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Abstract: Plum fruit and kernels offer bioactive material for industrial production. The promising
procedure for distinguishing plum kernel cultivars used in this study comprised two stages: image
analysis to compute the texture parameters of plum kernels belonging to three cultivars ‘Emper’,
‘Kalipso’, and ‘Polinka’, and discriminant analysis using machine learning algorithms to classify plum
kernel cultivars based on selected textures with the highest discriminative power. The discriminative
models built separately for sets of textures selected from all color channels L, a, b, R, G, B, U, V, S,
X, Y, Z, color space Lab and color channel b using the KStar (Lazy), PART (Rules), and LMT (Trees)
classifiers provided the highest average accuracies reaching 98% in the case of the color space Lab
and the KStar classifier. In this case, individual cultivars were discriminated with the accuracies
of 97% for ‘Emper’ and ‘Kalipso’ to 99% for ‘Polinka’. The values of other performance metrics
were also satisfactory, higher than 0.95. The ROC curves were quite smooth and steady with the
most satisfactory curve for the ‘Kalipso’ kernels. The present study sheds light on an objective,
non-destructive, and inexpensive procedure for cultivar discrimination of plum kernels.

Keywords: plum kernel images; texture parameters; discrimination; algorithms; performance metrics

1. Introduction

Plum belongs to the genus Prunus and Rosaceae family. The hexaploid plum named
Prunus domestica L. is the main cultivated plum in Europe and Asia. Plum cultivars can
differ in many characteristics such as shape, size, color, weight, and chemical composition
of the fruit, flesh adhesion and shape of stone, diameter and color of anthers of flower, dates
of flowering and fruit maturity [1]. Different cultivars of plum can also be characterized
by different resistance to diseases [2]. Individual plum cultivars can be cultivated under
different conditions including temperature, water, light, nutrient [3]. Plum is a very
important and healthy fruit that can be consumed in fresh and processed forms such as
jellies, jams, dried products [4]. Mature plum contains about 84–90% (w/w) flesh and
the pit (stone) with the kernel is the remaining 10–16% (w/w) [5]. The processing of
plums results in the production of pits that should be removed from the fruit. Pits can be
considered as unwanted waste material. However, the kernel contained in the pit can have
great industrial potential as a source of oils, dietary proteins, vitamins, minerals, fibers,
carbohydrates, as well as other bioactive components. Kernels also contain amygdalin that
in the appropriate doses can have health-promoting properties. However, amygdalin can
hydrolyze to hydrogen cyanide that can have harmful and toxic effects on human health.
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Therefore, the processing of plum kernels should include a detoxification step to reduce the
risk of hydrogen cyanide formation [4]. The physico-chemical properties of plum kernels
and products of their processing depend on the cultivar [6–8].

It is well-documented that a plant cultivar can distinguish itself from other variants
due to the inherent physicochemical properties formed and recorded during its growth [5,6].
Conventionally, the discrimination of plant cultivars is dependent on the phenotypic and
genotypic traits such as morphological forms, pomological structure, fruit shape, and
appearance, plant physiological indices, genetic information, etc. [9,10]. However, the
phenotypic diversity of plant species could not be suitable for the cultivar identification,
classification, and selection based on postharvest fruit kernels, nor would genetic informa-
tion collection be cost-efficient in the broad application of the cultivar discrimination. In
the present research, a machine learning technology for plum cultivar discrimination from
images of the fruit kernel was developed and practiced. The machine learning method
depends on (I) the comprehensive information collection from the images where the kernel
textural traits are shown into a big dataset, and (II) the intelligent analysis of the quantita-
tive data via artificial intelligence using algorithms in a computer program like MaZda and
WEKA [11]. As a result, the technological machine combines a variety of skills into a net-
work system, like identifying visual signals, converting them into digital data, processing
data with different algorithms, modeling the results via analysis, and finally predicting a
correlative trendline between plum cultivars and the textural traits of plum kernels.

In the available literature, there are reports on the application of image analysis for
the discrimination of various kernels, seeds, or pits. Nine varieties of sweet maize seeds
were discriminated using hyperspectral images and machine learning algorithms reaching
an accuracy of 94.86% [12]. A very high accuracy equal to 99% was observed for the
discrimination of 14 types of seeds using deep learning techniques [13], whereas, the
CNN-ANN (convolutional neural network-artificial neural network) classifier was used to
discriminate nine corn seed varieties with the correctness of 98.1% using images acquired
by a digital camera [14]. The application machine learning classifiers and features extracted
from images obtained using a flatbed scanner allowed for the cultivar discrimination of sour
cherry pits with accuracies reaching 96.25% for four cultivars and 100% for two cultivars [15]
and in the case of images acquired using a digital camera—for distinguishing two cultivars
of sweet cherry pits in 100% of cases and three cultivars in 98% [16], and the discrimination
of two cultivars of peach stones and seeds with the accuracy of up to 100% [17]. The
application of linear dimensions and shape factors for the development of models allowed
for the discrimination of the pits belonging to different sour cherry cultivars with an
accuracy of up to 96% [11]. The morphometric features extracted from digital images
acquired using a flatbed scanner and stepwise linear discriminant analysis were used to
compare the modern and archaeological Prunus fruit stones. The archaeological stones
were identified as P. spinosa and P. domestica and showed similarities with the modern
samples [18].

The evaluation of the cultivar differentiation of plum kernels using image analysis
can be of practical importance. Correct cultivar identification can be necessary for the pro-
cessing industry to avoid mixing kernel cultivars with different compositions. The cultivar
recognition may also allow avoiding falsification of kernel cultivars and reject kernels with
undesirable properties for further processing [11,15,16]. Therefore, the objective of this
study was to develop models for distinguishing the plum kernel cultivars based on selected
image texture parameters using various algorithms (classifiers). The innovative nature of
this study is related to the acquisition of new, not found in the literature, information on
almost 2000 textures texture parameters of plum kernels belonging to different cultivars.
The novelty is also the development of innovative models based on attributes selected from
a set of computed textures using different machine learning algorithms and the compari-
son of their effectiveness. Plum kernels have been classified by using different machine
learning approaches to provide strong discrimination with an objective, non-destructive
and inexpensive procedure. The aim of the research was not to distinguish the plum fruit
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cultivars based on kernel properties. The fruits are not taken into account at all. Research
focuses only on kernels that can be a waste product in plum processing and can be used in
industry independently from fruit. The procedure refers to kernels that have already been
extracted from fruits during processing. Non-destructiveness of the research refers to the
fact that the kernels were not damaged during the analysis.

2. Materials and Methods
2.1. Materials

The experiment was carried out using the kernels belonging to three plum cultivars
‘Emper’, ‘Kalipso’, and ‘Polinka’. The mature plums were harvested in August 2021 from
the orchard located in Poland. First, the plum stones were extracted manually from each
fruit. Then, the kernels were obtained by destroying the walls of stones. Fully developed
kernels with no visible damage were used in this study. The kernels were subjected to
imaging using a digital camera.

2.2. Image Analysis
2.2.1. Image Acquisition

Whole, undamaged kernels were subjected to image acquisition. This approach was
very beneficial as it allowed obtaining objective results without damaging the kernel struc-
ture. The images of plum kernels positioned on a black background were acquired using a
designed system consisting of a digital camera and LED (Light Emitting Diodes) illumi-
nation with stable parameters. A black background was obtained by placing the kernel
samples in a box with black internal walls. Plum kernels were imaged after performing the
color calibration of the digital camera. Twenty kernels were included in one image. For
each cultivar, images of one hundred kernels were acquired. In total, a set consisting of
three hundred digital color images of ‘Emper’, ‘Kalipso’, and ‘Polinka’ plum kernels was
used in the study. The images were saved in a TIFF format. The exemplary plum kernel
images are shown in Figure 1.

2.2.2. Image Processing

Image processing was carried out using the MaZda software (Łódź University of
Technology, Institute of Electronics, Poland) [19]. Before processing, kernel images were
converted to BMP format. The regions of interest (ROIs) were determined as a single
kernel separated from the background for each ROI. Each kernel image was converted to
individual color channels L, a, b, R, G, B, U, V, S, X, Y, Z. In the case of each kernel (ROI),
about 2200 texture parameters of the outer surface (external structure) of images were
extracted. The exemplary results of computed texture parameters for the ‘Emper’, ‘Kalipso’,
and ‘Polinka’ kernels are provided in Supplementary Table S1. The image textures were
computed based on the co-occurrence matrix, run-length matrix, Haar wavelet transform,
gradient map, autoregressive model, histogram. The textures were used to build the models
for distinguishing the plum kernel cultivars.

2.3. Discriminant Analysis
2.3.1. Cultivar Discrimination of Plum Kernels

To discriminate the plum kernels belonging to cultivars ‘Emper’, ‘Kalipso’, and
‘Polinka’, the models developed based on selected textures were applied. The discriminant
analysis was carried out using the WEKA (Waikato Environment for Knowledge Analysis)
machine learning software (University of Waikato, New Zealand) [20,21]. The analysis was
performed for a set including textures from all color channels, as well as for sets of textures
determined for individual color spaces and color channels. For each set, the selection of
textures with the highest discriminative power was carried out using the Best First search
algorithm. Twenty features were the optimal number to obtain high correctness and a short
analysis time. The different algorithms (classifiers) from the groups of Rules, Functions,
Trees, Bayes, Lazy, and Meta were examined [22].
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Figure 1. The exemplary images of ‘Emper’, ‘Kalipso’, and ‘Polinka’ plum kernels.

2.3.2. Performance Metrics

The confusion matrices including the accuracies (%) for predicted kernel classes
‘Emper’, ‘Kalipso’, and ‘Polinka’, average accuracies for three cultivars, and the values of
performance metrics such as Precision, F-Measure, MCC (Matthews Correlation Coefficient),
ROC (Receiver Operating Characteristic) Area, and PRC (Precision-Recall) Area were
computed [20–22]. For the models providing the best results, the ROC (Receiver Operating
Characteristic) curves were also determined. The Equations (1)–(8) were used to compute
the performance metrics:

Accuracy = (TP + TN)/(TP + FP + TN + FN)× 100 (1)

Precision = (TP/TP + FP) (2)

F-Measure = 2TP/(2TP + FP + FN) (3)

MCC = ((TP ∗ TN)− (FN ∗ FP))/
√
((TP + FN) ∗ (TN + FP) ∗ (TP + FP) ∗ (TN + FN)) (4)

ROC Area = Area Under TPR vs. FPR Curve (5)

PRC Area = Area Under Precision vs. Recall Curve (6)

TPR (Recall) = TP/(TP + FN) (7)

FPR = FP/(FP + TN) (8)

TP: True Positive
TN: True Negative
FP: False Positive
FN: False Negative
TPR: True Positive Rate
FPR: False Positive Rate
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The results for models built using selected classifiers based on a set of textures selected
from all color channels as well as a texture set from one color space and a set of textures
from one color channel providing the highest discrimination accuracies are presented in
this paper.

2.3.3. Machine Learning Algorithms

Among the applied algorithms, the KStar from a group of Lazy, the PART from a group
of Rules and the LMT from a group of Trees provided the highest results of discrimination.
Therefore, the discrimination accuracies and values of Precision, F-Measure, MCC, ROC
Area, and PRC Area are presented for these classifiers. The parameter settings of the
algorithms were based on the WEKA:

- KStar—batchSize: 100, debug: False, doNotCheckCapabilities: False, entropicAuto-
Blend: False, globalBlend: 20,

- PART—batchSize: 100, binarySplits: False, confidenceFactor: 0.25, debug: False,
doNotCheckCapabilities: False, minNumObj: 2, numFolds: 3, reducedErrorPruning:
False, seed: 1, unpruned: False, useMDLcorrection: False,

- LMT—batchSize: 100, convertNominal: False, debug: False, doNotCheckCapabili-
ties: False, fastRegression: True, minNumInstances: 15, numBoostingIterations: −1,
splitOnResiduals: False, useAIC: False, weightTrimBeta: 0.0.

At the first step of the analysis, the models were developed for a set of textures
selected from all color channels L, a, b, R, G, B, U, V, S, X, Y, Z of plum kernel images.
When developing models for textures selected separately from the individual color spaces
and color channels, it was found that discrimination performance metrics were the highest
for models built based on textures selected from color space Lab and color channel b,
respectively. Thus, the results obtained for these data sets were chosen to be presented.

3. Results

In the case of models built using the KStar classifier (Table 1), high discrimination
performance metrics were acquired for a set of textures selected from all color channels, as
well as color space Lab and color channel b. The ‘Emper’, ‘Kalipso’, and ‘Polinka’ plum
kernels were correctly classified with an average accuracy reaching 98% in the case of color
space Lab. Individual plum kernel cultivars were distinguished with accuracies of 97% for
‘Emper’ and ‘Kalipso’ to 99% for ‘Polinka’. One kernel (1% of cases) belonging to plum
‘Polinka’ was incorrectly classified as ‘Emper’ and three kernels of ‘Emper’ were incorrectly
included in class ‘Polinka’. Whereas among a hundred cases of ‘Kalipso’, two cases were
incorrectly classified as ‘Polinka’ and one case—as ‘Emper’. The values of other metrics
were very satisfactory. Precision and ROC Area reached 1.000 for ‘Kalipso’. The values
of F-Measure, MCC, and PRC Area were also the highest for the ‘Kalipso’ plum kernels
and were equal to 0.985, 0.978, and 0.999, respectively. The ROC (Receiver Operating
Characteristic) curves for the ‘Emper’, ‘Kalipso’, and ‘Polinka’ plum kernels proved high
values of ROC Area for all the cultivars (Figure 2). The most satisfactory ROC curve was
obtained for the ‘Kalipso’ kernels (Figure 2b).
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Table 1. The results of cultivar discrimination of plum kernels performed using models built based
on textures selected from all color channels L, a, b, R, G, B, U, V, S, X, Y, Z, color space Lab, and color
channel b using the KStar (Lazy) classifier.

Set of Selected
Textures

Predicted Class (%) Actual
Class

Average Accuracy
(%) Precision F-Measure MCC ROC

Area
PRC
Area‘Emper’ ‘Kalipso’ ‘Polinka’

all color channels
94 2 4 ‘Emper’

95
0.959 0.949 0.925 0.998 0.995

1 98 1 ‘Kalipso’ 0.933 0.956 0.934 0.999 0.998
3 5 92 ‘Polinka’ 0.948 0.934 0.902 0.996 0.993

color space Lab
97 0 3 ‘Emper’

98
0.980 0.975 0.962 0.998 0.996

1 97 2 ‘Kalipso’ 1.000 0.985 0.978 1.000 0.999
1 0 99 ‘Polinka’ 0.952 0.971 0.956 0.998 0.997

color channel b
94 3 3 ‘Emper’

95
0.949 0.945 0.917 0.996 0.992

1 97 2 ‘Kalipso’ 0.942 0.956 0.933 0.998 0.996
4 3 93 ‘Polinka’ 0.949 0.939 0.910 0.993 0.986

MCC—Matthews Correlation Coefficient; ROC Area—Receiver Operating Characteristic Area; PRC Area—
Precision-Recall Area.
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In the case of the model built for all color channels and model developed for a color
channel b using the KStar classifier (Table 1), the average accuracies of discrimination of
the ‘Emper’, ‘Kalipso’, and ‘Polinka’ plum kernels were equal to 95%. For both models, the
‘Emper’ plum kernels were characterized by accuracies equal to 94%. The model built based
on textures selected from all color channels provided an accuracy of 98% for the ‘Kalipso’
kernels and 92% for the ‘Polinka’ kernels. Whereas in the case of the model including
textures selected from images converted to color channel b, the ‘Kalipso’ plum kernels were
correctly classified in 97%, and the kernels of ‘Polinka’ were classified with correctness
equal to 93%. Comparing other metrics for the model developed using textures selected
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from images from all color channels and color channel b, the highest values of Precision
(0.959, ‘Emper’), MCC (0.934, ‘Kalipso’), ROC Area (0.999, ‘Kalipso’), PRC Area (0.998,
‘Kalipso’) were observed for the model built for textures selected from combined all color
channels. The highest F-Measure equal to 0.956 were determined for ‘Kalipso’ for both the
model built for all color channels and color channel b.

The models built using the PART classifier (Table 2) produced a very satisfactory
average accuracy of discrimination of plum kernels of ‘Emper’, ‘Kalipso’, and ‘Polinka’
equal to 95% for a set of textures selected from all color channels. The accuracy for
the predicted class ‘Kalipso’ reached 97%. The ‘Emper’ plum kernels were correctly
distinguished from other classes in 95% and kernels of ‘Polinka’—in 94%. The values of
Precision (0.979), F-Measure (0.964), MCC (0.947), and PRC Area (0.941) were the highest
for the kernels of ‘Emper’, whereas ROC Area equal to 0.969 was the highest for the plum
kernels of ‘Kalipso’. The kernels of ‘Kalipso’ were also characterized by the smoothest
ROC curve (Figure 3). In the case of color space Lab and color channel b, the average
accuracies for models built using the PART classifier were slightly lower, equal to 88 and
87%, respectively (Table 2). Also, the accuracies for individual predicted classes were
lower. In the case of the model developed based on a set of textures selected from the
color space Lab, the ‘Emper’ and ‘Polinka’ plum kernels were correctly discriminated in
87% and ‘Kalipso’ in 91%. The other performance metrics were also the highest for the
kernels ‘Kalipso’. The model built based on textures selected from images converted to
color channel b provided accuracies of 83% for the kernels of ‘Polinka’, 87% for ‘Emper’,
and 92% for ‘Kalipso’. The values of Precision, F-Measure, MCC, ROC Area, and PRC Area
were the highest for the ‘Kalipso’ plum kernels.
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Table 2. The results of cultivar discrimination of plum kernels performed using models built based
on textures selected from all color channels L, a, b, R, G, B, U, V, S, X, Y, Z, color space Lab, and color
channel b using the PART (Rules) classifier.

Set of Selected
Textures

Predicted Class (%) Actual
Class

Average Accuracy
(%) Precision F-Measure MCC ROC

Area
PRC
Area‘Emper’ ‘Kalipso’ ‘Polinka’

all color channels
95 1 4 ‘Emper’

95
0.979 0.964 0.947 0.965 0.941

1 97 2 ‘Kalipso’ 0.942 0.956 0.933 0.969 0.928
1 5 94 ‘Polinka’ 0.940 0.940 0.910 0.948 0.879

color space Lab
87 1 12 ‘Emper’

88
0.870 0.870 0.805 0.943 0.912

4 91 5 ‘Kalipso’ 0.948 0.929 0.894 0.963 0.945
9 4 87 ‘Polinka’ 0.837 0.853 0.778 0.935 0.845

color channel b
87 4 9 ‘Emper’

87
0.879 0.874 0.812 0.921 0.827

3 92 5 ‘Kalipso’ 0.885 0.902 0.852 0.952 0.900
9 8 83 ‘Polinka’ 0.856 0.843 0.766 0.899 0.810

MCC—Matthews Correlation Coefficient; ROC Area—Receiver Operating Characteristic Area; PRC Area—
Precision-Recall Area.

The average accuracies of discrimination of ‘Emper’, ‘Kalipso’, and ‘Polinka’ plum
kernels for models built using the LMT classifier were very high for a set of textures selected
from all color channels (95%) as well as color space Lab (94%) and color channel b (92%)
(Table 3). The individual cultivars were discriminated with the accuracies from 92 (‘Emper’)
to 96% (‘Kalipso’, ‘Polinka’) for the model developed for textures from all color channels,
92 (‘Emper’) to 97% (‘Polinka’) for color space Lab and 90 (‘Kalipso’) to 94% (‘Emper’)
for color channel b. The Precision, F-Measure, MCC, ROC Area, PRC Area, reached 0.979
(‘Emper’, all color channels and ‘Kalipso’, color space Lab), 0.959 (‘Kalipso’, color space
Lab), 0.940 (‘Kalipso’, color space Lab), 0.985 (‘Kalipso’, color space Lab, color channel b),
0.979 (‘Kalipso’, color space Lab), respectively. The course of ROC curves was the smoothest
in the case of the ‘Kalipso’ plum kernels (Figure 4).

Table 3. The results of cultivar discrimination of plum kernels performed using models built based
on textures selected from all color channels L, a, b, R, G, B, U, V, S, X, Y, Z, color space Lab, and color
channel b using the LMT (Trees) classifier.

Set of Selected
Textures

Predicted Class (%) Actual
Class

Average Accuracy
(%) Precision F-Measure MCC ROC

Area
PRC
Area‘Emper’ ‘Kalipso’ ‘Polinka’

all color channels
92 3 5 ‘Emper’

95
0.979 0.948 0.925 0.969 0.945

1 96 3 ‘Kalipso’ 0.941 0.950 0.925 0.979 0.953
1 3 96 ‘Polinka’ 0.923 0.941 0.911 0.978 0.961

color space Lab
92 1 7 ‘Emper’

94
0.948 0.934 0.902 0.975 0.969

3 94 3 ‘Kalipso’ 0.979 0.959 0.940 0.985 0.979
2 1 97 ‘Polinka’ 0.907 0.937 0.905 0.968 0.896

color channel b
94 1 5 ‘Emper’

92
0.940 0.940 0.910 0.977 0.969

3 90 7 ‘Kalipso’ 0.938 0.918 0.879 0.985 0.978
3 5 92 ‘Polinka’ 0.885 0.902 0.852 0.971 0.899

MCC—Matthews Correlation Coefficient; ROC Area—Receiver Operating Characteristic Area; PRC Area—
Precision-Recall Area.
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4. Discussion

This study presents machine learning approaches to cultivar discrimination of plum
kernels. The obtained results objectively distinguished the kernels with high accuracy. This
discrimination, which was carried out using only computers, can easily be used instead of
manual techniques in laboratories since it is non-destructive and inexpensive. In this way,
the production speed can be increased, and the producer and the consumer can be informed
about the kernel cultivar and the quality of the product. Artificial intelligence-based
methods produce completely data-driven results. Therefore, for successful discrimination,
the dataset must be created before learning-based methods can be used, and the data and
classes must have a regular distribution. Incorrect creation of datasets, images containing
different features depending on lighting conditions, differences in the background, etc.
reduce the performance of artificial intelligence studies. It is also very important which
features to use in classification for machine learning methods. Appropriate feature selection
should be decided together with an expert in that field. The texture features used in this
study successfully represented plum kernels belonging to different classes. However,
extracting different features can improve or decrease the current classification performance.
Therefore, which features are appropriate for the existing data is a problem for machine
learning. Extracting too many different features may also not improve discrimination
ability. Due to such problems, deep learning-based methods have started to be applied
quite a lot lately. Because deep learning extracts features from data hierarchically and
learns high-level features in the last layers. However, in general, deep learning methods
also require more data than machine learning [23,24].

The present study is an extension of the current directions of the application of ma-
chine learning in agricultural research. Computer vision solutions and artificial intelligence
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algorithms can be useful to recognize patterns in images, reduce subjectivity, and optimize
the analysis process. The interactive and traditional machine learning approach was suc-
cessfully applied, e.g., to classify soybean seeds and seedlings based on their appearance
and physiological potential [25]. Machine learning tools may also be useful to predict the
seed yield, 1000 seed weight, protein and oil yield and content based on the genotype and
production year that is an important agricultural challenge necessary for stakeholders,
producers, and the global trade market [26]. In the case of watermelon seeds, literature
data indicated that the application of deep learning may increase the discrimination ac-
curacy. The comparison of the performances of models developed using conventional
machine learning and deep learning for the classification of watermelon seeds showed
higher results for ResNet-50 (87.3%) than the LDA (83.6%) [27]. Machine learning proved
to be useful to speed up the evaluation of germination of seeds belonging to different culti-
vars and to achieve higher results and performance than manual and conventional meth-
ods [28]. LDA-based machine learning models allowed for quick and robust discrimination
of Jatropha curcas seed into classes related to germination capacity, speed, viability, and
seedling vigor [29].

Robust, precise, high-throughput, and nondestructive analyses using machine learning
algorithms can be very important for cultivar detection and seed quality evaluation [30,31].
Machine learning including classification, prediction, and clustering can be used, e.g., in the
food industry, seed industry, or to forecast crop production in the field. Machine learning
algorithms can improve the decision-support system. Due to the many possibilities of
application, machine learning can be used even more extensively in the future [32].

5. Conclusions

The two-staged procedure including the image processing and discriminant analysis
proved to be an objective, non-destructive, and inexpensive technique for the cultivar
discrimination of plum kernels (‘Emper’, ‘Kalipso’, and ‘Polinka’). The MaZda software
was oriented toward image analysis involving calculations of the texture features on
kernel surface, expecting to convert the image signals to feature parameters. A variety of
mathematical methods, such as co-occurrence matrix, run-length matrix, Haar wavelet
transform, gradient map, autoregressive model, and histogram, were successfully used to
extract the texture parameters for well-matched models of cultivar discrimination.

The discriminative models based on selected textures were developed using machine
learning classifiers to distinguish plum kernel cultivars. The selected texture features of the
images of three plum cultivars from color space Lab (one of the individual color spaces)
and color channel b (one of color channels) showed the highest discriminative performance
with great average accuracies in the case of the KStar machine learning algorithm. This
algorithm provided also smooth and steady ROC curves for all the cultivars. The study
substantiated that the KStar classifier is the optimal algorithm to discriminate the three
cultivars of plum kernels with high performance metrics including accuracies.

The developed models can be applied in practice for the plum kernel cultivar recogni-
tion. It may be useful in the processing industry to avoid cultivar mixing and falsification.
Due to the usefulness of machine learning for the discrimination of kernels, future studies
may be performed for other species and cultivars. The correctness of discrimination could
be improved by including also color and geometric features in the models. The small
number of kernels may be a limitation of this study and a threat to the development of
accurate models. The application of deep learning would be possible if more seeds were
available.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12020285/s1, Table S1: Textures for 10 sample kernels
of each cultivar.
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7. Górnaś, P.; Rudzińska, M.; Raczyk, M.; Mišina, I.; Soliven, A.; Lacis, G.; Seglin, a, D. Impact of Species and Variety on Concentrations
of Minor Lipophilic Bioactive Compounds in Oils Recovered from Plum Kernels. J. Agric. Food Chem. 2016, 64, 898–905. [CrossRef]

8. Savic, I.; Gajic, I.S.; Gajic, D. Physico-chemical properties and oxidative stability of fixed oil from plum seeds (Prunus domestica
Linn.). Biomolecules 2020, 10, 294. [CrossRef]

9. Korir, N.K.; Han, J.; Shangguan, L.; Wang, C.; Kayesh, E.; Zhang, Y.; Fang, J. Plant variety and cultivar identification: Advances
and prospects. Crit. Rev. Biotechnol. 2013, 33, 1–15. [CrossRef]

10. Osako, Y.; Yamane, H.; Lin, S.Y.; Chen, P.A.; Tao, R. Cultivar discrimination of litchi fruit images using deep learning. Sci. Hortic.
2020, 269, 10936. [CrossRef]

11. Ropelewska, E.; Sabanci, K.; Aslan, M.F. Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits
Determined Using Machine Learning. Agriculture 2021, 11, 1212. [CrossRef]

12. Zhou, Q.; Huang, W.; Fan, S.; Zhao, F.; Liang, D.; Tian, X. Non-destructive discrimination of the variety of sweet maize seeds
based on hyperspectral image coupled with wavelength selection algorithm. Infrared Phys. Technol. 2020, 109, 103418. [CrossRef]

13. Gulzar, Y.; Hamid, Y.; Soomro, A.B.; Alwan, A.A.; Journaux, L. A Convolution Neural Network-Based Seed Classification System.
Symmetry 2020, 12, 2018. [CrossRef]

14. Javanmardi, S.; Miraei Ashtiani, S.-H.; Verbeek, F.J.; Martynenko, A. Computer-vision classification of corn seed varieties using
deep convolutional neural network. J. Stored Prod. Res. 2021, 92, 101800. [CrossRef]

15. Ropelewska, E. Classification of the pits of different sour cherry cultivars based on the surface textural features. J. Saudi Soc. Agric.
Sci. 2020, 20, 52–57. [CrossRef]

16. Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021,
11, 6. [CrossRef]

17. Ropelewska, E.; Rutkowski, K.P. Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed
textures. Eur. Food Res. Technol. 2021, 247, 2371–2377. [CrossRef]

18. Ucchesu, M.; Sarigu, M.; Del Vais, C.; Sanna, I.; d’Hallewin, G.; Grillo, O.; Bacchetta, G. First finds of Prunus domestica L. in Italy
from the Phoenician and Punic periods (6th–2nd centuries bc). Veget. Hist. Archaeobot. 2017, 26, 539–549. [CrossRef]
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Winter Rapeseed—Artificial Neural Network and Random Forest Models. Agronomy 2022, 12, 58. [CrossRef]

27. Ahmed, M.R.; Yasmin, J.; Park, E.; Kim, G.; Kim, M.S.; Wakholi, C.; Mo, C.; Cho, B.-K. Classification of Watermelon Seeds Using
Morphological Patterns of X-ray Imaging: A Comparison of Conventional Machine Learning and Deep Learning. Sensors 2020,
20, 6753. [CrossRef]

28. Genze, N.; Bharti, R.; Grieb, M.; Schultheiss, S.J.; Grimm, D.G. Accurate machine learning-based germination detection, prediction
and quality assessment of three grain crops. Plant Methods 2020, 16, 157. [CrossRef]

29. de Medeiros, A.D.; Pinheiro, D.T.; Xavier, W.A.; da Silva, L.J.; dos Santos Dias, D.C.F. Quality classification of Jatropha curcas seeds
using radiographic images and machine learning. Ind. Crops Prod. 2020, 146, 112162. [CrossRef]

30. Wei, Y.; Li, X.; Pan, X.; Li, L. Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble
Machine Learning Algorithms. Sensors 2020, 20, 6980. [CrossRef]

31. Gao, T.; Chandran, A.K.N.; Paul, P.; Walia, H.; Yu, H. HyperSeed: An End-to-End Method to Process Hyperspectral Images of
Seeds. Sensors 2021, 21, 8184. [CrossRef]

32. Sharma, M.; Kaushik, P.; Chawade, A. Frontiers in the Solicitation of Machine Learning Approaches in Vegetable Science Research.
Sustainability 2021, 13, 8600. [CrossRef]

http://doi.org/10.1016/j.bspc.2021.102716
http://doi.org/10.1016/j.asoc.2020.106912
http://www.ncbi.nlm.nih.gov/pubmed/33230395
http://doi.org/10.1038/s41598-020-68273-y
http://www.ncbi.nlm.nih.gov/pubmed/32647230
http://doi.org/10.3390/agronomy12010058
http://doi.org/10.3390/s20236753
http://doi.org/10.1186/s13007-020-00699-x
http://doi.org/10.1016/j.indcrop.2020.112162
http://doi.org/10.3390/s20236980
http://doi.org/10.3390/s21248184
http://doi.org/10.3390/su13158600

	Introduction 
	Materials and Methods 
	Materials 
	Image Analysis 
	Image Acquisition 
	Image Processing 

	Discriminant Analysis 
	Cultivar Discrimination of Plum Kernels 
	Performance Metrics 
	Machine Learning Algorithms 


	Results 
	Discussion 
	Conclusions 
	References

