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Abstract: Due to the complex environment in the field, using machine vision technology to enable
the robot to travel autonomously was a challenging task. This study investigates a method based
on mathematical morphology and Hough transformation for drip tape following by a two-wheeled
robot trailer. First, an image processing technique was utilized to extract the drip tape in the image,
including the selection of the region of interest (ROI), Red-Green-Blue (RGB) to Hue-Saturation-
Value (HSV) color space conversion, color channel selection, Otsu’s binarization, and morphological
operations. The line segments were obtained from the extracted drip tapes image by a Hough line
transform operation. Next, the deviation angle between the line segment and the vertical line in the
center of the image was estimated through the two-dimensional law of cosines. The steering control
system could adjust the rotation speed of the left and right wheels of the robot to reduce the deviation
angle, so that the robot could stably travel along the drip tape, including turning. The guiding
performance was evaluated on the test path formed by a drip tape in the field. The experimental
results show that the proposed method could achieve an average line detection rate of 97.3% and
an average lateral error of 2.6 ± 1.1 cm, which was superior to other drip-tape-following methods
combined with edge detection, such as Canny and Laplacian.

Keywords: machine vision; image processing; two-wheeled robot trailer; steering control; strip
farming

1. Introduction

Monitoring the growth response of crops in the field could allow farmers to make
production decisions in advance, avoid agricultural losses caused by extreme weather
and pest invasion, while ensuring crop quality and yield, which is of great significance to
sustainable development and food security. Crop management was generally performed
manually, including spraying, fertilizing, watering, and weeding. With the advancement
of semiconductor microfabrication technology, the development concepts of miniaturiza-
tion and electrification have been gradually introduced into the design of novel farming
tools [1–6]. These smart machines often have to be attached to the end of a tractor to
perform farming tasks, such as weeding, spraying, or soil preparation. However, tractors
are usually large in size and less convenient to use in small-scale farmland. Meanwhile,
the use of large tractors also causes the soil to be too compact during the farming process,
which is not conducive to the growth and water absorption of crop roots.

In the past 10 years, many small- and medium-sized autonomous mobile robots have
been used to assist farming operations [7–12]. In principle, these mobile robots were
equipped with global satellite navigation and positioning system (GNSS) receivers and
a path planner, allowing the robots to move autonomously in the field [13,14]. Installing
magnetic markers on the ground [15,16] was another localization method, which could
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serve as a reference point for the robot while traveling. It requires path planning in advance
and needs to consider issues such as farmland plowing, land preparation, and crop rotation.

Machine vision technology has been widely used for automatic inspection and sorting
of object defects [17,18], and its procedural flow includes image preprocessing, feature
extraction, and image postprocessing. This technology could be used to identify the distri-
bution of objects or features in images [19–21]. The purpose of image preprocessing was to
remove irrelevant information in the image through color space transformation, filtering,
denoising, affine transformation, or morphological operations. Meanwhile, it enhances the
detectability of key information and simplifies the data to be processed, thereby improving
the reliability of the feature extraction process. Image segmentation, matching, and recogni-
tion were procedures for feature extraction, the core concept of which was to divide the
input image into several classes with the same properties. This method could be utilized to
extract the region of interest (ROI) in the image, including region growing [22], gray-level
histogram segmentation [23,24], edge-based segmentation [25–31], and clustering [32–35].
In addition, neural networks, support vector machines, or deep learning, etc., [36–39] are
also common image segmentation methods. Other specialized machine vision methods
include the use of a variable field of view [40], adaptive thresholds [41], and spectral filters
for automatic vehicle guidance and obstacle detection [42]. The image segmentation meth-
ods based on the Otsu method [23] are very favorable for use when there is a large variance
in the foreground and background of the image, and many rapid image segmentation meth-
ods with high real-time performance have also been proposed [29–31]. The edge-based
segmentation method has been used to detect the pixel positions of discontinuous grayscale
or color regions in a digital image. Canny’s algorithm [26] is one of the common methods
that could extract useful structural information from images and reduce the amount of data
to be processed. Another edge detection method is called the Laplacian method, which is a
second derivative operator that produces a steep zero crossing [43] at the edges of objects
within the image.

Machine vision has been applied to detect crops or weeds in the field and allow
robots to track specific objects for autonomous navigation [44–47]. With the development
of high-speed computing, some high-complexity image processing algorithms could be
implemented in embedded systems to detect crop rows in real time [48,49]. However,
the instability of light intensity and the unevenness of the ground would still cause color
distortion in the image, degrading the detection performance. It has been demonstrated
that deep learning could overcome the impact of light and shadow on image recognition
performance [50,51]; however, the detection model is still slightly affected in low light
conditions [6].

In recent years, some automated drip irrigation systems have been used for precise
crop irrigation in the field to save water. This system generally lays a long water line or
pipeline on the field. Based on this premise, this study proposes a drip-tape-following
approach based on machine vision. A digital red (R)-green (G)-blue (B) (RGB) image was
converted to the hue (H)-saturation (S)-value (V) (HSV) color space and then binarized
using a V-channel image. The mathematical morphology and Hough line transformation
were utilized to extract the drip tape line in the binarized image, and the deviation angle
between the drip tape line and the vertical line in the center of the image was estimated.
The steering control system could adjust the rotation speed of the left and right wheels of
the robot so that the robot could follow the drip tape line and perform U-turns to move to
the next vegetable strip.

The organization of this study was as follows: The second section presents the mech-
anism design, system architecture, and hardware and software specifications of the two-
wheeled robot trailer; the kinematic model, drip tape line detection, and following methods
are also described in this section. The third section describes the test results of the proposed
robot following the drip tape in the vegetable strips, including moving straight forward
and U-turning. The evaluation results and comparative analysis of different drip tape
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line detection methods are also illustrated and discussed in this section. The last section
summarizes the highlights of this paper and presents future work.

2. Materials and Methods
2.1. Description of the Two-Wheeled Robot Trailer

The appearance of a two-wheeled robot trailer (which had a length (L) × width (W)
× height (H) of 132 cm × 92 cm × 87.5 cm) is shown in Figure 1. Table 1 represents
the specifications of the hardware and mechanism components of the robot trailer. The
auxiliary wheel was 6 inches (15 cm) in diameter and was attached to the bottom of the
support frame (50 cm in length). The left and right sides of a piece of aluminum alloy
plate, whose length could be adjusted, were connected to the left and right brackets of
the robot, respectively. A brushless DC motor (Model: 9B200P-DM, TROY Enterprise Co.,
Ltd., New Taipei City, Taiwan) was selected as the power source for the two-wheeled robot
trailer. The rated speed, torque, and maximum torque of the motor were 3000 rpm, 0.8 N-m,
and 1.0 N-m, respectively. The gear ratio of the reducer was 36, and the transmission
efficiency was 80%. The bearing of the reducer was connected to the wheel through a ball
bearing seat.
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Figure 1. Appearance of the two-wheeled robot trailer.

Table 1. Component specifications for the robot trailer.

Description Value or Feature

Mechanism body
Size: L [cm] ×W [cm] × H [cm] 132 × 92 × 87.5
Front wheel: D [cm] ×W [cm] 65 × 8
Rear wheel: D [cm] ×W [cm] 15 × 4

Electronics
Data processing board (speed; memory) 1 GHz single-core ARMv6 CPU (BCM2835); 512 MB RAM

Image processing board (speed; memory) 6-core NVIDIA Carmel ARM; 8 GB LPDDR4x
Guidance control board (speed; memory) ARM Cortex-M processor; 256 KB single-cycle Flash memory

Motor (voltage;velocity; gear ratio; power; torque) 24 V; 3000 rpm; 1:36; 200 W; 0.8 N-m
Driver (voltage; power; communication) 24 V; 200 W; RS-232/RS-485
Camera (connection; resolution; focus) USB 2.0/3.0; 4096 × 2160 (30 frame per second (fps)); Auto

GNSS board (interface; type; voltage; precision)
USB/UART; Multi constellation; 5 V; <4 cm with state space

representation (SSR) corrections (precise point positioning (PPP) in
Real-Time Kinematic (RTK)).

DC–DC module (input voltage; output voltage) 28 V; 5 V
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Table 1. Cont.

Description Value or Feature

Others
Battery (voltage, capacity) 24 V; 30 Ah
Antennas (type; voltage) Passive; 3.3 V

GNSS modules and motor drivers were installed in the left and right frames of the
robot, and electrical modules, including the image-processing board and guidance control
board, were mounted on the aluminum alloy plate. The rack under the aluminum alloy
plate was used to place the battery. A tube was clamped to the rack. The end of the tube
was connected to a camera module (Model: Logitech BRIO, Logitech International S.A.,
Lausanne, Switzerland). The driver could output 0~24 VDC, the power was 200 W, and it
supports the communication specifications of RS-232 and RS-485. The size of the battery
pack was 22 (L) cm × 16 (W) cm × 11 (H) cm, which could output 24 V/30 Ah. The direct
current (DC)-to-DC module could step down the output voltage of the battery pack from
24 V to 5 V, thereby supplying power to electrical modules and others.

The architecture of the guidance and control system is shown in Figure 2. A GNSS
module (Model: F9P, u-blox Company, Thalwil, Switzerland) with antennas was utilized
to determine the location of the robot. The location data were transmitted from the GNSS
module via a universal asynchronous receiver/transmitter (UART) interface to the micro-
controller, which also received the sensing data obtained by the optical quantum meter
and the environmental sensor. The location and sensing data were transmitted to the data
processing unit through UART, and the data processing unit transmitted these data to the
local server for storage through WiFi.
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Figure 2. The guidance and control system architecture for a two-wheeled robot trailer.

The images captured by the camera module were sent to the image-processing unit
(Model: Xarier NX, NVIDIA Company, Santa Clara, CA, USA), which performed a drip
tape detection algorithm to estimate the deviation angle. After that, this deviation angle
value was transmitted to the steering control unit (Model: EK-TM4C123GXL, TI Company,
Dallas, TX, USA) via UART, and then the built-in steering control program of the unit was
executed to estimate the drive voltages of left and right wheel motor. Finally, the voltage
value was converted into a pulse width modulated (PWM) signal and sent to a motor driver
(Model: BLD-350-A, Zi-Sheng Company, Taichung City, Taiwan) to drive the two motors.

2.2. Drip Tape Following Approach

This section presents the kinematic model of a two-wheeled robot trailer in a Cartesian
coordinate frame under nonholonomic constraints, and the drip-tape-following methods
are also illustrated in this section.
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2.2.1. Kinematic Model

The two wheels of the robot were actuated on a plane by two independent motors,
which provide torque to the two wheels. The radius of the two wheels was assumed to
be r, and the distance between the two wheels was l. The pose of the robot in the inertial
Cartesian frame {O-X-Y} could be described by the position Po(xo, yo) and the orientation
angle φ measured relative to the X-axis, which is represented in Figure 3. The symbol Pc
represented the center of mass of the two-wheeled robot, and its distance from point Po
was d. Assuming that the velocities in the X-axis and Y-axis directions of Po were

.
xo and

.
yo, respectively; the angular velocity was

.
φ; and the sideslip was ignored, the kinematics

model of the robot under constraint conditions could be defined as follows [52,53]: .
xo.
yo.
ϕ

 =

 r cos ϕ/2 r cos ϕ/2
sin ϕ sin ϕ

r
l

−r
l

[ vR/r
vL/r

]
(1)

where vL and vR represented the volocities of the left and right wheels of the robot, respectively.
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Figure 3. The representation of the position and orientation of the two-wheeled robot in the Cartesian
coordinate system. Dark gray, light gray, and black color represent the mechanism body, wheels, and
support stands, respectively.

2.2.2. Drip Tape Detection

This section presented the detection methods of drip irrigation tapes, including two
edge detection methods (Canny and Laplacian) and the proposed approach. Simple
examples were also presented.

• Canny

The premise of implementing this method was to first convert the red (R)-green (G)-
blue (B) (RGB) color space of the original digital image (Figure 4a) into grayscale (Figure 4b)
and then perform a Gaussian blur on the image (Figure 4c). Its main purpose was to reduce
the effect of noise components on edge detection. Next, assume the first-order derivatives
in the horizontal and vertical directions within the image, which were denoted as Gu and
Gv, respectively, as in Equations (2) and (3):

Gu = Su ∗ Fimg (2)
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Gv = Sv ∗ Fimg (3)

where Sobel operators Su and Sv were designed to maximize the response to edges running
vertically and horizontally with respect to the pixel grid. The operator consists of a pair of
3 × 3 convolution masks. The masks could be employed individually to the input image,
which produce separate measurements of the gradient components in each direction. Fimg
indicated the measured pixel grids in the image. The symbol “∗“ depicted the convolution
operator.
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Figure 4. Process flow of edge detection: (a) original image; (b) grayscale; (c) Gaussian blur; (d) Canny
edge detection; (e) Laplacian edge detection.

These two gradient components could then be combined together to learn the ab-
solute magnitude Mg of the gradient at each point and the direction of its gradient (see
Equation (4)). The angle of the directional gradients could also be measured by Equation (5):

Mg =
√

G2
u + G2

v (4)

Mϕ = arctan−1(Gv/Gu) (5)

Nonmaximum suppression was used to remove the blurred gradient values of edge
detection pixel grids. The main concept of this method was to compare the gradient
intensity of the current pixel with the intensity values of two pixels along the positive and
negative gradient directions of the point. If the gradient value of the current pixel was
greater than the gradient values of the other two pixels, the current pixel was reserved as
an edge point; otherwise, the value of the pixel point was discarded.

Next, a double threshold was used to find some potential edge pixels caused by noise
and color changes. True weak edge points could be preserved by suppressing weak edge
pixels extracted from noise/color variations. The result of edge detection is shown in
Figure 4d.

• Laplacian

The Laplacian-based edge detector used only one kernel to compute the second
derivative of the image. It was also necessary to convert the RGB color space of the digital
image into grayscale. Before performing Laplacian edge detection, the Gaussian blur
operation was employed to reduce the influence of non-dominant features on detected
objects, such as noise. Then, Equation (6) was utilized to find the edge points in the image:

G = Lp ∗ Fimg (6)
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where Lp represented the Laplacian operator. After the Laplacian operation, the median
filter was also used to filter out spot noise in the image, so that the edges could be repre-
sented very clearly. The edge detection results obtained in Figure 4c using the Laplacian
method with a median filter was shown in Figure 4e.

• Proposed-HLT

It was difficult to observe the brightness, saturation, and hue of the object pixels in the
digital image based on the RGB model. Therefore, the HSV model was used to replace the
original RGB model. Assume an 8-bit digital image was captured by a camera. The image
was cropped into an ROI of L× width (Q), which could be regarded as a two-dimensional
matrix, and the R, G, and B channels presented in each pixel Urgb(p, q), p = 1, 2, 3, . . . , L,
and q = 1, 2, 3, . . . , Q in the matrix were divided. Each of the color channels represented
Ur(p, q), Ug(p, q), and Ub(p, q), and these values were between 0 and 255:

Uh(p, q) = cos−1

{
((Ur(p,q)−Ug(p,q))+(Ur(p,q)−Ub(p,q)))

2
√
(Ur(p,q)−Ug(p,q))

2−(Ur(p,q)−Ub(p,q))(Ug(p,q)−Ub(p,q))

}
Us(p, q) =

max(Ur(p,q),Ug(p,q),Ub(p,q))−min(Ur(p,q),Ug(p,q),Ub(p,q))
max(Ur(p,q),Ug(p,q),Ub(p,q))

Uv(p, q) =
max(Ur(p,q),Ug(p,q),Ub(p,q))

255

(7)

where Uh ∈ [0, 360), Us(p, q), Uv(p, q) ∈ [0, 1]. Operators max(·) andmin(·) represented
the selection of the maximum and minimum values, respectively. For example, Figure 5a,b
are the original RGB image and the ROI, respectively. The ROI image was converted from
the RGB model to the HSV model via Equation (7) (see Figure 5c).

Agriculture 2022, 11, x FOR PEER REVIEW 8 of 18 
 

 

where ig  ( = −0, 1, ..., 1i I ) illustrated the number of pixels whose gray values were i , 

and I  denoted the maximum gray level of the ROI in the image. The probability of 

gray level i  of pixel occurrence was depicted by i ih = g /N . The threshold m  could be 

employed to divide the gray level of the image into two groups:  0 0, 1,...., G = j  and 

 = + +1 1, 2,  G j j ...., I . The grayscale numbers of 0G  and 1G  were +1j  and −I j , 

respectively. Then, 
0


=

= =0 0

j

G ii
P h  and 

−

= +
= =1

1

1 1

I

G ii j
P h  were the probabilities of 

the two groups. The means of 0G  and 1G  were depicted as = 0 00

j

α ii=
u ( ih ) /α  and 

−
= 1

1

11

I

α ii= j+
u ( ih ) /α , respectively. The mean value of gray level over the whole image 

was 
−

=
1

0

I

ii=
u ih . For any value of j , equations   + =

0 10 1u u u  and  + =0 1 1  

could be easily verified. The variances of 0G  and 1G  were 2 ( ( ) ) /   = −0 0

2
0=0

j

ii
i h  

and 
1

2

   
−

+
= − 1

1 2
11

I

ii= j
( (i ) h ) / , respectively. The intraclass and interclass variance are 

shown in Equations (9) and (10), respectively: 

0     = +
1

2 2 2
0 1intra  (9) 

( ) ( )

( )
1

 

 

  

 

= + + +

= −

0 1

0

2 22
0 1

2

0 1       

inter u u u u

u u
 (10) 

The sum of the variance of the intraclass and interclass was   = +2 2 2
inter intra . 

Therefore, maximizing the interclass variation was equivalent to minimizing the intra-

class variation so that the optimal critical threshold T  could be obtained as follows: 

( ) 
  −

= 2 2

0 1
inter

j I

T arg max  (11) 

Each pixel , vP (p q)  of the V-channel in the HSV image after execution by Otsu’s 

method was shown in Figure 5e, and the image was then denoised (Figure 5f) and 

thinned (Figure 5g). 

 

Figure 5. Drip tape extraction process: (a) Original image; (b) ROI image; (c) HSV image; (d) 

V-channel; (e) Otsu’s binarization method; (f) median filter; (g) thinning operation. 
Figure 5. Drip tape extraction process: (a) Original image; (b) ROI image; (c) HSV image;
(d) V-channel; (e) Otsu’s binarization method; (f) median filter; (g) thinning operation.

For an image with a uniform gray distribution, the larger the variance value was, the
larger the difference was between the two parts in the image. Otsu’s method utilized the
maximum interclass variance that was relatively common as a measure of classification
criteria. This method was used to separate the background and objects in the V-channel
of the HSV image (see Figure 5d). Using threshold segmentation to maximize the inter-
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class variance means that the probability of misclassification was minimized. Assume N
represents the total number of pixels in an ROI of the image depicted in Equation (8):

N =
I−1

∑
i=0

gi = g0 + g1 + . . . + gI−1 (8)

where gi (i = 0, 1, . . . , I − 1) illustrated the number of pixels whose gray values were
i, and I denoted the maximum gray level of the ROI in the image. The probability of
gray level i of pixel occurrence was depicted by hi = gi/N. The threshold m could be
employed to divide the gray level of the image into two groups: G0 = {0, 1, . . . , j} and
G1 = {j + 1, j + 2, . . . , I}. The grayscale numbers of G0 and G1 were j + 1 and I − j,
respectively. Then, α0 = PG0 = ∑

j
i=0 hi and α1 = PG1 = ∑I−1

i=j+1 hi were the probabilities

of the two groups. The means of G0 and G1 were depicted as uα0 = (∑
j
i=0 ihi)/α0 and

uα1 = (∑I−1
i=j+1 ihi)/α1, respectively. The mean value of gray level over the whole image

was u = ∑I−1
i=0 ihi. For any value of j, equations α0uα0 + α1uα1 = u and α0 + α1 = 1 could

be easily verified. The variances of G0 and G1 were σ2
α0

= (∑
j
i=0 (i− µα0)

2hi)/α0 and
σ2

α1
= (∑I−1

i=j+1 (i− µα1)
2hi)/α1, respectively. The intraclass and interclass variance are

shown in Equations (9) and (10), respectively:

σ2
intra = α0σ2

α0
+ α1σ2

α1
(9)

σ2
inter = α0(uα0 + u)2 + α1(uα1 + u)2

= α0α1(uα1 − uα0)
2 (10)

The sum of the variance of the intraclass and interclass was σ2 = σ2
inter + σ2

intra. There-
fore, maximizing the interclass variation was equivalent to minimizing the intraclass
variation so that the optimal critical threshold T could be obtained as follows:

T = arg
0≤j≤I−1

max
(

σ2
inter/σ2

)
(11)

Each pixel Pv(p, q) of the V-channel in the HSV image after execution by Otsu’s
method was shown in Figure 5e, and the image was then denoised (Figure 5f) and thinned
(Figure 5g).

2.2.3. Hough Transformation

The Hough line transform (HLT) was used to detect the line in the image, which
could be presented in the form of p = bq + c in the Hough space (Hough, 1962). b and
c denoted the slope and constant, respectively. There would be an infinite number of
lines passing through the edge points (p, q) on the edge image, except the vertical line,
because b was an undefined value (Leavers, 1992). Therefore, the alternative equation
p cos ϕ+ q sin ϕ = ρ in the polar coordinate frame was used to replace the original equation.
The symbol ρ ∈ R represented the shortest length from the origin to the line, and ϕ ∈ [0 , π]
expressed the angle between the line and horizontal axis. For all values of ρ, each pixel
in the image was mapped to Hough space. Assuming there were two pixels on the same
line, their corresponding cosine curves would intersect on a particular (ρ, ϕ) pair. Each
pair represented each line that passes by (p, q). This detection process was carried out
in parameter steps or accumulators, which was a voting process. By finding the highest
bin in the parameter space, the most likely line and its geometric definition could be
extracted. The results (red lines) of Figure 4d,e,g processed by HLT, respectively, are shown
in Figure 6a–c.
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The white solid and dashed frames represented the field of view captured by the 
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respectively. A line (Figure 7g) could be obtained by applying the HLT in Figure 7f. 

Figure 6. Results of different drip tape detection methods combined with HLT (red color): (a) Canny
with HLT; (b) Laplacian with HLT; (c) proposed HLT.

The white solid and dashed frames represented the field of view captured by the
camera when the robot turned (Figure 7a). The upper and lower graphs in Figure 7b–f
represented the image-processing results within the solid frame and the dashed frame,
respectively. A line (Figure 7g) could be obtained by applying the HLT in Figure 7f.

1 

 

 

Figure 7. Line detection result when the robot turned: (a) Two frames within the snapshot that
require image processing (solid frame and dashed frame); (b) The result of HSV transformation of
the ROI in the solid frame (top) and the dashed frame (bottom) in the image (a); (c) The V channel of
the HSV image; (d) Binarization; (e) Median filtering; (f) Thinning; (g) Hough line transformation
(red line) and the central vertical line (blue) of the image.

2.3. Determination of the Deviation Angle

Once the drip tape was detected (as shown in the red line in Figure 8), two points
Pa(xa, ya) and Pb(xb, yb) were selected on the red line. At the same time, a vertical line (blue
color) was drawn in the center of the image. The blue line intersected the red line at point
Pc(xc, yc). Next, taking a point Pm(xm, ym) on the line segment PcPa, the point horizontally
extended a line segment, and the vertical blue line intersected at point Pn(xn, yn), where
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yn = ym. After obtaining the length of PmPn, the deviation angle θ = tan−1(PmPn/PnPc
)

between the drip tape and the centerline of the image could be obtained. When θ = 0, the
robot heading was parallel to the drip tape.
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Figure 8. The deviation of heading angle estimation (red line: desired line; blue line: vertical line in
the center of the image; white dotted line: horizontal line in the center of the image).

2.4. Heading Angle Control

The field navigation mode of the robot was divided into straight forward and turning.
A flow chart of the path following control was demonstrated in Figure 8. First, the digital
RGB image was captured by the camera module, the lines in the image were extracted
by drip tape detection algorithms (Section 2.2), and a deviation angle estimation method
(described in Section 2.3) was used to estimate the heading angle. Then, set the PWM
value κ, the motor speed control gain kp, the minimum threshold εmin, and the maximum
threshold εmax of the heading angle, etc. When |θ| ≤ εmax, that is, in the area of “¶” or
“·” or “¸” (see the top right of Figure 9), the speed difference control was executed. If
|θ| ≤ εmax, that is, in the “¸” area, then the left and right motor speed control parameters,
denoted as PWML and PWMR, respectively, were equal. Finally, the robot stopped when it
moved to the target position. Conversely, when |θ| > εmin and θ > εmin (the area of “¶”),
then PWML = kpκ + κ and PWMR = κ; in contrast, when θ < εmin (the area of “·”), then
PWML = κ and PWMR = kpκ + κ. When |θ| > εmax, it means that θ was in the “¹” area,
and the steering control program would be executed. When θ < −εmax, set PWML = κ(−)
and PWMR = κ(+). Conversely, set PWML = κ(+) and PWMR = κ(−). Among them,
the symbols “+” and “−“ depict the forward rotation and the reverse rotation of the motor,
respectively. It was worth noting that the robot stopped (PWML = PWMR = 0) once the
drip tape was not extracted or an abnormal deviation angle was acquired.
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Figure 9. Line of drip tape detection and steering control process. The numbers “¶”, “·”, “¸” and
“¹” respectively demonstrated the areas corresponding to the heading of the robot; the letters A, B, C,
D inside the circle represented flowchart connectors.

3. Experimental Results

This section illustrates different drip tape detection methods for testing and verification
of two-wheeled robot trailers in the field. The performance comparison, analysis, and
discussion of different drip tape following methods are also presented in this section.

The experimental site was located in front of the experimental factory of the De-
partment of Biomechatronics Engineering of Pingtung University of Science and Tech-
nology (Longitude: 120.60659 Latitude: 22.64606). The field had a size of L × W × H
of 10 × 0.25 × 0.2 m (see Figure 10a). The experiment was carried out during the spring,
and the weather conditions were mostly cloudy and sunny in the morning and cloudy
in the afternoon. According to the climate conditions, butter lettuce (LS-047, Known-You
Seed Co., Ltd., Kaohsiung, Taiwan) and red lettuce (HV-067, Known-You Seed Co., Ltd.,
Kaohsiung, Taiwan) were selected for planting in the field. A black drip tape was laid on
the field. The robot would continuously follow the drip tape and move to another tape
area (see Figure 10b,c). The control parameters of the motors were set to κ = 1500 and
kp = 200. The image processing speed was 5 fps. εmin and εmax were set to 1

◦
and 6

◦

degrees, respectively.
The drip tape was configured as a polygon in the turning area. As shown in Figure 11,

there were four corner points, which were represented as “ 1©”, “ 2©”, “ 3©”, and “ 4©”. This
figure also showed the drip tape detection results for each segment (red line within a
black box).



Agriculture 2022, 12, 428 12 of 18

Agriculture 2022, 11, x FOR PEER REVIEW 12 of 18 
 

 

3. Experimental Results 

This section illustrates different drip tape detection methods for testing and verifi-

cation of two-wheeled robot trailers in the field. The performance comparison, analysis, 

and discussion of different drip tape following methods are also presented in this sec-

tion. 

The experimental site was located in front of the experimental factory of the De-

partment of Biomechatronics Engineering of Pingtung University of Science and Tech-

nology (Longitude: 120.60659 Latitude: 22.64606). The field had a size of L × W × H of 10 

× 0.25 × 0.2 m (see Figure 10a). The experiment was carried out during the spring, and 

the weather conditions were mostly cloudy and sunny in the morning and cloudy in the 

afternoon. According to the climate conditions, butter lettuce (LS-047, Known-You Seed 

Co., Ltd., Kaohsiung, Taiwan) and red lettuce (HV-067, Known-You Seed Co., Ltd., 

Kaohsiung, Taiwan) were selected for planting in the field. A black drip tape was laid on 

the field. The robot would continuously follow the drip tape and move to another tape 
area (see Figure 10b,c). The control parameters of the motors were set to 1500=  and 

200pk = . The image processing speed was 5 fps. minε  and maxε  were set to 1  and 6  

degrees, respectively. 

 

Figure 10. The appearance of experimental field and the two-wheeled robot: (a) the appearance of 

the field; (b) the snapshot of the two-wheeled trailer traveling autonomously; (c) the U-turning 

process of the robot trailer. 

The drip tape was configured as a polygon in the turning area. As shown in Figure 

11, there were four corner points, which were represented as ““, ““, ““, and ““. 

This figure also showed the drip tape detection results for each segment (red line within 

a black box). 

 

Figure 11. The configuration of the drip tape in the turning area and its detection result (red line). 

The blue line represented the vertical line in the center of the image. The numbers ““, ““, ““, 

and ““ represented the corner points, which can divide the drip tape into five line segments. 

Figure 10. The appearance of experimental field and the two-wheeled robot: (a) the appearance of the
field; (b) the snapshot of the two-wheeled trailer traveling autonomously; (c) the U-turning process
of the robot trailer.
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Figure 11. The configuration of the drip tape in the turning area and its detection result (red line).
The blue line represented the vertical line in the center of the image. The numbers “ 1©”, “ 2©”, “ 3©”,
and “ 4©” represented the corner points, which can divide the drip tape into five line segments.

Then, the guiding performance of the robot was tested. The test duration was from
6:00 in the morning to 10:00 in the evening, which was divided into eight time intervals, and
the robot followed the drip tape to rewind the field twice in each time interval. During the
experiment, the line detection rate, LDRi = Ni

s/Ni
total , was estimated. Among them, Ni

total
and Ni

s represented the total number of processed images and the number of images that
successfully detected the drip tape in the i− th test duration of each interval, respectively.
Finally, the average detection rate LDRavg = ∑T

i=1 LDRi/T of the line could be obtained,
and T denoted the total number of test durations. The processing rate of the image was
20 fps.

Figure 12a presents the movement trajectory of the robot obtained by the GNSS-RTK
positioning module at 06:00 in the morning using the proposed-HLT; the heading angle
of the robot (the first loop: black-dot color; the second loop: brown hollow-dot color) was
also shown in Figure 12b. The gray area represents the variation in heading angle when the
robot turns. The movement trajectory of the robot during the turning process was shown
in the blue box in Figure 12a, which was enlarged in Figure 12c (green color).
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Figure 12. The movement trajectory and deviation angle of the robot (test time interval:
06:00–08:00 a.m.): (a) Movement trajectory of the robot, initial location: 22.64657◦ N, 120.6060◦ E
(the area of grid: 1 (length) × 1 (width) m); (b) The variation in heading angle when the robot
travels (black-dot color: the first loop; brown hollow-dot color: the second loop); (c) The position
point (green-dot color) distribution of the moving trajectories of the two loop (the area of grid:
20 (L) × 20 (W) cm).

Similarly, two drip tape detection methods based on Canny and Laplacian combined
with HLT (called Canny-HLT and Laplacian-HLT) were used to conduct the above ex-
periments and evaluate the performance of different drip tape detection methods. The
performance test was repeated for three days (T = 6), and the results are shown in
Figure 13. The average line detection rates obtained by the Canny-HLT, Laplacian-HLT,
and proposed-HLT methods in different time intervals were 65~84%, 91~93%, and 93~97%,
respectively.

During the experiment, the guiding performance for following straight and polyline
trajectories was evaluated with a total length of 44 m. Table 2 presents the evaluation results
of the robot’s guidance performance, including the mean maximum error (MAE), maximum
lateral error (ME), and root mean square error (RMSE). The MAE of the proposed-HLT
was 2.6 ± 1.1 cm, which was lower than that of the Canny-HLT method (3.2 ± 1.2 cm) and
the Laplacian-HLT (2.9 ± 1.6 cm). When using the Canny-HLT method, the robot has the
largest ME when moving in a straight line, which reaches 12.3 cm. Using the proposed-HLT
results in the smallest RMSE of 2.9 cm in total traveling length.
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Figure 13. Comparison of the drip tape detection performance of the three methods at different time
intervals within three days.

Table 2. The performance evaluation results of different line detection methods in the guidance
system of the robot.

Travel Distance (m) MAE ± SD (cm) ME (cm) RMSE (cm)

Canny-HLT
32 (Straight) 4.2 ± 1.7 12.3 5.8
12 (Polyline) 2.3 ± 1.4 10.7 2.7

44 (Total) 3.2 ± 1.2 11.2 3.6

Laplacian-HLT
32 (Straight) 3.9± 1.4 11.4 5.1
12 (Polyline) 2.1 ± 1.9 7.6 2.2

44 (Total) 2.9 ± 1.6 7.8 3.3

Proposed-HLT
32 (Straight) 3.6 ± 1.5 8.6 4.9
12 (Polyline) 1.9 ± 1.4 6.4 1.7

44 (Total) 2.6 ± 1.1 6.9 2.9

4. Discussion

The proposed-HLT has been verified to obtain an average LDR of 96.6% under the
condition of unstable light intensity outdoors. Select the V-channel of the HSV image for
drip tape detection, which could reduce the brightness and contrast of the image to enhance
the differences between objects and backgrounds in the image. The experimental results
demonstrated that the LDR during the daytime was at least 93.8%. It was worth noting
that the LED lighting device installed on the robot could be used at night (20:00–22:00), and
the results depicted that the LDR during this time interval could reach 97.5%. In sunny
and cloudless summer conditions, the image would be overexposed due to excessive light
and cause a failed recognition result. Therefore, once the drip tape was not detected or an
abnormal deviation angle was estimated, the robot would stop. The robot did not start
moving until the deviation angle was confirmed and the drip tape line has been extracted.
Therefore, once the planting season comes to summer, the safety of the robot during the
movement could still be guaranteed under uncertain climatic factors.

The drip tape detection performance using the Canny-HLT was the worst among the
three methods. Since the Canny algorithm has its own execution flow, it was difficult to
use it with other image-processing algorithms, which also limits its flexibility in use. For
images with uniform grayscale variation, it was hard to detect boundaries by only using the
first derivative (such as the Canny operation). At this time, the use of a second derivative
operation could provide critical information, such as the Laplacian operation. This method
was often used to determine whether the edge pixels in the image were bright or dark
areas. By smoothing the image to reduce noise, the Laplacian method could also achieve a
detection rate of up to 93.4% after combining with Hough line transformation. Compared
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with the Canny-HLT method, the detection performance of the Laplacian-HLT method was
more stable.

When the Canny-HLT or Laplacian-HLT program was executed in the high-speed
embedded system, lines on the left or right side of the drip tape were detected (Figure 7a,b)
under the condition of an image processing speed of 7 fps. The line segment of drip tape
detected first would be used for heading angle estimation.

The configuration of the drip tape as a polygon allowed the robot to perform the
U-turning operation smoothly, and a larger ROI could prevent the intersection of the line
segment and the vertical line from falling outside the ROI. At this time, it would also cause
three line segments to appear at the same time in the ROI of the image (as shown in the
black frame in Figure 11), which indirectly increased the probability of misjudgment of the
heading angle. Therefore, the estimated angle was checked by monitoring the variation
in the heading angle to ensure the stability of the robot’s traveling. This configuration of
the drip tape could enable the robot trailer to move autonomously and turn to another
narrow strip. This study only investigated a drip tape line detection operation based
on mathematical morphology and Hough transformation, which was used in complex
environments and unstable light intensity conditions. Once the detected target or object
characteristics change, the parameters of the proposed approach need to be adjusted
specifically. In principle, the color of the drip tape was different from that of most soils
(except for black soils). Generally speaking, the material was very suitable for two-wheeled
robots to be used as object tracking. Although green crops could also be selected as objects,
different types of crops have different characteristics and sizes, and the planting interval of
each crop would also be adjusted according to the size of the crop. Due to the many factors
or parameters to be considered, the object detection process would be more complicated.

On the other hand, although the color of the soil was similar to that of the drip tape,
fortunately, the surface of the drip tape and the soil were still different in brightness under
uniform lighting. Therefore, using Otsu’s binarization method could still distinguish the
foreground object from the background. Using a drip tape that was similar in color to the
soil was undesirable when working in the field. Secondly, the recognition performance of
the proposed solution was limited by the existence of shadows in the objects in the image.
Therefore, it was more suitable to use the proposed approach when there were no shelters
(such as trees) around the field.

When using deep learning for object detection, its detection performance was limited
by the diversity of images and the number of labeled samples used in model training [54].
Once the experimental site was changed or the climate changes (such as solar radiation),
the images to be identified have to be collected again and the detection model has to be
rebuilt. In addition, the operation of labeling target objects was also time-consuming.

The advantage of using image processing was that it could only extract the features
of the target object in the image, especially the objects with obvious features. However,
this detection method is limited by the image quality and the high complexity of the
feature extraction would indirectly increase the computational load. These problems
have been solved due to the gradual improvement in camera hardware level, the gradual
popularization of high-speed computing processors, and reduction in costs.

The proposed robot trailer adopted differential speed steering control, which has a
small turning radius and was suitable for fields with narrow planting spacing and turning
areas. In addition, deep tread tires could repel mud, which could be used on sticky soils or
upland fields. The narrow tire could reduce the friction between the tire and the ground,
making the steering control more flexible.

During the experiment, although the drip tape in some areas was blocked by mud or
weeds, the proposed approach could successfully detect the line of drip tape. In addition,
during drip irrigation, the drip tape would be filled with water, and the appearance would
expand slightly, but it has no effect on the line detection for the robot trailer.
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5. Conclusions

The proposed machine-vision-based approach could provide the two-wheeled robot
trailer to move along the drip tape in the field. Three line detection methods were used to
evaluate the autonomous guiding performance of the robot. Among them, the proposed
image recognition strategy could effectively detect the drip tape on the strip-planting
area and estimate the angle of heading deviation to make the robot travel stably between
planting areas, especially in the case of unstable light conditions.

The robot trailer was small in size, and it was suitable for autonomous guiding
operations in 1 hectare fields, especially for strip, till, or no-till farming applications. In
the future, the proposed approach would be integrated with deep learning for guideline
detection and heading angle control. In addition, the robot would be equipped with a
shock absorption device and a steering device, so that the robot has more applications.
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