed systems’
costs into the cost of investments and the cost of operations. Thus, to overcome some of
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the challenging issues that the IoT-based systems have, this paper focuses on designing
and implementing a sophisticated yet low-cost meteorological system for smart farming.
The system is mainly designed based on open-sources software and platforms. The system
design takes into consideration the algorithmic optimization in data acquisition, system
security, and data presentation. The algorithm design is implemented to overcome the
energy consumption dilemma, and it is oriented to improve the end-user experience.

1.2. Rationale of the SW and HW Architecture of the Proposed Method

When targeting deployment of agile systems, we should always put in the heart of
our approach the continuous integration and continuous deployment CI/CD philosophy.
Thus, in this work, we use the latest technological advancement with new conceptual ideas
to deliver an added value. Unlike virtualization which consumes resources, is slow to run,
and doesn’t offer isolation between virtual machines (VMs), the containerization technology
takes the software design to a new level thanks to the resources’ optimization, high level of
isolation, and high speed. Therefore, we build a fully containerized base station based on
the open-source containerization platform (Docker). All services within the base station
are presented as containers to facilitate the operation and maintenance of the base station’s
software components such as database, MQTT broker, etc. Deploying software on top
of Docker will allow us to have features such as interoperability, ease of use, scalability,
and high performance. Meanwhile, performance can’t be achieved only by using the good
software infrastructure (Docker) but also using a highly adequate technology adapted for
the exact use case (i.e., weather monitoring). Consequently, classical databases cannot grant
high performance. Hence, the time series databases (TSDB) are considered to be the most
powerful databases to deal with massive monitoring data. In our work, we use InfluxDB
as one of the best current TSDBs. Meantime, when using low-cost hardware, we should
avoid pushing the usage of the BS’ available resources to the maximum when we can
outsource some of the heavy activities, therefore we use Google Colaboratory (Colab) free
computing resources to train our models and offload our base station for other tasks. Once
a set of predefined amounts of measurement is recorded, the Debian distribution which is
a Linux-based Operating System (OS) within the BS initiates a cronjob to export data into
Google Drive, at that point Colab recover the data and start training the prediction’s model.
When the model is ready, Tensorflow generates “tflite” and store it back into Google Drive.
The model is then sent back to the BS for internal usage within the local webserver. We
chose to deploy the open-source LAMP (Linux Apache MySQL PHP) server within our
BS. Security is also a challenge in modern systems due to the high exposure to the internet.
Thus, in our system, we use different techniques to ensure the system’s security and data
privacy. Adoption of a separated cloud server that can only receive data from the base
station is very important. The idea is to allow third-party users to consult the dashboard
on a cloud server without being able to connect to the local server. Connection to a local
server is only dedicated to researchers and engineers through VPN tunnels based on a
pre-generated license.

1.3. Objectives and Hypotheses

In the course of pursuing our main objective to build an agile, low-cost, and AI-
powered meteorological station, we address the following hypotheses by implementing
the corresponding item as described against the bullet points below.

• The different trained models, within the proposed platform, support the generation of
AI-based information to assist different end-users roles such as farmers, researchers,
and engineers.

• The proposed architecture is mainly based on open-source technologies to serve the
low-cost philosophy adopted in this paper. The open-source environments chosen to
allow us to customize source codes and adapt them for our exact needs with minimal
cost of use. Therefore, usage of Debian OS rather than Microsoft OS will allow us to
modify easily the OS Kernel to optimize the performance of our station in terms of the
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boot, background processes, usage of command lines, and enhancing the CPU usage
and speed which lead eventually to enhance energetic performance. Furthermore,
the long-term goal of the system is to propose a flexible platform based on the layering
approach to enable the system’s flexibility and continuous upgrade.

• The system design follows a hybrid architecture that combines centralized and dis-
tributed techniques for devices’ connection which will lead to higher performance.
The design enhances the system’s portability, scalability, interoperability, and compati-
bility with different technologies, protocols, and equipment’s vendors. The Hardware
(HW) design is based on deploying heterogeneous nodes that are not dependable on
the vendor of the components, the type of the sensors, or the end node performance.
The proposed distributed agro-weather station plays a Base Station (BS) role that
embeds different agents. The BS is connected to several heterogeneous wireless nodes.
The nodes, including the BS, are equipped with different heterogeneous sensors to
measure the field’s temperature and humidity, wind speed and direction, and atmo-
spheric pressure. The network continuously monitors the field and provides insights
and predictions through a local server implemented within the BS. Since energy effi-
ciency is a crucial metric in IoT systems, our network ensures good energy efficiency
management without impacting system performance.

• The wireless nodes design which is based on standardized transmission protocols
such as MQTT allows us to have good interoperability between nodes and different BS.
This design approach is also done in order to fulfill the plug-and-play feature in this
platform. Therefore, any wireless node within our system can be redeployed within
other platforms as long as they follow the same protocol.

• We design the Graphical User Interface (GUI) layer to ensure visibility, accessibility,
ease of use, efficiency, and attractiveness. The software design ensures real-time and
near-real-time data communication and processing between network sensors and
the base station. The agro-weather station is AI-powered to support farmers and
researchers with environment’s data trends and eventually allow them to make fact-
based decisions such as when planting, spraying, and even harvesting. Within the BS,
the AI is an agent that is connected to an external Google Collaboratory environment
(Colab) which is a standalone hosted Jupyter notebook that provides free computing
resources for background data analysis and modeling. Even though it is possible to
bypass the usage of Colab and rely only on a local Jupyter netbook running on the local
server, however, we should avoid consuming local BS resources on the training tasks
and allocate these resources for other services such as sensing, wireless transmission,
cronjob services, local web-server, etc. The Graphical User Interface (GUI) ensures
utility and warranty and avoids complications whenever end users are connected,
and data is consulted.

• The system’s services such as remote access, web services, database updates, and tele-
gram chat-bot are built on top as standalone agents. The multi-agent system (MAS)
approach helps enhance the BS performance by creating scalable, reliable, efficient,
and maintainable modular services. In addition, the MAS approach enables the state-
less configuration of services. Therefore, services can be updated through a Start,
Upgrade, and Stop (SUS) approach. The SUS approach allows instant execution of
predefined scripts for each operation. The scripts are hosted in accessible repository
under/usr/local/bin. The file system/usr/local/bin contains different scripts that
normal users can access and use, this repository protects scripts from being modi-
fied when the system’s updates are planned or executed. Consequently, facilitating
different modules’ operation, maintenance, and troubleshooting.

• System security approach and design have been implemented in our platform. Access
to the BS is ensured locally with user credentials or remotely through a secured
VPN tunnel. We deploy OpenVPN within the BS. Meanwhile, because OpenVPN
needs to follow an assigned IP address, while our system is connected to a public
address, we can overcome this challenge by deploying a NoIP client within our BS
that plays the role of a dynamic DNS pointing continuously to a static hostname such
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as “www.ensem-aws.tk” accessed on 13 April 2021. Different user roles are configured
with different roles and privileges. Additionally, offline data snapshots of the OAM &
Data dashboards are stored in the cloud and consulted separately.

• The system building costs are essential in our platform’s design. Capital expenditures
(Capex) and operating expenses (Opex) are the leading Key Performance Indicators
(KPIs) taken into consideration for solution design and prototyping. Thus, the cost
analysis is ensured to support presenting the system’s short-term and long-term
benefits for different users.

2. Materials and Methods

Many contributions have been proposed, and several works are continuously devel-
oping IoT-based systems for smart farming. Thus, we propose an agro-weather station
(AWS) designed to serve farmers and researchers at once. The system is developed to
provide real-time data and AI-based insights for different end-users. The logical architec-
ture illustrated in Figure 2 is based on a multi-layer approach. The system can be seen
as a natural evolution and implementation of our previous work in [31]. The proposed
system’s high-level design (HLD) is decomposed into four main layers: the perception
layer, the transmission layer, the presentation layer, and the management layer. The main
role of the perception layer is sensing and collecting data through the network’s deployed
heterogeneous sensors. In addition, the perception layer contains different sensors to collect
environmental parameters such as temperature, humidity, wind direction, and wind speed.
Meanwhile, the transmission layer can be considered as the skeleton of our system. This
layer connects the network’s dispersed sensors to the BS through different deployed proto-
cols such as WIFI, NRF24L01, MQTT, etc. The presentation layer’s role is to ensure data
collection, processing, and data transformation to trends and insight reports. The presenta-
tion layer is based on a graphical user-friendly GUI accessible through different devices
such as laptops, mobiles, and tablets. Finally, the management layer is responsible for
surveying the system and providing real-time status and alarms of different deployed
nodes for reliable system management. In this section, we discuss the research methods in
our system’s design. Moreover, we review the several opportunities and challenges that
IoT-based systems present for smart farming use case.

Environmental Parameters Controllers

Serial

Serial

NRF24L01

MQTT

Node red

BS Local Server

Local connection

Grafana

Remote                 access

Internet
OpenVPN

Serial

Local website : HTTPS

HDMI

Cloud

2G/3G/4G

Chatbot

DATA &
Model Storage

Model training

Google Collaboratory
Tflite model

DATA 

VPN Tunnel

Management Layer

Perception Layer

Presentation Layer

Transmission Layer

ChartJS

Python

www.ensem-aws.tk

Middleware Layer

Figure 2. The End-to-End high-level decomposition of the proposed agro-weather station.

2.1. System Design

To effectively implement our system, we adopt an agile methodology approach to
develop and deliver the system throughout its different phases as presented in Supple-

www.ensem-aws.tk
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mentary Part II (see Supplementary Materials). The agile approach enables a collaborative
environment in which different stakeholders such as farmers, researchers, and developers
continuously improve the system through its different releases and iterations. The approach
starts with the requirement collection phase. In this step, we gather the system require-
ments that should be implemented according to the stakeholders, such as data visualization,
system maintenance, and intelligent-based insights. The requirements are then prioritized
according to their relevance and timeline within the analysis phase. The design phase
focuses on the hardware and software design approach in complete alignment with the
system baseline, such as the low-cost strategy, the portability, the scalability, the interop-
erability, etc. The development phase consists of the system implementation, where the
system is transformed from a design into a prototype. The release phase is the extensive
operation and exploitation of the current prototype version for performance analysis. Fi-
nally, the monitor phase measures and tracks the system performance and identifies any
potential problem or improvement for corrective actions. This last phase is conducted in a
proactive way to allow the system’s continuous enhancement.

The design of the agro-weather station follows the multi-layer approach. Thus, in fol-
lowing, we discuss the various system’s layers:

2.1.1. Perception Layer [Back-End]

The perception or access layer is the lowest level of the proposed system model. It
consists of a set of interconnected sensors within different nodes. The Perception layer’s
primary role is to ensure data collection of different environmental parameters through
physical sensors. The deployed sensors collect different agriculture data such as tempera-
ture, humidity, pressure, and solar radiation as depicted in Table 1. The standalone nodes
are designed in hybrid mode. Nodes can either collect parameters locally and communicate
with the BS through serial protocols such as I2C, UART or transmit the data to the BS
wirelessly. The BS uses the data to build and continuously enhance the AI-based model
for weather forecasting. A model that is fully based on the LSTM approach. The hybrid
energy design of the nodes supports a hybrid power supply through solar energy or AC
power. Meanwhile, to overcome the IoT devices’ power limitation, the integrated firmware
supports different techniques to enhance the energy efficiency of nodes. The technique
mainly involves deploying a change point detection algorithm with adaptive communi-
cation frequency with the BS [32]. Multiple environmental characteristics are consistent
over time in agriculture, allowing the measurement frequency to be adjusted in response to
parameter variation. In time-series data analysis, the change point is a critical component.
It’s the point in time when a signal’s property (variance, mean, etc.) rapidly changes.
The problem of detecting sudden changes in a time series is known as the change point
detection [33]. In addition, different agents are deployed to follow the perception layer’s
performance. Alerts are programmed to track different nodes’ energy performance and
status. The nodes design takes into consideration several baselines such as:

• Nodes portability: nodes are portable across the network without any physical or
logical constraints.

• Nodes scalability: the nodes can handle additional functions by deploying different
sensors in any future nodes’ expansion or upgrade.

• Nodes interoperability: the nodes can communicate with different BS based on differ-
ent vendors without critical constraints.
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Table 1. Sensors’ technical specifications.

Sensor Range Accuracy Resolution

Air Temperature 0◦ to 50◦ ±1◦ 1◦

Air Humidity 0–100% ±% 0.5%
Soil Temperature 0◦–60◦ ±2◦ 1◦

Relative Permittivity 1–81 ±3% <0.02
Wind Speed 5–100 km/h ±1 km/h 1 km/h
Wind Direction 0◦–360◦ ±2◦ 22.5◦

Solar Radiation 360 to 1120 nm ±5% 1 W/m2

2.1.2. Transmission Layer [Back-End]

The transmission layer is the skeleton of the network that ensures proper commu-
nication between its different elements. It focuses on the establishment of transparent
and reliable end-to-end data transportation links. The layer transport either wirelessly or
locally the nodes’ data from the perception layer to the presentation layer for eventual
data formatting. Although wired communication is less energy-consuming than wireless
communication, not limited by dedicated radio bandwidth, and it is more secured to remote
network attacks. However, wireless communication is highly flexible and easy to deploy in
vast areas. It also allows considerable agility in terms of deployment and maintenance with
remote access from anywhere and anytime. Several standards and protocols are deployed
in our proposed system in a full-duplex mode, such as WIFI (IEEE802.11), NRF24L01,
and Bluetooth. Furthermore, the system is open-source, enabling its smooth upgrade and
supporting new technologies such as the extension to wireless technologies 2G/3G/4G,
Lora, LPWAN, Zigbee (IEEE802.15.4), and Sigfox. Comparison between these protocols is
shown in Table 2.

The proposed system supports a connection-oriented transmission mode for reliable
transmission or connection-less mode to enhance network connectivity. Wire communi-
cation is also deployed in our system architecture to present the different use cases and
scenarios the system can handle regardless of data transmission medium.

Table 2. Comparison between wireless transmission protocols.

Parameters Standards Band Data Rate Range Energy Effeciency

WIFI IEEE 802.11 2.4–60 GHz 1 Mbps–7 Gbps 20–100 m Low
ZigBee IEEE 802.15.4 2.4 GHz 20–250 Kbps 10–20 m High
Bluetooth IEEE 802.15.1 2.4 GHz 24 Mbps 8–10 m High
MQTT OASIS 2.4 GHz 259 Kbps - High
Cellular 2G/3G/4G 9000 MHz, 18,000 MHz, 21,000 MHz, 2700 MHz - - Medium
LoRaWAN LoRa R1 868/900 MHz 0.3–50 Kbps 30 km Very High
SigFox SigFox 200 KHz 100–600 bps 30–50 km Very High

2.1.3. Presentation Layer [Front-End]

The presentation layer is responsible for reports presentation through formatted data.
The designed user-friendly GUI is compatible with different platforms such as tablets,
phones, and laptops. The collected data support the creation and enhancement of the
AI-based model for weather forecasting. The design of the presentation layer takes into
consideration several vital metrics such as:

• Data visibility: to ensure a high level of clarity that allows farmers and researchers to
monitor, analyze and make smart in-depth decisions.

• Data accessibility: to provide an open and accessible data format that different system’s
agents can explore for different use cases such as modeling, training, evaluation
performance, etc.
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• Ease of use: to ensure that different user roles can use our GUI comfortably. Thus, we
make a baseline that different users should explore report overview in the 30s without
compromising data quality.

• System attractiveness: to create a dynamic and appealing GUI with an attractive and
balanced design.

• System alerts: to monitor the evolution of the critical parameters closely and provide
timely alerts through different channels such as emails and telegram chat-bot.

Due to the energy limitations in different IoT nodes, we have chosen to rely on
lightweight protocols within the presentation layer, such as the Hypertext Transfer Protocol
(HTTP) and The Message-Queue Telemetry Transport (MQTT). HTTP is one of the most
popular internet protocols for web messaging that runs over TCP protocol. It is based on
request and response architecture [34]. MQTT is a lightweight bandwidth-efficient protocol
designed specifically for IoT use cases [35].

2.1.4. Management Layer [Front-End]

The management layer is the central part of the agro-weather station. It provides
real-time centralized data monitoring of the BS and different network elements. The layer
continuously collects several critical parameters of the base station for an optimized system
operation. The main parameters provided by this layer are the processor load, RAM usage,
traffic behaviors, network performance, and overall station health checks. The collection
of these parameters is done in the background. In addition, the layer allows the remote
configuration and monitoring of different thresholds for alerts. The maintenance users can
access the management layer through the developed GUI. The access to the GUI is done
via an installed end-to-end VPN tunnel from external networks, or locally through the BS
LAN port or any device within the same local network.

2.1.5. Middleware Layer [Back-End]

The middleware layer plays the role of the orchestrator entity within the base station,
which allows it to create interfaces between:

• The deployed agents that are part of the perception layer and its different heteroge-
neous sensors and components.

• The presentation layer and its graphical presentation and reporting.
• The transmission layer and its protocols.
• The management layer and its operation and maintenance functionalities.

The middleware layer allows fast deployment of different perception layers’ elements.
In addition, this layer contains the database for different parameters management, cloud
computing for the data and eventual models training, and the decision-making entity as
illustrated in Figure 3.

Communication Agent

Display Agent

Graphical Agent

VPN Agent

Alert Agent

Database AgentMulti-Layer 
Middelware

Sensor Agent

Figure 3. The middleware’s Multi-Agents.
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Since we have described the layers within the platform, we can present the mapping
between these layers and main HW and SW functionalities. A holistic presentation is
depicted in Table 3.

Table 3. The HW and SW mapping towards layers.

Layer Raspberry Pi Docker Node-RED InfluxDB MQTT Web Server (Apache) Cloud Colab VPN Wireless Nodes

Perception Layer YES YES YES YES
Transmission Layer YES YES YES YES YES
Presentation Layer YES YES YES YES YES YES
Management Layer YES YES YES YES
Middleware Layer YES

2.2. System Implementation

In the following, we focus on the end-to-end system design and implementation.
For the agro-weather station design, the system is broken down into modules for a better-
controlled approach.

2.2.1. Hardware Design

In this section, we detail the different elements that constitute our agro-weather
station as depicted in Figure 4. We address the different components such as the base
station, the remote sensors, the microcontroller, the power supply, the radio frequency,
and the cloud.
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Figure 4. The high level block diagram of the agro-weather station.

The base station: We use a raspberry pi 4 model B based on a Broadcom BCM2835
system-on-a-chip (SoC). The Soc is based on a quad-core 64-bit Advanced RISC Machines
(ARM) Cortex-A72 processor running at 1.5 GHz and a 4 Gb LPDDR4 RAM. The Cortex-
A72 processor is one of the high-performance and low-power processors that implement
ARMv8 architectures. The BS supports 802.11 Wireless LAN, Bluetooth 5.0, 2 micro-HDMI
displays up to 4K resolution, 1 Gigabit Ethernet port, and 28 GPIOs supporting UART,
I2C, SPI protocols. The designed BS supports radio frequency communication through an
external NRF24L01 chip configured as a master.

The remote sensors: We chose to have wireless deployed nodes that are based on
the ATmega32U4 microcontroller unit (MCU). The nodes operate on a 5 V to 9 V power
range. The high-performance Microchip microcontroller is an 8-bit AVR RSC-based that
operates on a voltage range of 1.8 V to 5.5 V. The MCU combines a read-while-write 32 KB
ISP Flash memory, a 1024 B EEPROM, 2 KB SRAM and 23 I/O. The MCU supports UART,
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SPI, and I2C. The MCU can operate under extreme weather condition that varies between
−40 °C to 84 °C [36].

The designed node supports WiFi through an ESP8266 chip and radio frequency
communication through the NRF 24L01. The MCU supports up to 126 RF channels with
GFSK modulation, which allows a data rate up to 2 Mbps. When a high data rate is
configured, the NRF24L01 allows the configuration of different saving techniques such as
sleep mode and standby mode [37].

Sensors: To continuously survey meteorological data, keep the low architecture cost
and align with the initial system specifications. We have chosen to deploy the sensors that
respect the technical specification illustrated in Figure 4.

Capital expenses: To make the agro-weather station affordable for the end-users,
the strategy of the design consists of relying on scalable open source components and
migrating HW-based services to SW-based services whenever it is possible. The idea
behind this migration is to lower our cost while keeping the same functionalities that HW
offers. The migration can be seen in:

• The deployment of Telegram Bot messaging services instead of cellular messaging for
alert generation.

• The use of remote accessible web-based services for data visualization instead of local
screen. Tools such as Grafana and Chart.JS library.

However, even though the migration philosophy is prioritized, the end-to-end hard-
ware architecture is fully open and supports any future upgrade or modernization. The en-
tire system cost is given in Table S2 (see Supplementary Materials).

Operating expenses: While capital expenses are invested in the project startup to
accommodate the solution, the Operating Expenses (Opex) represents the day-to-day
expenses to run the platform. These expenses can be seen as the fixed costs that need to be
ensured to operate the system. Since the system deployment will be a win-win relationship
between farmers and researchers, who will be playing the role of system maintainers.
The farmers will benefit from customized data for their crops and fields, while researchers
will collect in-depth geographic-related environmental data for their uses. Data that can
be explored to understand the study area. The OPEX related to the power consumption is
negligible due to the minimal power usage and the low price of energy. In a country like
Morocco, the KWh cost is less than $0.12. In [38], authors present an in-depth analysis on
different board models under different scenarios, study shows that the consumed power of
an Arduino Uno board in single-byte transmission over Xbee S2B module is around 1.04 W
using microwatt-meter. The power consumption of the Raspberry PI 4 B board in full load
is around 7.6 W, while it is 2.25 W in idle mode. An extensive study has been done in [39]
for a similar Raspberry board (PI 3 B+). The OPEX breakdown is provided in Table S3 (see
Supplementary Materials).

2.2.2. Software Design

The system performance, agility, and security are among many metrics chosen to
assess the scalability of our agro-weather station. Therefore, in this session, we address the
system’s software design approach and methodology as they are critical components in the
system’s operation.

System architecture: Since one of our goals is system interoperability, two architecture
scenarios can be deployed—virtualization for hardware abstraction and containerization
for system abstraction Figure 5. Virtualization consists of deploying virtual machines
(VM) with a dedicated operating system (OS) within the base station. It is possible based
on a physical allocation of hardware resources such as memory, storage, and network.
However, the approach has many drawbacks on system scalability and performance due to
the boot-up process, system speed, cost of implementation, system dependencies, software
updates, networking overheads, and virtual machine size. Thus, to deliver the system in
an agile methodology and minimize HW and SW resources, we chose the containerization
scenario that performs the virtualization to the OS side and allows the ease of modules
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maintenance without compromising the continuous integration of services and modules.
The authors in [40], provides a performance analysis of the two technologies based on the
CPU performance, Disk I/O, and other metrics.
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Figure 5. Virtualization versus containerization.

We chose to implement a containerization approach to separate the deployed software
architecture from the hardware infrastructure. By adopting this approach, we were able
to deliver the system quickly. Even though several open-source operating systems are
customized to run on Raspberry Pi, such as kali Linux, Windows 10 IoT Core, Ubunto
core, and Pidora. We chose to run over an optimized and stable Debian image called
Raspbian. The Raspbian open-source operating system (OS) has multiple advantages, such
as being very optimized to be run on Advanced RISC Machines (ARM), a family of Reduced
Instruction Set Computing (RISC) architectures for computer processors that is extremely
suitable for System on Chips (SoCs) such as Raspberry Pi. The OS is subject to continuous
development, and it has a very active community for excellent support. All implemented
services act as standalone services. Thus, the development and integration of different
services can be done independently from technological bounds. The product development
life cycle approach allows continuous improvement of the OS’ products and services
through 4 main stages: OS’ introduction, OS’ growth, OS’ maturity, and OS’ decline.

Even though it is possible to create containers without a specific toolkit, however
in our work we use Docker since it is a fully open-source containerization platform that
allows mounting container’s image efficiently. Docker allows us to build, deploy, upgrade,
and manage containers in a simple and straightforward commands’ approach command-
line interface (CLI). Another important component deployed is the Portainer tool that allows
the same tasks through a lightweight management Graphical User Interface. Portainer
plays the role of self-service container manager, it allows managing all containers hosted
within Docker and grants the privilege of registration of new containers such as OpenVPN,
influxDB, etc. It also allows the quick setup of different containers functionalities such as
making a container open or secure, public or private within a network which allows the
interoperability, scalability, and ease of use in the Operation and Management of the local
base station.

Data base: When developing scalable systems, the choice of the type of databases is
very crucial for the end-to-end system design, especially in the back-end design, where
real-time data storage and data retrieval are important. Several types of databases are
used in data management, such as relational and time series. While traditional relational
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databases are fully supported by SQL and perform incredibly in displaying large datasets,
it performs poorly regarding the history of the stored data. Thus, the time series databases
(TSDB) such as the open-source InfluxDB are considered very scalable and efficient when
handling time-series data [41]. In our system, we use a container-based image of influx
DB for different time-series parameters. Dedicated agents ensure data storage of different
wireless nodes in the database.

Local Web server: To manage local web-based content such as images, scripts, and HTML
files and allow a local web-based interaction between BS and different web users, we have
deployed a local web server based on the open-source Apache. The server serves different
technologies such as HTML, CSS, HTTP, and PHP. The apache server hosts the complete version
of the website and local applications and databases. When an automated script needs to be
executed according to planning it is not the local webserver that does that but rather it is the OS
that executes it. This can be needed when measurements need to be sent to the Colab server
for model training, the Cronjob sends all measurements that are on InfluxDB to Google drive
(updating an existing excel). Colab then gets the link from Google drive and recovers the data
and runs the modeling. Once the model is obtained Colab is then converting it to “tflite” and
storing it on Drive. The model then is sent back to BS to be used in the local server within the
BS. The local server runs the “tflite” model from TensorFlow and embeds it within the local
website as depicted in Figure 6.
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Figure 6. Overview on Docker’s containers and interaction with cloud and Colab.

MQTT Brocker: MQTT is an OASIS-recognized Internet of Things communications
protocol. It’s built as a super-lightweight publish/subscribe messaging transport that
is perfect for linking different IoT devices with minimal network resources. MQTT is
now used in many industries, including automotive, manufacturing, telecommunications,
etc. Within our base station, we deploy the open-source container-based broker named
Mosquitto that runs MQTT 3.1.1 version. Once the sensor nodes (clients) are configured and
pointing to the server broker, all clients can broadcast messages (publisher mode) or receive
messages (subscriber mode). The communication is done without a direct point-to-point
connection between publisher and subscriber. The configured client in our platform is an
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ESP32-based wireless sensor node. The broker doesn’t store the received data and sends it
directly to the time-series database.

Configuration: Since the base station is based on Debian distribution, we can run our
script using, literally, any programming language. However, to be consistent, we have
chosen to configure components using either shell (SH), C/C++ language, Python, or Node-
RED. All cronjob scripts for automation are created based on SH. Meanwhile, all remote
nodes such as ESP32, Arduino micro, Arduino Uno, and ESP8266 are configured using C++
languages. Additionally, the scripting within the Bs such as remote connection with Google
drive, Chatbot, local sensing is done based on Python. Finally, the interaction between
the base station and Mosquitto, influxDB, external wireless nodes are done through Node-
RED. Node-RED is a visual programming tool that was originally developed by IBM for
connecting hardware devices, APIs, and web services as part of the Internet of Things.
Node-RED includes a flow editor that is used to construct JavaScript functions in a web
browser. Node-RED run-time is built on top of NODE.js.

Cloud: The data storage model in our architecture is based on a hybrid approach
where local and cloud-based storage is implemented. Locally, the BS station stores data
on the Hard Disk Drive (HDD) and SDCard. The process is also ensured through simul-
taneous use of the storage as a Service (STaaS) cloud computing model to transfer and
backup the critical measurement data, such as Dropbox, Google Drive, and One Drive.
The data backup process is ensured based on a pre-configured agent in a cronjob on the
BS. The service is deployed to serve as backup to ensure any data restoration in case it
is planned. The multiple data duplication strategies are designed to protect the system
against data loss or corruption and ensure that the BS services’ availability is guaranteed.

We use the cloud also as a “Platform as a Service” (PaaS) to run our web-based
server on which the website and different BS services are hosted. The could is being
accessed remotely for a read-only mode. For security reasons we don’t allow real-time data
consultation except through the VPN which requires pre-generated certificates. Meanwhile,
other users may need to consult historic data, but still, they aren’t granted VPN access
and they aren’t onsite to connect locally, for this reason, we have created a separate entity
which is the cloud. The cloud hosts our website www.ensem-aws.tk which is an offline
version of the local server deployed on the base station. The base station has unidirectional
communication with the cloud which means only BS can push snapshots of the data
(measurement and dashboards) but reversed communication is not allowed. Different
service providers propose cloud services as public, private and hybrid solutions, providers
such as Amazon Web service, Microsoft Azure, and Google cloud are the market’s leaders.
In our work, we use Namecheap cloud services for the hosting, the choice is driven by the
cost-effectiveness strategy. However, the created services are not related to any vendor,
and migration between cloud services is easy with the right set-up (DNS configuration).

VPN access: One of the crucial metrics is the platform security and its immunity
to external access and attacks such as Denial of Service attacks DOS or Distributed DOS
(DDOS). Since the BS is a lightweight server that needs to be optimized for resource
deployment and usage, we configure a virtual private network (VPN) for secure connection
establishment. The VPN allows the creation of end-to-end private tunnels between clients
and the server, allowing external users to access the BS through open yet dedicated ports.
In our BS, we implemented OpenVPN, one of the robust open-source VPN servers that
support Secure Socket Layer (SSL) and Transport Layer Security (TLS) protocols. The
secured channels are established by creating a Full-tunnel where all clients’ traffic is
directed through the VPN tunnel or the split tunnel where the only specified type of traffic
is redirected. The tool supports IPv6 for the virtual private networks and can be executed
over User Datagram Protocol (UDP) or Transmission Control Protocol (TCP). OpenVPN
supports up to 500 VPN certificates generation and 100 tunnels connection at the same
time. The certificates are deployed on the end user’s clients’ accounts.

GUI: The Graphical User Interface is deployed for a human-to-machine graphical
environment. It is designed in a User-Centered Design (UCD) approach, where the end-
users needs are prioritized, and restless re-adapting is applied. The GUI can be seen
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as a set of web services and applications hosted on an Apache webserver. The web
application is organized into different sections with different dynamic pages such as the
home page, login page, weather dashboard, BS maintenance dashboard, and contact page.
The dashboards are customized to display different parameters within different time ranges.
Data presentation is dynamic, and users can specify the time range and frequency of data
updates such as 1 s, 5 s, and 10 min. GUI is mainly built on top of Grafana and Chart.JS
library for the embedded part within the local website.

2.2.3. Neural Network Model

Weather forecasting or prediction can be seen as the application of various techniques
to predict meteorological parameters. Many techniques are used in the literature by dif-
ferent researchers, such as Machine Learning and Deep Learning. Machine learning’s
popularity comes from its ability to identify the most relevant features within an appro-
priate model. Various approaches are used, like Support Vector Machine (SVM), Artificial
Neural Network (ANN), or Recurrent Neural Network (RNN). Since meteorological data is
considered as a non-linear multidimensional time series problem [42] the adopted network
model has to reflect the temporal features within the dataset [43]. Thus, the long-term and
short-term model (LSTM), introduced by [44] is one of the best approaches to deal with
weather forecasting. We use a Recurrent Neural Network System (RNN) that supports time
series as inputs in our system.

The usage of LSTM in models building and training allows us to have greater accuracy.
In our work, the trained LSTM model enables training and forecasting future data based on
historical multi-variate time series (sequential data). A brief description of LSTM structure
and workflow is given in Supplementary Part IV (see Supplementary Materials).

2.2.4. Dataset for Model Building

We collect multivariate weather data from the weather station of Mohammad V
International Airport in the city of Casablanca, Morocco as presented in Figure 7.

Figure 7. Geographic location of the study area (Casablanca, Morocco).

The collected dataset includes different features such as minimum and maximum
temperature, pressure, wind speed, and dew point. The dew point presents the temperature
at which the air becomes saturated with moisture [45]. The summary of data features is
presented in Table 4. However, to extract the most relevant features useful for model
building, we use feature selection based on heatmap as one of the crucial concepts in
machine learning. The feature selection will allow our model to reduce the overfitting,
reduce the training time, and improve accuracy.
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Table 4. Data feature of the our model.

Feature Unit Description

Temperature range Celsius (°C) Temperature range at a height of 2 m above the earth’s surface
Temperature dew Celsius (°C) dew/Frost point at a height of 2 m above the earth’s surface
Temperature Max Celsius (°C) Maximum temperature at a height of 2 m above the earth’s surface
Temperature Min Celsius (°C) Minimum temperature at a height of 2 m above the earth’s surface
Temperature Celsius (°C) Temperature at a height of 2 m above the earth’s surface
Earth skin temperature Celsius (°C) Earth skin temperature at a height of 2 m above the earth’s surface
Precipitation mm Precipitation
Humidity g/kg Specific humidity at a height of 2 m above the earth’s surface
Relative humidity % Relative humidity at a height of 2 m above the earth’s surface
Pressure kPa Surface pressure
Wind speed range m/s Wind speed range at a height of 10 m above the earth’s surface
Wind speed Min m/s Minimum wind speed at a height of 10 m above the earth’s surface
Wind speed Max m/s Maximum wind speed at a height of 10 m above the earth’s surface
Wind speed m/s Minimum wind speed at a height of 10 m above the earth’s surface

The collected data covers a daily measurement from the 1st of January 1981 till the
29th of January 2021 Figure 8. The dataset contains 14 features of 14.638 measurements.

Figure 8. Exemplary plots of Temperature range, Temperature dew point, Temperature Max, Temper-
ature Min, Temperature, Precipitation, Humidity, Relative humidity, Pressure, Wind speed range,
Wind speed Max, Wind speed Min, Wind speed.
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After analyzing the multi-variate historical data, it was clear that the correlation
between temperature (mean), Temperature range, Temperature dew, temperature max,
and Temperature min is very high. Thus we only keep the temperature (mean) and delete
other features to decrease the overfitting. Further details on the features’ correlation
heatmap are illustrated in Supplementary Part V (see Supplementary Materials).

2.2.5. Model Accuracy

The model’s performance is assessed through the computation of different traditional
statistical metrics such as the Mean Absolute Scaled Error (MASE) and the Root Mean
Square Deviation (RMSE). Additionally, we use the index of agreement [46] to separate the
RMSE into unsystematic and systematic components [47,48]:

• RMSE, MASE: The calculation of the Root Mean Square Deviation (RMSE) represents
the square root of the average of squared errors. It is mainly computed to measure the
deviation between the actual values and the prediction values to define the accuracy
of different models. The MASE was proposed in [49] as an assessment technique to
define the accuracy of forecasts in regression models. As a mean absolute approach,
MASE uses the ratio of errors which is allowing it to be independent of the scale of
the forecaster. The RMSE and the MASE can be calculated following the equations:

RMSE =

√
1
n

n

∑
i=1

(
X̂i − Xi

)2 (1)

MASE =
∑n

i=1
∣∣X̂i − Xi

∣∣
∑n

i=1|Xi−s − Xi|
(2)

where X̂ is the predicted value associated with the actual value X, and n is the size
of the dataset. The larger the MASE and the RMSE mean, the enormous difference
between the predicted and actual values, while the smaller the MASE and the RMSE
mean, the closer the prediction values to the actual values.

• Index of Agreement: The Willmott’s index of agreement [46], dindex, measures the
model’s relative accuracy in a range that varies from 0 to 1, with 0 indicating no
agreement between the model predicted values and real observations and 1 indicating
a perfect fit [50]. The index can be computed following the equation:

dindex = 1− ∑n
i=1
(
Xi − X̂

)2

∑n
i=1

(∣∣X̂− X̄
∣∣+ ∣∣∣Xi − ¯̂X

∣∣∣)2 , 0 ≤ dindex ≤ 1 (3)

where X is the real measured values associated to the predicted values X̂, X̄ is the average
value of the measurements, and ¯̂X is the average value of the predicted measurements.

3. Results
3.1. System Workflow

In agreement with our expectations, the overall system design acted to minimize
the human need for agro-weather station programming or maintenance. Thus, platform
allows remote supervision and efficient automation to address this need. The deployed
node follows a plug-and-play approach, in which the BS listens continuously to old and
detects any new nodes under MQTT or NRF24L01 networks. Once a new node has its
pre-loaded firmware, it starts sensing and transmitting data to the BS. The BS receives the
traffic and ensures data is stored locally to the InfluxDB database for eventual analysis.
The aggregated traffic from NRF24L01 and MQTT networks is transferred to the cloud
service based on a cronjob program’s automated script. The cronjob under the Raspbian
operating system allows the execution of specific scripts in specific time and frequency
ranges. The Local server ensures data presentation from the linked database and presents
this data under dynamic web pages that are locally hosted. The data is also synchronized
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with the cloud-based server for open access. Alerts are configured for cognitive and context-
aware monitoring. Several agents continuously monitor specific thresholds in a parallel
way. Once a threshold is reached, system alerts are generated to the BS’ admin user in
emails and telegram messages. Different user roles are created to allow different levels of
data consulting from the dynamic website.

Furthermore, for Operation And Maintenance (OAM) purposes, remote access to the
different BS functionalities and programs is ensured throughout the deployed VPN server
and the installed clients on the end-users devices such as phones, tablets, and laptops.
The pre-generated VPN profiles are mandatory to allow the VPN tunnels establishment.
Additional certificates could be generated locally or remotely based on the GUI VPN
manager. Additionally, the aggregated data is framed and added to the historically collected
data from the international Mohammed V airport weather station. The concatenated file is
hosted on a google drive service that is continuously linked to the Colab environment for
model training and predictions. The end-to-end workflow is depicted in Figure 9.
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Figure 9. The network’s communication workflow.

3.2. Experimental Results
3.2.1. System’s Performance

For experimental purposes, we have tested our system in the laboratory and in the
field. Different scenarios were applied to monitor the agro-weather station performance
and behavior. We have also deployed the end-to-end portable system in an outdoor open
wheat field for a real use case study Figure 10. The prototype has been operating for
approximately 8 h in a 5-ha farm in Casablanca, Morocco for environment monitoring and
continuous data collecting. Several scenarios were applied to test the BS security level,
such as remote access using VPNs, on-site access through LAN network, and SSH access
through WiFi. The BS monitored its different parameters for 8 h and provided through
the designed GUI several clear Key Performance Indicators (KPIs) and data for end-users
in an appealing dynamic interface as presented in Figure 11. The web-based GUI, based
on Grafana, provides different dynamic figures and charts to reflect the BS’ behaviors in
terms of different metrics. Each figure is included within a re-sizable block, giving specific
users the right to change the specific time frame, resize the block, or even change the
position of the entire element. The GUI allows the end-users to filter through a specific
time range or configure dashboard updates’ frequency. It also allows the configuration of
alerts based on predefined thresholds. The re-configurable dashboard was divided into
multi sections for different purposes such as quick information, detailed health check,
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and network performance. The quick KPIs embed the critical data such as CPU and
GPU temperature, CPU usage, RAM usage, and overview on threads and processes were
accessible within the fixed 30 s as predefined in the initial baseline. A detailed health
check section was created to support the operation and maintenance needs by presenting a
detailed evolution of different parameters through time, metrics such as CPU load, Memory
load, Processes, network usage, and network packets, furthermore network performance
metrics such as load average, network errors, and network drops were introduced to assist
maintenance users during troubleshooting or root cause analysis if any specified behavior.
Other parameters such as Disk read/write load, time, and count was introduced to track the
BS storage behavior. Since the dashboard is embedded within the local and the cloud-based
website, it is compatible with different end-user devices such as phones (IOS, android)
and laptops (Mac, Windows, Linux). The dashboard’s dynamicity and responsiveness
make it adaptable with different screen sizes. It allows it to behave and perform like a
desktop application.

During the experimentation phase, different agents were performing different activi-
ties and monitoring multiple metrics. Most of the station’s KPIs were below thresholds.
The CPU temperature, GPU temperature was below 58 °C, while the CPU load was contin-
uously under 75% (average of 45%) which allows the protection of the station resources.
However, due to the operational multi-agents, the number of created processed was typ-
ically high reaching 300. The memory load was always under 2.8 Gb. Throughout the
simulation, remote access using VPNs was tested several times which explains the multi-
spikes in the network usage graph. Data were continuously transferred from the BS to local
and external HDD which is tracked by the disk I/O requests and volume.
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Figure 10. The agro-weather station in a field in Casablanca, Morocco.
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Figure 11. The agro-weather station dashboard.

An offline version of the dashboard can also be consulted through the secured online
portal https://ensem-aws.tk/ using the limited access credential login=“test” and pass-
word=“Azerty1+”, current snapshots are captured on 13th April 2021. The online portal
contains an offline stored version of different parameters in a specific period. Synchroniza-
tion can be done periodically through a synchronization agent in form of a cronjob.

3.2.2. System’s Security

The access to local nodes is limited by using credentials. However, it is known that
remote accessibility is a crucial feature in any modern system especially with the emerging
Covid-19 pandemic. In our system, remote access doesn’t only allow different users to
avoid on-site presence to consult data, but it provides also access anytime, from anywhere
using any device to connect remotely to the base station and its components. As a result,
allowing enormous cost savings. Meanwhile, the remote access functionality comes always
with security challenges and threats such as:

• DDOS attacks.
• Phishing attacks
• Password sharing.
• Vulnerable backups.
• Leakage of information.

Therefore, a secured end-to-end connection is always required before any data consul-
tation. To address this challenge an open-source low-cost VPN solution is implemented.
Different certifications are generated per user profile. Once a user wants to connect from an
external network, the client application connects to the server application to establish the
end-to-end tunnel. In Figure 12 we can connect to our local private network from a public

https://ensem-aws.tk/
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external network through the established tunnels. Once the VPN is activated, we can access
any node within the network with IP address 192.168.x.x using only basic credentials.

 

Figure 12. Remote access to the agro-weather station using VPN.

3.2.3. Weather Monitoring

The sensor nodes implemented within the farm collect continuous environmental data
through the locally deployed sensors. The aggregated data is then forwarded in the form
of JSON block to the base station. The Json block represents a series of JSON files in a
specific time range. The data is transmitted via different transmission mediums (wired,
wireless) and based on different protocols (NRF24L01, WIFI). The Figure 13 illustrates the
plot of the temperature and the humidity recorded within 8h of environmental monitoring.
From the readings, the temperature records show a continuous upward trend. The values
continuously rise in a range between 15 °C and 25 °C. However, the humidity reading
shows a continual downward trend. The humidity values decrease between 100% in the
morning down to 40% in the evening. Even though the measurement reflects only 8 h of
records, the extensive sensing through the year can be extremely useful for the farmers and
researchers through the following:

• Assist in understanding the various effects of temperature and humidity on plants
and crop productivity.

• Adapt the crop type (wheat, oats, potatoes, etc.) based on the period.
• Select the seed quality based on the season.
• Select and trigger automation action (e.g., irrigation) based on a set of parameters (e.g.,

temperature threshold).
• Select the best time for proper soil preparation.
• Prevent plants damaging by choosing the best timing (high humidity and temperature)

to apply pesticides, since treatments should be applied in early to allow foliage to dry
before reaching 29–32 °C [51]
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Figure 13. Temperature and humidity records of the agro-weather station.

Due to their significance as ecological controls, the wind speed and direction are very
important metrics that should be considered by smart farming. The analyzed collected
data can help farmers and researchers through:

• Lower production costs through the usage of the right wind turbines for electric-
ity generation.

• Increase crops profits.
• Understand the impact of winds on plants and crop production (plants seeding,

damaging, etc.)
• Secure reliable data for implementation of customized ML algorithms for dedicated

farming fields.

In Figure 14 we present the wind rose that illustrates the distribution of wind speed
and wind direction in the monitoring period. Detailed wind speed readings are plotted in
Figure 15. The plot shows that the dominant wind direction is between North-northwest
and the North with 17% of 4 to 8 km/h and 10% of wind with speed between 8 and 12 km/h
and 5% of wind in a range of 12 to 16 km/h.
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Figure 14. Wind speed, direction and distribution of the agro-weather station.
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Figure 15. Wind speed records of the agro-weather station.

To summarize, smart farming cannot be achieved if it is not supported by reliable data
and automation of recurrent activities such as monitoring and control. Thus, to select and
apply the best crop management practices, we should be able to understand the evolution
and impact of the meteorological parameters on the plants and on the productivity of any
studied field. The proposed agro-weather station in this paper doesn’t only allow different
users to monitor their crops on a real-time basis but also decreases human activities and
improves the adoption of new technologies in the agriculture field. Our tailored system
allows real-time data that can support real-time decisions.

3.2.4. LSTM Model Implementation and Validation

To train our LSTM model we used the popular Python package named “Keras” which
is embedded within TensorFlow. Applying the right hyperparameters is crucial for an
optimized model before any learning process. Thus, an initial parameterization has been
implemented and adjusted based on the model outcomes. The key optimized parameters
were the number of hidden layers, the number of nodes within each layer, the number of
epochs, and the learning rate.

The initial setup relies on the Mohammed V airport base station’s data to build a
reliable LSTM based model for weather forecasting. However, after a predefined period,
data from the local base station is used and concatenated with the historical data to keep the
model updated with the latest measurement. Meanwhile, since our initial dataset analysis
shows some missing and abnormal observations at different time slots, we proceed with
data pre-processing through removing the entire daily record for missing data. However,
we keep the abnormal measurements (outliers) to measure the robustness and performance
of the model through its ability to provide a good prediction. For model building, the data
is split into three subsets, 70% of data is reserved for the training, while 20% is dedicated
for validation, and finally, 10% is for the testing.

In the implementation of our model, we used 2 hidden layers which have been enough
to avoid unnecessary model complications while being able to detect complex features.
The layers were powered up by 50 neurons in each. The learning batch size was tested
using 5, 10, and 100 days, while the learning rate was initially set to 0.1. Meanwhile, for the
loss function, we have chosen the mean squared error, while the used model’s optimizer is
Adam. Additionally, we used sigmoid and tanh as the activation functions.

The simulations are performed on a cloud using the Colab platform from Google.
The implemented algorithms used Tensorflow platform and Keras as main library to train
and test the performance of our models.

After each round the RMSE, the MASE, and Willmott’s index are computed. The learn-
ing curve in Figure 16 presents the plot of the computed standard deviations against the
number of the epoch. The model has been trained during 30 epochs, Even though the
network was training itself in 30th epochs, it is clear that in our training process, the MASE
and RMSE were minimal in the 5th epochs with a value of 0.0012 and 0.034 respectively,
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however Willmott’s index was around 0.987 with space of improving. The optimum values
were in Epoch 10 with minimal MASE, RMSE, and Willmott’s with values of 0.0012, 0.0034,
and 0.988 respectively. The MASE and RMSE minimum remain stable throughout the
epochs, and Willmott’s index stabilizes at 0.987.
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Figure 16. Presentation of MASE-based and RMSE-based and Willmott’s-based training curve.

The Records’ deviation in Figure 17, and the real temperature versus predicted are
plotted in Figure 18. The prediction of our LSTM model is plotted for 1 month, 1 year, and
8 years from April-2013 till April-2021. The prediction values are based on a trained model
with 32 years of historical data, which possibly captures the ongoing effects of climate
change. The visual comparison in Figure 18 shows that the LSTM model is performing well.
The prediction trends follow almost the training trends in the overall plot with a mean of
residual values over the 8 years around 0.59 °C. Further details on model validation are
presented in Supplementary Part VI (see Supplementary Materials).
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Figure 17. Prediction deviation vs. number of records.
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Figure 18. Model validation—Muli-timeframe temperature prediction. (a) daily predictions vs. real
plot for 8 years (entire dataset). (b) daily predictions vs. real plot for 1 month. (c) daily predictions vs.
real plot for 1 year.

4. Discussion
4.1. Design Issues

Compared to any other field, IoT systems have different bottlenecks that aren’t only
slowing down the adoption of such solutions but they are dragging more attention by
scientific communities through several contributions. In [14,15] the authors describe the
most common challenges in IoT solutions for agriculture. Challenges such as resources
optimization, cost analysis, lack of knowledge of technology, quality of service, security,
and networking. Below we address most of these challenges.

4.2. Comparison with Other Existing Systems

Even though various solutions have been presented under different research out-
puts. However, to the best of our knowledge, the current solutions suffer from different
bottlenecks that impact not only the adoption of such platforms but also the massive
penetration within small farms. Challenges that are linked to the systems’ cost, ease of
use, automation capabilities, operation & maintenance, security, and even remote access
and usage of artificial intelligence. We believe that there is no perfect system, and we are
convinced that there is always a space for the system’s enhancement and adaptation to
different use cases. In the following, we compare the results from similar works based
on the most common challenges such as resources’ optimization, cost analysis, quality of
services, networking challenges, artificial intelligence, operation and maintenance, remote
accessibility, and security:

• Resources’ optimization: Our proposed work relies on a fully containerized architec-
ture, where services are not only lightweight but scalable, agile, and portable. This
makes the agro-weather station’s full software architecture manageable and repro-
ducible within a very short amount of time. It allows us to have very reliable and
optimized micro-services such as local web server, time-series database, VPN server,
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etc that consume wisely the BS’s resources such as CPU, memory, and network as
presented in Figure 11. Meanwhile, all the studied works in this article [20–30,52–59]
are based on classical low-performance system on chips (SoCs) in designing and im-
plementing station. The used SoCs such as Arduino microcontroller doesn’t support
multitasking such as Raspberry Pi micro-computer, which limit the performance of
the stations to basic monitoring tasks.

• Cost analysis: In our work, we provide an Opex and Capex deep analysis to support
the cost-effectiveness approach targeted in this work. Thus, we estimated the cost
of investment to build the agro-weather station at 176 $ as depicted in Section 2.2.1.
While, works presented in [22,25,26,30,57–59] have claimed development of a low-
cost-based system for smart farming, meanwhile no one of these contributions has
provided a detailed operation based analysis and capital based costing.

• Quality of services: When studying the literature, we can see that there is a huge
limitation when it comes to the deployment of a fully multi-agent-based architecture in
systems’ design. In [28] the author presents a logical tailored approach for multi-user
architecture design. In [21–23], the authors proposed the deployments of advisory
systems either for early disease detection or crop productivity management. However,
the proposed works focus on the design of a generic prototype rather than a cus-
tomized approach relevant to each user type. Meanwhile, our system tries to provide
different features adapted to different users based on real use-cases. Remote access to
engineers and researchers, temperature forecasting for farmers and researchers, data
security for all users are all standalone agents within the BS. Each agent ensures the
utility and warranty of its functions and services.

• Networking: We address the networking challenge based on fully agile architecture
embedding different heterogeneous nodes. Our system supports multiple protocols
for backbone transmission protocols such as (MQTT, NRF24L01, LAN). The platform
is also extended for other protocols. Additionally, we create a system that supports
plug-and-play nodes as described in Section 3.1. In our platform, we experiment with
the proposed transmission protocols through the end-to-end monitoring ecosystem.
Meanwhile, only [25] presents an adaptive mechanism for reliable smart farming.
However, the technique is only dealing with an isolated scope which is transmission
without validating the system by an end-to-end smart farming platform. While, other
contributions rely on singe transmission protocol such as in [20,22,23,52,55–59] or
don’t even support wireless transmission such as in [21,24].

• Artificial Intelligence: AI becomes a necessity in modern applications and services.
In our system, we deploy a high-performing LSTM model part of RNN for temperature
forecasting. The deployed model as depicted in Section 3.2.3 shows a high-level
performance in temperature prediction which allows the possibility to train and
deploy similar models for other meteorological data such as humidity, pressure, wind
speed, etc. In our system, we propose the hybrid data collection where historical data is
continuously enhanced by the BS itself for a continuous model’s improvement. The BS
supports tasks automation in form of cronjob and through a standalone deployed agent
for alerts notification. The proposed work in [54] proposes a temperature foresting
model based on ANN (Artificial Natural Network), meanwhile, it is known that the
ANN is less powerful than the RNN (adopted in this paper). ANN doesn’t support
the recurrent connections and is considered to be powerful with tabular data and
text data rather than the sequence data which we have in meteorological parameters.
Additionally, in [21–23] the authors create advisory systems for decision making.
The proposed systems require a minimum level of knowledge, while in the developing
countries the lack of technological awareness among farmers will be challenging for
the usage of such systems. The same technological bottleneck is impacting the usage
of AI within drones framework in crop management such as in [30,56]. In [53] authors
only present a conceptual model that lacks testing and validation. Meanwhile, no AI
implementation is considered in the works in [20,24–29,52,55,57–59].
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• Operation and Maintenance: The studied works in this effort focus on the system’s
utility through the functionalities and services offered by the proposed platforms,
rather than focusing on the warranty through the assurance that the developed plat-
forms and services will deliver the needed requirements. Therefore, no system sur-
veyed in this work offers the possibility to have a holistic dashboard for operation
and maintenance. Thus, we have created a dedicated dashboard part of the man-
agement layer as presented in Section 3.1. The dashboard will allow users such as
engineers to consult different performance metrics such as network usage and packet
drops, CPU load, operating system’s threads, and processes, etc. continuously for
management purposes.

• Remote access: None of the surveyed works in this study allows the possibility to
have ultimate remote access to the deployed platform and its components. Only
conceptual architecture with remote accessibility feature was proposed in [28] and
partial data consultation was proposed in [54]. Meanwhile, as part of the system’s
customization adopted in this work, we think that full remote accessibility allows
tremendous ease of use and cost-saving when it comes to consulting the platform
and the locally collected data. Thus, the proposed platform allows different users
to connect remotely to the BS and consult all components through the GUI or the
SSH sessions.

• Security: Even though smart farming isn’t a critical domain when it comes to data
sensitivity. However, privacy in today’s world is a huge concern for different users.
Remote access comes with privacy challenges. As mentioned in Sections 2.2.2 and 3.2.2
our platform supports the establishment of end-to-end VPN tunnels that add an extra
layer of privacy and security when using remote access. The deployed VPN server
allows peers to connect using the pre-generated secret keys and certificates that are
based on strong 256-bit encryption. Even with the high-security concerns especially in
the Covid-19 period, none of the others experimental platforms address or implement
any feature or approach for system’s and services’ security and reliability.

A holistic comparison between our proposed system and the existing system is pre-
sented in Supplementary Part VII (see Supplementary Materials). In the table, we present
the major advantages of the system and the major challenges that we detected during the
review. We also categorize the platforms based on their validation. Additionally, we assess
their cost-effectiveness based on deployed hardware and software. Finally, we categorized
the usage of some features such as operation and maintenance, remote accessibility, and
AI implementation.

5. Conclusions

In this paper, we propose an end-to-end AI-powered IoT-based low-cost platform for
smart farming. The main goal of the system’s creation is to support different users such
as farmers and researchers to monitor, understand, and act for better crop management.
The followed approach in system design enables the smooth system’s development and
enhancement through its different iterations, releases, and versions. The platform design
and development purpose are to propose a real-time context-aware system for continuous
cognitive monitoring. Ease of use, portability, low cost, and robustness are among many
metrics considered in the system’s design and implementation. The proposed HW and SW
prototype was validated on the field and presented a high performance in different activities
and operations such as real-time monitoring, temperature forecasting, scalable wireless
connections, reliable dashboards, etc. Therefore, we think that our low-cost platform can
help farmers and researchers to co-create value and to have an impact on crop management.
Additionally, we believe that developed station stress on vital concepts that were missed in
similar works such as remote accessibility, security, operation, and maintenance. However,
we believe that there is a large space for development and system enhancement. Thus,
to enhance the platform performance, our subsequent work will focalize on:
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• Add more advanced functions to enhance the system performance, such as AI-based
power management and fault detection agents.

• Design and create predefined test cases and scenarios that enable extreme ease of use
and service for the enhancement of automation.

• Design AI-based mobility management that can be implemented to BS to reconfigure
the platform without the need for human interaction.

• Migrate the solution to a pure native cloud and support more communication tech-
nologies like Lora, Sigfox, and NBIoT.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12010035/s1, Table S1: Some of the most common
challenges in IoT, Figure S1: the key principales of Agile Methodology, Table S2: Capex investment,
Table S3: Opex investment, Figure S2: Structure of single cell within LSM, Figure S3: Model work
flow of a single cell, Figure S4: Feature selection using heat map method, Figure S5: Scatter plot of
real values vs. prediction values, Figure S6: Residual plot of different time frame, Table S4: Range
and percentage of deviation records, Table S5: Comparison between the proposed platform and other
existing platforms.
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