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Abstract: Accurate identification and intelligent counting of pig herds can effectively improve the
level of fine management of pig farms. A semantic segmentation and counting network was proposed
in this study to improve the segmentation accuracy and counting efficiency of pigs in complex image
segmentation. In this study, we built our own datasets of pigs under different scenarios, and set three
levels of number detection difficulty—namely, lightweight, middleweight, and heavyweight. First, an
image segmentation model of a small sample of pigs was established based on the DeepLab V3+ deep
learning method to reduce the training cost and obtain initial features. Second, a lightweight attention
mechanism was introduced, and attention modules based on rows and columns can accelerate
the efficiency of feature calculation and reduce the problem of excessive parameters and feature
redundancy caused by network depth. Third, a recursive cascade method was used to optimize
the fusion of high- and low-frequency features for mining potential semantic information. Finally,
the improved model was integrated to build a graphical platform for the accurate counting of pigs.
Compared with FCNNs, U-Net, SegNet, and DenseNet methods, the DeepLab V3+ experimental
results show that the values of the comprehensive evaluation indices P, R, AP, F1-score, and MIoU of
LA-DeepLab V3+ (single tag) are higher than those of other semantic segmentation models, at 86.04%,
75.06%, 78.67%, 0.8, and 76.31%, respectively. The P, AP, and MIoU values of LA-DeepLab V3+
(multiple tags) are also higher than those of other models, at 88.36%, 76.75%, and 74.62%, respectively.
The segmentation accuracy of pig images with simple backgrounds reaches 99%. The pressure test
of the counting network can calculate the number of pigs with a maximum of 50, which meets the
requirements of free-range breeding in standard piggeries. The model has strong generalization
ability in pig herd detection under different scenarios, which can serve as a reference for intelligent
pig farm management and animal life research.

Keywords: complex background; pigs; DeepLab V3+; attention mechanism; count

1. Introduction

Group free-range breeding will be the mainstream breeding method of pig farms
in the future, and the increase in the number of pigs will lead to an increase in manual
inspection [1]. The achievement of automatic pig identification, trajectory tracking, and
quantity statistics by using computer vision technology has become a current research
hotspot [2]. In this field, foreground segmentation of pig herd images and separation of
adhesive individual images are the basis for achieving automatic inventory of pig num-
bers [3]. Owing to the complexity of pig images, such as light changes, crowding, stacking,
and occlusion, the existing semantic segmentation technology still faces problems, such
as missing segmentation and mis-segmentation, which result in inaccurate counting [4,5].
Therefore, enhancing the characterization ability of high- and low-frequency detail infor-
mation of images, along with improving the utilization rate of individual characteristic
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information of pigs, are the key research directions to improve the semantic segmentation
accuracy of pig images [6].

Fully convolutional neural networks (FCNNs) [7] have promoted the rapid devel-
opment of semantic segmentation algorithms. Deformable convolution [8] enhances the
adaptability of the model to scale transformation by adding direction vectors to each
parameter of the convolution kernel and adaptively adjusting the scale and receptive
field [9]. U-Net [10] introduces different scale features in the coding layer through the
jump connection structure to recover the lost information and achieve accurate positioning
of pixels. SegNet [11], based on a codec structure, saves the pooled index in the coding
stage, accurately recovers image size and spatial information, and effectively retains the
integrity of high-frequency details. Compared with U-Net, SegNet cannot capture multi-
scale information effectively, while U-Net has many learning parameters, so its training is
relatively slow. PSPNet [12], based on a multiscale feature aggregation structure, uses a
pyramid pooling module to capture feature information of different regions for alleviating
the problem of multiple scale changes. DeepLab series models [13–15] combine DCNNs
and dense CRFs to achieve better detection accuracy. Google introduced deep detachable
convolution in atrous spatial pyramid pooling (ASPP) [13] and a decoder [16] to reduce
the computational complexity of the network, in order to achieve a better DeepLab V3+
network [14]. However, the internal parallel structure of ASPP in DeepLab V3+ models
makes the branch information independent, and lacks spatial correlation. The decoding
phase only fuses one of the multistage shallow features on the backbone network, resulting
in partial loss of effective information, segmentation discontinuity, and rough segmentation
boundaries. In feature fusion, high-level feature output is directly fused with shallow
features in the backbone network, thus ignoring the noise problem introduced into the
semantic feature graph due to the misalignment of high–low features, and damaging the
semantic segmentation accuracy [17].

The attention mechanism module has been widely applied in image classification,
target detection, and tracking tasks [18–20]; it has recurrent models of visual attention [21]
and residual attention networks for image classification [22], all of which use the attention
mechanism to generate high-level feature maps to guide the forward propagation of the
network. Squeeze-and-excitation networks (SENet) [23] compress the feature graph chan-
nels into a single point to obtain the category properties between the channels. Finally, the
gate mechanism fuses the channel relationship into the original feature graph to obtain
the final feature graph. EncNet [24] and DFNs [25] use the channel attention mechanism
to obtain global context information of the image and construct dependencies between
categories. Subakan et al. [26] first proposed the self-attention mechanism and acquired
the global dependence of input information, which was eventually applied to the field
of machine translation. In addition, self-attention generative adversarial networks [27]
introduce the self-attention mechanism module to provide a better image generator for
generating better images. DANet [28] adopts self-attention and channel attention mecha-
nisms to establish long-term context-dependent relationships in the spatial and channel
dimensions, respectively. At present, few attention mechanisms are applied to complex
images of pigs—in particular, the extraction of rich detail information and small target
information in complex images of pigs needs to be improved.

On the basis of the abovementioned existing methods, this study proposes a semantic
segmentation network with a light attention mechanism. The main contributions of this
work are as follows:

(1) The current DeepLab V3+ semantic segmentation framework has too many network
layers and slow speed. Thus, by embedding the attention module based on rows and
columns into the backbone network, we can achieve the lightweight and fast network
computing efficiency that the traditional semantic segmentation algorithm and other
attention modules do not have;

(2) In view of the problem of detail information loss in semantic segmentation algorithms,
a recursive cascade mechanism is introduced to supplement the detail information
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of the unit input feature graph to the output feature graph. This approach better
integrates the high-level semantic information into the low-level high-resolution
feature graph, improving the segmentation accuracy;

(3) This study integrates deep learning models and attention mechanisms, and it prelimi-
narily achieves the application of complex image inventory of pigs.

2. Materials and Methods
2.1. Self-Built Datasets

The basic dataset was collected from large-scale breeding farms in Nanyang city,
Henan Province. The collection period was from June to December 2019. The collection
device was a Hikvision Smart Ball Camera (DS-2DE4320IW-DEDS-2DE4320IW-D, made in
Hangzhou, China), which had 3 million pixels and 20 × optical zoom; its infrared radiation
at night could reach 100 m. As shown in Figure 1, the pigs were 80-day-weaned Yorkshire
piglets. The basic dataset was characterized by single-pig and multi-pig (5–7) scenarios.
The collection environment included different weather conditions—such as cloudy day,
sunny day, and rainy day—to test the robustness of the algorithm.
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Figure 1. Video capture scene: (a) piggery during the day; (b) another piggery at night; (c) camera
position.

The extended dataset included different species and orders of magnitude in all weather,
captured via the Internet. The self-built dataset consisted of 5000 images with a normal-
ized resolution of 512 × 256 pixels. In this study, 4500 typical images were selected for
annotation, among which 3500 were selected as training set images and 1000 as verification
set images. The remaining 500 unlabeled images were used as the test set. As shown
in Figure 2, the extended dataset was characterized by a typical complex environment,
including human beings, weeds, trees, and light, as well as adhesion and occlusion of the
images themselves. In addition, different orders of magnitude of pig groups were set to
verify the segmentation and counting ability of the model. This approach increased the
generalization and robustness of the segmentation model.

2.2. Experimental Design

In this work, the software environment was the Windows 10 operating system. Python
was the programming language, and TensorFlow was the open-source framework for deep
learning. The hardware environment was an NVIDIA RTX3060 16 G graphics card, Intel(R)
Core(TM) I7-11800H CPU, and 16 GiB DDR.

To better evaluate the model correctly, this study adopted the evaluation indices
commonly used in semantic segmentation: precision (P, %), recall (R, %), average precision
(AP, %), F1 score (F1), mean intersection over union (MIoU, %), and algorithm running
efficiency in frames per second (fps). Calculation of each evaluation index is shown in
Equations (3)–(5):

P =
TP

TP + FP
× 100% (1)

R =
TP

TP + FN
× 100% (2)
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AP =
∫ 1

0
P(R)dR× 100% (3)

F1 − score = 2
P·R

P + R
× 100% (4)

MIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(5)

where TP represents the positive sample for which the model prediction is positive, FP
represents the positive sample for which the model prediction is negative, FN represents
the positive sample for which the model prediction is negative, TN represents the negative
sample for which the model prediction is negative, and AP is the integration of precision
in recall. The model performance is better when the AP value is higher. F1 score is the
harmonic average of precision and recall, and its value range is (0,1). MIoU is the most
direct evaluation index in image segmentation; it is the average union ratio of two sets
of real value and predicted value, and k + 1 is the number of categories (including empty
classes).
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2.3. Improved Light Attention DeepLab V3+ Method
2.3.1. Original DeepLab V3+ Model Analysis

The encoding module of the DeepLab V3+ network extracted high-level semantic
feature maps of images through ResNet101 and connected to ASPP modules with multiple
cavity convolution dilation rates. After multiscale sampling of the high-level feature graph
and combination in the channel dimension, the multiscale low-dimensional feature matrix
was obtained using a convolution kernel with a size of 1 × 1. The decoding module
sampled the feature graph four times and fused it with the low-level feature image in the
middle of ResNet101. After the bilinear insertion sampling, the segmentation graph was
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output. The network structure of DeepLab V3+ is shown in Figure 3. When the DeepLab
V3+ network was used in the field of pig segmentation, problems such as rough contour
segmentation and complex background segmentation errors could be found in this network.
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2.3.2. Lightweight Attention Mechanism

The feature map of the coding module acquired the high-level semantic information
of the image, while ResNet101 sampled the low-level details of the image. This not only
increased the amount of feature computation, but also lost many key features, leading
to the noise problem in the fusion of high- and low-frequency features. Domestic and
foreign scholars have proposed various attention mechanisms—such as nonlocal attention
mechanisms [29], dual attention mechanisms [30], and cross-attention mechanisms [31]—to
improve the performance of segmentation models. All of the abovementioned attention
mechanisms improved the segmentation model to varying degrees, but greatly increased
the required computational resources at the same time. Therefore, this study proposed an
attention module and a recursive cascade mechanism based on rows and columns. On the
one hand, this method could aggregate global information more effectively and increase
the network’s receptive field. On the other hand, the attention module had very little effect
on video memory and computation due to the lightweight module design method.

Given that the feature graph had a total of W × H pixels (where W and H were
the width and height of the feature graph, respectively), the size of the relational matrix
between the pixels was WH×WH. The size of this matrix was very large, and the attention
mechanism was usually placed in the depths of the network; otherwise, too many pixels
would make the relational matrix too large, which would significantly increase the compu-
tation required by the GPU, and even lead to incapability of the limited video memory to
store the matrix. Therefore, in this study, the attention mechanism was introduced into the
dimensional reduction feature graph, and the feature parameters were rescreened. Only the
relationships between rows or the relationships between columns were calculated to decom-
pose the original relationship matrix of WH ×WH size into two small matrices—namely,
the WW and HH size matrices. After decomposition, the space occupied by the two small
matrices and the amount of computation required by the large matrix were geometrically
reduced (WW + HH ≤ WH × WH). Figures 4 and 5 show the row- and column-based
attention modules, respectively.
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We supposed the input of the module was a feature graph M ∈ RC×H×W , where C,
H, and W are the number of channels, height, and width of the feature graph, respectively.
First, the input feature graph was transformed by the feature tensor. M was reshaped and
transposed to obtain M1 ∈ RCW×H . M2 and M3 were then obtained by M in the same
way. Next, matrix multiplication and Softmax operation were performed on M2 and M1 to
obtain the relational matrix A. The process can be described by the following formula:

Aij =
exp(M2[i, :]M1[:, j])

∑D
k=1 exp(M2[i, :]M1[:, k])

(6)

where Aij computes the relationship between the ith row and the jth row. Each row in
attention map A refers to the relationship between this pixel feature and all of the other
pixel features, which can be used to aggregate new features. M2 [i,:] refers to the ith row of
the matrix M2; M1 [:, j] refers to the jth column of matrix M1. After obtaining the relational
matrix A, we can use A to perform feature aggregation operations on the original feature
graph. This supposes that RT( ) is a function of shape remodeling and transposition. The
new aggregated feature graph was obtained by the following formula:

M′ = αRT(AM3) + M (7)

where α is a scale parameter used to adjust the weight of polymerization features. The two
formulae mentioned above could be used to obtain the line-based attention module. The
column-based attention module is similar to the row-based attention module.

This study cascaded the column-based module with the row-based module. First, the
input feature graph M was fed into the row-based attention module to obtain the output
feature graph M’. Second, M’ was fed into the column-based attention module as an input
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to obtain the final aggregation feature E. Through recursion, each pixel feature in the E
feature graph was the weighted sum of all other pixel features. In this study, the features
were effectively aggregated and the latent semantic information was fully mined. At the
same time, the time and space consumption were much smaller than those of the traditional
attention module. The recursive cascade mechanism structure is shown in Figure 6.

Agriculture 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 

where A𝑖𝑗 computes the relationship between the ith row and the jth row. Each row in 

attention map A refers to the relationship between this pixel feature and all of the other 

pixel features, which can be used to aggregate new features. M2 [i,:] refers to the ith row of 

the matrix M2; M1 [:, j] refers to the jth column of matrix M1. After obtaining the relational 

matrix A, we can use A to perform feature aggregation operations on the original feature 

graph. This supposes that RT( ) is a function of shape remodeling and transposition. The 

new aggregated feature graph was obtained by the following formula: 

𝑀′ = αRT(𝐴𝑀3) + M  (7) 

where α is a scale parameter used to adjust the weight of polymerization features. The 

two formulae mentioned above could be used to obtain the line-based attention module. 

The column-based attention module is similar to the row-based attention module. 

This study cascaded the column-based module with the row-based module. First, 

the input feature graph M was fed into the row-based attention module to obtain the 

output feature graph M’. Second, M’ was fed into the column-based attention module as 

an input to obtain the final aggregation feature E. Through recursion, each pixel feature 

in the E feature graph was the weighted sum of all other pixel features. In this study, the 

features were effectively aggregated and the latent semantic information was fully 

mined. At the same time, the time and space consumption were much smaller than those 

of the traditional attention module. The recursive cascade mechanism structure is shown 

in Figure 6. 

 

Figure 6. Recursive mechanism. 

2.3.3. Improved Network Model 

On the basis of the traditional DeepLab V3+ model, this study mainly improved the 

feature fusion part deep in the model network. After the initial high-dimensional feature 

images were extracted through the ASPP module and the dimensionality was reduced, 

the initial feature images were fused by a recursive cascade mechanism. First, the 

row-based attention mechanism was used to extract semantic information. Then, the 

column-based attention mechanism was cascaded to deepen the feature information. 

Theoretically, the computation of the model could be reduced exponentially, and the 

high-dimensional feature information of the image could be further optimized to provide 

support for the subsequent high- and low-frequency feature fusion. The improved model 

structure is shown in Figure 7. 

Figure 6. Recursive mechanism.

2.3.3. Improved Network Model

On the basis of the traditional DeepLab V3+ model, this study mainly improved the
feature fusion part deep in the model network. After the initial high-dimensional feature
images were extracted through the ASPP module and the dimensionality was reduced, the
initial feature images were fused by a recursive cascade mechanism. First, the row-based
attention mechanism was used to extract semantic information. Then, the column-based
attention mechanism was cascaded to deepen the feature information. Theoretically, the
computation of the model could be reduced exponentially, and the high-dimensional
feature information of the image could be further optimized to provide support for the
subsequent high- and low-frequency feature fusion. The improved model structure is
shown in Figure 7.
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3. Results
3.1. Model Training Experiment

In this study, five representative semantic segmentation models including FCNNs,
SegNet, U-Net, DenseNet, and DeepLab V3+ were reproduced. The initial learning rate
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was set to 0.01, and the regularization coefficient was set to 0.001. With the increase in
epoch times, the learning rate followed the principle of exponential decay, and decreased
to 0.05 times the original. The comparison of the loss value of model training is shown in
Figure 8. After approximately 1000 iterations, the models converged rapidly and the loss
function curve was still declining. After 2000 iterations of training, the model was stable.
The loss value of this method was 0.002, which meant that the training effect of the model
was the best. The comparative experiment of operation efficiency of the proposed method
is shown in Figure 9. Images with different resolutions were introduced into models of
different batch sizes for training. The results showed that the segmentation speed was
faster when the resolution was smaller, and the fastest was up to 441 fps. However, smaller
resolution did not mean higher segmentation accuracy, because smaller scale images lost
more information. Therefore, we finally chose a suitable size of 512 × 256 pixels for the
model training set.
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Figure 8. Comparison of training loss of different models: Here, loss1 represents our method in this
study; loss2 represents the traditional DeepLab v3+ result; loss3 represents the DenseNet result; loss4
represents the SegNet result; loss5 represents the U-Net result; loss6 represents the FCNNs result.
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Figure 9. Processing speed of our method.

3.2. Segmentation Experiment
3.2.1. Qualitative Comparative Analysis

The proposed method was further compared with the existing segmentation methods
of FCNNs, U-Net, SegNet, DenseNet, and traditional DeepLab V3+. Image segmentation
results were presented in lightweight, middleweight, and heavyweight difficulty. The
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visualization results are shown in Figure 10, illustrating the advantages of the new model
more intuitively.
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The pictures in the first line are the segmentation results of FCNNs. As observed, the
algorithm had an effect on the overall segmentation of pigs; however, it could not achieve
fine-grained individual differentiation, resulting in serious overlap.

The pictures in the second line are the segmentation results of U-Net. Here, the
phenomenon of overlapping segmentation decreased significantly; however, the processing
of details was still insufficient, and the processing of lightweight images was imperfect.
With the increase in difficulty, the phenomena of missing segmentation and overlapping
segmentation appeared simultaneously, and the problem of adhesion had not been properly
solved.

The pictures in the third line are the segmentation results of SegNet. The algorithm
solved the overlapping problem; however, an oversegmentation phenomenon was observed
in the segmentation results of lightweight and heavyweight images, and the feeder was
mistakenly separated. In addition, the processing of middleweight images was improved
compared with that of the former models.

The pictures in the fourth line are the segmentation results of DenseNet. The prob-
lem of oversegmentation and overlapping had been solved, but the problem of missing
segmentation existed to different degrees.

The pictures in the fifth line are the segmentation results of the traditional DeepLab
V3+, which had a good segmentation effect on the whole. However, the segmentation of the
detailed parts of the pig itself—such as legs, back, and outline—was rough. In particular,
the typical overlapping occlusion phenomenon was observed in the lightweight image,
and the segmentation accuracy needed to be improved.

In comparison, the pictures in the sixth line are the segmentation results of the im-
proved LA-DeepLab V3+ model, which had well inherited the complex background seg-
mentation capability of the former. After the label sample was expanded, this study added
separate feeders, drinkers, people, and other external labels, which not only retained the
image details better, but also made the multi-category prediction results more accurate and
comprehensive.

The pictures in the seventh line are the truth value of manual segmentation. Therefore,
the proposed improved model properly dealt with the abovementioned shortcomings by
accurately representing the details of the image; it also solved the problem of missing
segmentation and segmentation discontinuity.

The segmentation results of different complex backgrounds in this study are shown
in Figure 11. The method in this study extended several other typical labels—including
feeders, drinkers, people, sky, and trees—on the basis of the pig label. The purpose was
to solve the problem of misidentification and classification, deepen the understanding of
specific scenes, enhance the ability of the model to further distinguish different complex
background factors, and provide support for deeper semantic segmentation, such as be-
havior. The results showed that the proposed algorithm could deal well with different
scenes, complex lighting, occlusion, and overlap problems, and it had a certain degree of
generalization ability. The model maintained its segmentation accuracy under the complex
background, and provided effective support for individual behavior recognition and pig
farm counting in the future.

3.2.2. Quantitative Comparative Analysis

Segmentation evaluation indices of different models were given in this study to quan-
tify the performance of the models. Table 1 shows that the P, R, AP, F1 score, and MIoU
values of LA-DeepLab V3+ (single tag) in this study were the highest, at 86.04%, 75.06%,
78.67%, 0.8, and 76.31%, respectively. Among them, AP and MIoU showed obvious differ-
ence and significance. Compared with the FCNNs, U-Net, SegNet, DenseNet, and DeepLab
V3+ methods, AP improved by 27.24%, 22.63%, 13.28%, 6.03%, and 2.79%, respectively.
MIoU improved by 14.10%, 13.67%, 7.79%, 2.33%, and 5.80% over the FCNNs, U-Net,
SegNet, DenseNet, and traditional DeepLab V3+ methods, respectively. In addition, the P,
AP, and MIoU values of LA-DeepLab V3+ (multiple tags) in this study were the second
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highest, at 88.36%, 76.75%, and 74.62%, respectively. The traditional DeepLab V3+ method
maintained its advantages in R and F1 score of 74.75% and 0.79, respectively; however, the
differences were insignificant. Overall, the proposed algorithm was absolutely optimal.
The difficulty of the pig dataset with complex background set in this study meant that
achieving an accuracy of more than 90% with other simple scenes was impossible, because
the sample size of the simple background in our dataset was itself very low. We specially
tested the image segmentation of pig herds under a simple background in order to further
verify the accuracy and effectiveness of the algorithm in this study. The accuracy remained
above 99%, which could better realize the accurate inventory of pig herds.
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Table 1. Segmentation results of the different methods.

Methods P R AP F1-Score MIoU

FCNNs 71.60% 68.46% 51.43% 0.69 62.21%
U-Net 74.46% 68.66% 56.04% 0.71 62.64%
SegNet 78.04% 62.66% 65.39% 0.69 68.52%

DenseNet 76.14% 68.94% 72.70% 0.72 73.98%
DeepLab v3+ 84.10% 74.75% 75.88% 0.79 70.51%

LA-DeepLab v3+
(single tag) 86.04% 75.06% 78.67% 0.80 76.31%

LA-DeepLab v3+
(multiple tags) 88.36% 70.03% 76.75% 0.78 74.62%

3.2.3. Generalization Experiment

The improved model was tested on the public dataset PASCAL VOC 2012 (VOCde-
vkit) [32] after extended training. Not all images in VOC2012 were suitable for segmenta-
tion in this model. We selected some images including people, sky, and trees to verify the
robustness of this model against complex backgrounds.

In Figure 12, the first line is the original image, the second line is the real label
corresponding to the original image, and the third line is the segmentation result of our
method. The results showed that the self-built dataset in this study mainly focused on the
segmentation and counting of pigs. Thus, the segmentation effect of background factors
was rather rough—in particular, the adhesion of people and bicycles, the fine segmentation
of trees’ internal cavities, and the processing of contours were imperfect. However, rough
segmentation of complex backgrounds could be realized on the whole, which was helpful
for the model to further learn the complex background of pigs. In conclusion, the proposed
LA-DeepLab V3+ model still achieved good segmentation performance on the PASCAL
VOC 2012 datasets, further verifying the generalization of the proposed model.
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3.3. Model Deployment and Visual Counting Applications 
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quantity, behavior, category, and trajectory tracking. In this study, the H5 program was 

used to build a graphical user interface for the application of pig counting. As shown in 

Figure 13, the model selected in the figure was the DeepLab V3+ model, which intro-

duced a lightweight attention mechanism. 

In the figure, panel (a) shows the home page. A photo was uploaded through 

shooting or an album, and then it was submitted to the program for segmentation and 

counting. 

Panel (b) shows the count result of the lightweight image (1–10 pigs). If we could 

accurately detect the number of piglets in the actual breeding process, then early warning 

of the death and injury caused by extrusion in the production process could be provided. 

The accuracy of this model for lightweight image segmentation was more than 99.8%. 

Panel (c) shows the counting result of middleweight images (10–20 pigs). The accu-

racy of the small pig group with black and white color could reach 99.9%, and 13 pigs 
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Figure 12. Segmentation results of different scenes on PASCAL VOC 2012: (a) people scene; (b) sky
and people scene; (c) sky, people, and tree scene; (d) tree scene; (e) tree and people scene.

3.3. Model Deployment and Visual Counting Applications

The purpose of semantic segmentation was to obtain the whole life cycle law of pig
quantity, behavior, category, and trajectory tracking. In this study, the H5 program was
used to build a graphical user interface for the application of pig counting. As shown in
Figure 13, the model selected in the figure was the DeepLab V3+ model, which introduced
a lightweight attention mechanism.
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Figure 13. Counting application of pigs in complex environments based on the H5 program.
(a) The home page; (b) The lightweight image (1–10 pigs); (c) The middle-weight images (10–20 pigs);
(d) The heavyweight images (more than 20 pigs)

In the figure, panel (a) shows the home page. A photo was uploaded through shooting
or an album, and then it was submitted to the program for segmentation and counting.

Panel (b) shows the count result of the lightweight image (1–10 pigs). If we could
accurately detect the number of piglets in the actual breeding process, then early warning
of the death and injury caused by extrusion in the production process could be provided.
The accuracy of this model for lightweight image segmentation was more than 99.8%.

Panel (c) shows the counting result of middleweight images (10–20 pigs). The accuracy
of the small pig group with black and white color could reach 99.9%, and 13 pigs could be
accurately counted.
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Panel (d) shows the counting result of heavyweight images (more than 20 pigs). The
proposed model could effectively segment the wild black pigs with complex background
and multiscale targets, and the segmentation accuracy was approximately 97%. In addition
to the segmentation of all 24 objects, other kinds of tags could be effectively distinguished.

At present, the average recognition accuracy of the pig and human labels is 97.65%
and 95.86%, respectively. For other labels—such as trees, sky, drinkers, and feeders—the
recognition was relatively low. The number of model labels had some significance; thus,
the overall evaluation index of the model was lowered. The application results showed
that the proposed model had a good application effect on fine-grained segmentation tasks.

4. Discussion
4.1. Analysis of Each Model

The comparison results showed that each model had unique advantages. FCNNs used
a deconvolution process to restore image resolution and optimize segmentation results;
however, the downsampling operation of this method weakened the feature extraction
ability of the model, resulting in poor segmentation ability of details of pig images with
complex backgrounds; therefore, its segmentation performance index was poor. U-Net
and SegNet are U-shaped codec structures. The segmentation model based on dilated
convolution could enlarge the local receptive field of the original convolution kernel;
however, the proportion of some pig targets in the overall image was small; thus, these
two segmentation methods were still imperfect in the performance method. DenseNet
greatly reduced the number of parameters, which not only consumed memory but also
led to insufficient extraction of low-frequency features; as a result, missing segmentation
occurred. On the basis of the traditional DeepLab V3+, the proposed method further
integrated high- and low-frequency features to bridge the semantic gap between different
feature graphs; thus, better accuracy and stronger feature expression were achieved. In
addition, the lightweight attention mechanism not only retained the advantage of attention,
but also avoided excessive consumption. Next, the algorithm could be further optimized
based on the extraction ability of image depth features and the complexity of the network.

4.2. Analysis of Improved Segmentation Methods

As shown in Figure 14, very few cases of mis-segmentation and missing segmentation
occurred in the test set when using the proposed method in this study.
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Figure 14. Results of false and missing segmentation. (a) missing segmentation indoors; (b) mis-
segmentation outdoors; (c) mis-segmentation indoors; (d) missing segmentation outdoors

Among them, the main reason for (a), (c), and (d) was that the image of the pigs was
too difficult. The label comparison in the first line showed that ensuring the accuracy of the
label was difficult. In addition, the target was very dense and the image depth information
was low. As a result, identification in the case of serious occlusion was difficult. As shown
in (b), mis-segmentation of tree trunks and missing segmentation of distant small targets
occurred due to the influence of the real environment in the field.
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More sample data and label quantity could be added to improve its segmentation
ability.

4.3. Pressure Test of the Counting Application System

This study conducted pressure test analysis to further test the robustness and general-
ization of the counting application. Representative images with different scenes were input
into the counting system to detect their robustness against occlusion, overlap, adhesion,
illumination, and multiscale targets. Figure 15 shows an example of an error on the current
application platform.
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In the figure, panel (a) represents missing segmentation after the small-scale target was
blocked in the image perspective. As shown in panel (b), mis-segmentation occurred due to
overlapping and adhesion problems. Panel (c) shows the count error caused by the leg target
being too small after severe occlusion. Panel (d) shows the cases of missing segmentation
and mis-segmentation in the field environment containing all of the abovementioned
problems. This shows that the counting accuracy gradually decreased with the increase in
the number of pigs.

The pressure test results showed that the application could calculate the number of
pigs up to a maximum of 50, and that the counting accuracy of pigs with less than 30 was
high. This could meet the requirements of standard free-range piggery, but the counting of
large-scale free-range piggery requires further study. The errors of the model were mainly
caused by insufficient feature extraction of small-scale targets in the foreground, or after
occlusion.

However, the application can meet the requirements of pig population identification
and counting in most common scenarios. The optimization can be further improved by
setting a minimum target scale threshold, supplementing large-scale sample data, and
optimizing the model network.

5. Conclusions

In this study, we proposed a novel semantic segmentation method with a lightweight
attention mechanism. By fusing high- and low-frequency features and reducing redundant
parameters, the DeepLab V3+ semantic segmentation method was optimized, and a pig
counting system was built.

First, this study constructed pig datasets for different scenarios, including field, in-
door, day and night, white pigs, black pigs, humans, trees, and other images of the real
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environment. According to the number of pigs, three kinds of quantity detection difficulty
were set: lightweight (1–10), middleweight (10–20), and heavyweight (more than 20).

Second, a lightweight attention mechanism was introduced based on the DeepLab
V3+ deep learning method to improve the segmentation accuracy of complex images of
pigs. The attention module based on rows and columns improved the efficiency of feature
calculation. Recursive cascade mode was adopted to optimize the fusion of high- and
low-frequency features, and potential semantic information was mined in order to reduce
time and space consumption. In this study, the values of the segmentation evaluation
indices P, R, AP, F1 score, and MIoU of LA-DeepLab V3+ (single tag) were the highest, and
the P, AP, and MIoU values of LA-DeepLab V3+ (multiple tags) were the second highest.
Quantitative and qualitative experiments showed that the segmentation effect of the model
was improved significantly.

Finally, the improved model was integrated to enhance the efficiency of pig counting,
and a graphical counting platform was built to achieve accurate pig counting. The counting
network could calculate the number of pigs up to a maximum of 50, and the counting
accuracy of pigs with less than 30 was higher, meeting the requirements of free-range
counting in standard piggery.

The optimization can be further improved by setting a minimum target detection
threshold, supplementing large-scale sample data, and optimizing the model network.
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