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Abstract: Effective detection of rice spikelet flowering is crucial to the determination of optimal
pollination timing for hybrid rice seed production. Currently, the detection of rice spikelet flowering
status relies on manual observation of farmers, which has low efficiency and large errors. This
study attempts to acquire rice spikelet flowering information using a hyperspectral technique and
machine learning in order to meet the needs of hybrid rice seed pollination rapidly and automatically.
Hyperspectral data of rice male parents with flowering and non-flowering in two experimental sites
were collected with an ASD FieldSpec® HandHeld™2 spectrometer. Three traditional classifiers,
Random Forest (RF), Support Vector Machine (SVM) and Back Propagation (BP) neural network, and
Convolutional Neural Network (CNN), were used to build classification models for rice spikelets
flowering detection. Three data processing methods, PCA feature extraction, GA feature selection,
and the PCA and GA combination algorithm, were used for data dimensionality reduction. By
comparing the precision and recall rate of different algorithms and data processing methods, the
algorithms applicable to identify rice spikelet flowering were investigated. Results show that by
evaluating different feature reduction methods and classifiers, the optimal model for rice spikelets
flowering detection is the BP model with PCA feature extraction. The accuracy of the model reaches
up to 96–100%. Hyperspectral technology and machine learning algorithm are capable of effective
detection of rice spikelet flowering. This study provides technical reference for accurate judgment of
rice flowering and helps to determine the optimal operation time for supplementary pollination of
hybrid rice.

Keywords: hyperspectral; machine learning; CNN; rice spikelets; RF; SVM; BP neural network; PCA;
GA analysis

1. Introduction

Rice is a non-strict self-pollination crop. Generally, the success rate of rice pollination
under natural conditions is only 0.2% to 5%. Supplementary pollination during rice’s flower-
ing period is the key to the success of hybrid rice seed production. Rice spikelet flowering
requires 28–30 ◦C and 70–80% relative humidity. Although the flowering period is 10–12 days,
its flowering time each day is 1.5–2 h and the pollen life is only 4–5 min; therefore, effective
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detection of rice spikelet flowering is crucial for the timely determination of optimal pollina-
tion timing for hybrid rice seed production, so as to improve the pollen utilization rate and
seed setting rate of the female parent of hybrid rice [1].

Currently, the detection of rice spikelet flowering in hybrid rice seed production
mainly relies on manual observation through farmers’ naked eyes [2]; however, manual
observation is not only time-consuming, laborious, and inaccurate, but also subjective
and discontinuous, which makes it easy to miss the best pollination period. In large-scale
hybrid rice seed production farms, it is even more important to obtain the rice spikelet’s
flowering state by machine instead of a farmer [3].

In recent years, experts and scholars have carried out a lot of research on the monitor-
ing of plant flowering, most of which used camera [4–6], multispectral technology [7,8] and
hyperspectral technology [9] to obtain flowering information and identify or evaluate the
color, shape and appearance characteristics of flowers. Zhao et al. [10] improved Flower
Extraction Feature Pyramid Networks (FE-FPN) to extract the local regional features of a
tomato bouquet. In addition, the local bouquet images with prioritized order were input
into the improved Yolov3 network to realize the accurate identification of tomato flowers
with an accuracy of 85.18%. Deng et al. [11] identified and counted the number of citrus
flowers based on case segmentation and used a camera to obtain an image of the citrus
crown during the flowering period so as to identify and segment the flowers. The experi-
mental results show that the proposed method is superior to the unoptimized MaskR-CNN
network in both accuracy improvement and training efficiency. Wang et al. [12] proposed
a new algorithm DeepPhenology based on CNN and RGB images to estimate the pheno-
logical distribution of apple flowers. The comparison between the algorithm results and
the YOLOv5 model further evaluated the performance of the model in this task, and the
results showed that the model was superior to the most advanced target detection model.
Cai et al. [13] applied three deep neural networks, RetinaNet, YOLOv5 and FtP-RCNN, to
extract the spike number of sorghum and found that YOLOv5 indicated the best counting
accuracy in estimation of the flowering time of sorghum.

All of these studies use machine learning to identify crop or fruit flowering, but few
studies have been reported on flowering rice identification, and only a few studies have
applied deep learning techniques to flowering rice status detection. During the process
of rice flowering, the content of its biochemical components changes, which makes the
spectral reflectance of the rice spikelet change. The spectral data collected by hyperspectral
technology are continuous in wavelength and carry a lot of effective information. Hy-
perspectral data are extremely sensitive to the perception of subtle changes occurring
in the target detectors, which is also an advantage of using hyperspectral technology to
detect the flowering state of rice spikelets compared with other devices such as visible
light cameras or multispectral cameras. This study combines hyperspectral and machine
learning techniques to detect the spikelet flowering information of rice for a large-scale
hybrid rice seed production farm. Hyperspectral data of flowering and non-flowering rice
spikelets were collected for analysis. Three machine learning methods (RF, SVM and BP
neural network) and CNN were used to establish the binary classification detection model
of the rice flowering state. PCA feature extraction, GA feature selection and PCA and
GA combination algorithm were used to reduce the dimensionality of hyperspectral data,
and the characteristic bands that could be used for rice spikelet flowering detection were
determined. In this study, computer qualitative analysis of rice flowering was used instead
of manual qualitative observation to provide technical reference for accurate judgment
of rice flowering and help to determine the optimal operation time for supplementary
pollination of hybrid rice.
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2. Materials and Methods
2.1. Data Acquisition and Preprocessing
2.1.1. Experiment Site

The rice flowering data were obtained in two sites (Figure 1). The first batch of sample
data was collected from Hybrid Rice Breeding Base in Dongfang, Hainan Province. The
second batch of data was collected from Longping Hi-tech Breeding Base in Shaoyang, Hunan
Province. It was sunny and cloudless when collecting data. The temperature was between
28 ◦C and 31 ◦C. The above meteorological data were collected from a Kestrel NK5000 series
handheld meteorological monitoring instrument (Nielsen-Kellerman, Boothwyn, PA, USA).
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Figure 1. Overview of the experiment site.

The rice in two experimental sites was cultivated by manual transplanting. Experi-
ments were carried out during the jointing and flowering stages of rice. The male parent
was planted 24 days earlier than the female parent, and the planting ratio is 2:10 between
male and female plants. The male plants will be cut off early after the flowering period,
which provides sufficient sunlight and nutrients to the female plants and reduces pests and
disease occurrence.

2.1.2. Data Acquisition

Rice flowering information was acquired with an ASD FieldSpec® HandHeld™ 2 spec-
trometer (Malvern Panalytical Ltd., Malvern, UK), which was equipped with a unique
spectral acquisition instrument capable of rapid the nondestructive acquisition of spectra
in the wavelength range of 325–107 nm. When measuring the hyperspectral data of the rice
spikelet, it is necessary to ensure the normal operation of the handheld spectroscopic radia-
tion spectrum so that it can accurately reflect the spectral reflection information of the rice
spikelet. After the instrument startup system is loaded, the standard whiteboard with 100%
reflectivity is collected for black-and-white calibration. For each data acquisition, 5 groups
of hyperspectral data were collected simultaneously by a handheld spectroradiometer to
reduce systematic random errors.

It is necessary to ensure that the data are collected under high light intensity and
cloudless weather as far as possible to avoid the influence of external factors such as light
intensity on the experimental data. In the case of cloud cover, it is necessary to wait for
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the cloud to disperse before continuing to collect, and at the same time, it is necessary to
conduct whiteboard calibration again to ensure the accuracy of spectral data collection. In
addition, when the instrument is used for collection work for a long time, even if there
is no influence of external environmental factors, the whiteboard calibration needs to be
carried out every 5 min to reduce the error caused by the heat generated by the instrument
that occurs over long periods.

In order to ensure that the measurement is the characterization region of the rice spike,
the probe of the handheld spectral radiation spectrum was put directly facing the middle
of the rice spike during measurement to ensure that the rice spike is within the coverage
range of the radiation spectrometer. At the same time, the instrument and the rice spike to
be measured were kept a fixed distance (Figure 2).
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Figure 2. Hyperspectral data acquisition of rice spikelets.

In the Hybrid Rice Breeding Base in Dongfang, Hainan Province, 1236 hyperspectral
data of rice spikelets were collected, and 1115 effective spectral data were kept for analysis
after removing obvious abnormal data, with a wavelength range of 325–1075 nm. In
Longping Hi-tech Breeding Base in Shaoyang, Hunan Province, 4036 hyperspectral data
of spikelet were collected, and 3000 effective spectral data were obtained after removing
obvious abnormal data, with a wavelength range of 325–1075 nm. The experimental data
were collected in chronological order. Spectral data of the panicle region were first collected
before the flowering of the male parent of hybrid rice and then during flowering time.

Training and test data sets were divided based on a ratio of 4:1, as shown in Table 1. The
relationship between spikelet reflectance and wavelength of rice before and after flowering
is shown in Figure 3 (Hunan Province) and Figure 4 (Hainan Province). As can be seen
from Figures 3a and 4a, there is a large degree of overlap between spectral data of flowering
and non-flowering rice, which is difficult to distinguish from artificial observation.

Table 1. Sample size of training and test set of hyperspectral data.

Training Test

Flowering Non-Flowering Flowering Non-Flowering

Hainan sample 400 400 100 100
Hunan sample 400 400 100 100

All samples 800 800 200 200
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2.1.3. Data Preprocessing

Considering that weather fluctuation affects data accuracy, multiple pretreatments
were carried out for collected hyperspectral data. Hyperspectral data of rice spikelets were
preprocessed simply by using ViewSpecPro, the supporting software of the spectrometer.

1. Mean calculation: During data acquisition, the ASD FieldSpec®® HandHeld™ 2 spec-
trometer was set to repeatedly sample five hyperspectral curves, thus reducing the
inherent error of the original spectral data; therefore, in the data preprocessing step,
the collected sample data were averaged first.

2. Spectral reflectance calculation: The spectral reflectance of the target can be calculated
through Equation (1).

Rgoal =
Radgoal

Radboard
× Rboard × 100% (1)

where Rgoal on the left and right sides of the equation, respectively, represents the target
spectral reflectance and the target light intensity value; the lower Radboard represents the
whiteboard light intensity value of the spectrometer and the other Rboard represents the
whiteboard reflectance.
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After simple preprocessing, a total of 3000 hyperspectral data of rice spikelets were
obtained, including 1500 non-flowering and 1500 in full bloom. Each set of data has
relative independence.

2.2. Classification Model for Detection of Rice Spikelets Flowering

Three traditional machine learning models, Random Forest (RF), Support Vector
Machine (SVM), and Back Propagation (BP) neural network, as well as Convolutional
Neural Network (CNN), were used to classify rice flowering using full-band spectral data.
The generalization ability and deficiency of different classifiers in rice spikelet flowering
detection were compared to investigate the suitable algorithm. Hyperparameters were
selected using a grid search (for a given hyperparameter, set the start value, end value
and interval) to test their performance on the training set and thus find the best parameter.
We tested the accuracy of the model with different model hyperparameters. In RF, for the
number of subtrees, the accuracy of the model between 10 and 400 was tested with 10 as
the interval; for the maximum decision tree depth, the accuracy of the model from 2 to
20 was tested with 1. As in SVM, the penalty parameter C was tested for the accuracy of
the SVM between [2−5, 2−4, . . . , 29, 210]. As in BP networks, the accuracy of the model
with the number of hidden layers between [5, 10, . . . , 180] was tested. The CNN algorithm
has a convolutional kernel size of 3 × 3 and a step size of 2.

2.2.1. RF Algorithm

RF algorithm is widely applied to solve classification and regression type problems in
many fields [14–16]. The algorithm adopts the ensemble learning method. By establishing
a random forest (i.e., multiple classifiers), also known as a random forest decision tree, each
decision tree in the random forest (i.e., each classifier) classifies the input data and then
carries out the voting statistics to obtain the overall classification result.

The construction rules of the random forest [17] are as follows: (1) Defining the training
sample set N: For each decision tree in the random forest, draw N training samples from
the sample set in a releasing manner and arbitrarily, and define it as the training set of the
decision tree; (2) assuming that N is the feature dimension of each sample, take a constant
value n that is much smaller than N, select any subset of n features from N, and extract
the optimal term from the n features obtained whenever the decision tree is split; (3) any
decision tree in a random forest needs to grow to the maximum extent allowed by the
conditions and has not undergone pruning operations during its growth and division. The
algorithm flow chart is shown in Figure 5.
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RF algorithm uses an integrated algorithm, which is easy to make into a parallelized
method because each tree can be generated independently and simultaneously, and the
random forest does not easily fall into overfitting; however, when the number of decision
trees in the random forest is large, the time and space complexity of model training will be
relatively high.

2.2.2. SVM Algorithm

The basic idea of the SVM algorithm is to map data to a high-dimensional feature
space through nonlinear mapping and finally build an optimal classification hyperplane
in the high-dimensional feature space so as to separate the nonlinear data. It can not only
use a relatively simple algorithm to determine key sample feature data but also has good
robustness [18].

SVM algorithm has two main principle features. SVM is targeted at linearly sep-
arable cases. When dealing with linearly indivisible cases, nonlinear features need to
be transformed into linearly separable features. In this case, the low-dimensional input
space linearly indivisible samples are converted into high-dimensional feature space by
a nonlinear mapping algorithm and then analyzed by a linear algorithm. Based on the
theory of minimum structural risk, SVM constructs the optimal classification plane in the
feature space to obtain the global optimal solution for the learner. Another point is based
on the principle of SVM, where a small number of support vectors determine the final
classification decision result.

2.2.3. BP Neural Network

BP neural network [19] is a concept of multi-level feedforward neural network trained
according to the backward error propagation algorithm. It is a widely used traditional
neural network model. Its training method is an error back propagation algorithm, through
which the weight and threshold of the neural network are constantly adjusted and modified
to obtain the minimum mean square error value, and finally results in the optimal fitting
degree of the data. Its network model topology is composed of three parts: input layer,
hide layer and output layer. Figure 6 gives a brief demonstration on the flow chart of BP
neural network, where X1, X2, Xn represent the input hyperspectral reflectance consisting of
751 channels. BP neural network algorithm consists of two parts: signal forward conduction
and error result reverse conduction.
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The function of the input layer of the BP neural network is to transmit the input infor-
mation received from the outside to the middle layer, and each neuron in the middle layer
transforms the input information. According to the demand for information transformation
processing ability to design a single hidden layer structure or more hidden layer structure,
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then through the last hidden layer, the processed information is transmitted to the output
layer for subsequent processing. Finally, the output layer of the neural network will output
the information processing results obtained in the neural network algorithm. At this point,
if there is a difference between the actual output value and the expected output value, the
error will enter the reverse conduction stage. The weight will be modified and adjusted
in all layers of the neural network according to the gradient descent method, and the
error will be reverse transmitted through the output layer to the middle layer and then
to the input layer. The training process of a neural network that is constantly repeating
information forward conduction and error reverse conduction of weights within every
level continuously in the process of adjustment. The training process continues until the
error of the neural network output achieves an acceptable level or is set in advance of the
neural network to build learning.

2.2.4. CNN Algorithm

CNN is one of the representative algorithms of deep learning. It is a type of feed-
forward neural network with a deep structure, including convolution computation. The
CNN algorithm has been widely used in various fields of classification, retrieval, identifica-
tion (classification and regression), segmentation, feature extraction, key point positioning
(posture recognition) and other scenes [20]. The structure of CNN is usually composed of
an input layer, convolutional layer, pooling layer, fully connected layer and output layer.
Figure 7 shows the classical structure of the CNN algorithm.
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The input layer of the CNN inputs the target detection sample into the CNN structure.
When the sample data are fed into the input layer, the computer treats the input as a matrix
and performs a series of transformations on the matrix before feeding it into the next layer
of the structure. The convolutional layer is a unique structure of the CNN algorithm model
and a core layer of the whole neural network, which produces most of the computational
work. The structure used by the combination of the convolutional layer and the pooling
layer can be set repeatedly in the hidden layer. The function of the convolution layer is to
deepen the original matrix, and the nodes processed by the convolution layer will obtain
a deeper matrix. The pooling layer extracts the main information of the samples based
on the principle of local connectivity of the features in order to reduce the amount of data
processing. It does not change the depth of the 3D matrix, but the size of the matrix is
reduced, thus reducing the parameters in the whole neural network and the number of
training dimensions. The fully connected layer is a structure that weighs all the neurons
between the two layers, and the last output layer serves as the target result. These two
parts are generally configured at the end of the CNN model. CNN uses original samples as
input, which can effectively learn corresponding features from a large number of samples
and avoid a complex feature extraction process. CNN algorithm can also be used for the
classification of 1D data by varying the size of the convolutional kernel.

2.3. Data Dimensionality Reduction Algorithm

Although hyperspectral data receive high classification accuracy under the above
four classification models, the original data have a high dimension and a slow operation
rate; therefore, dimensionality reduction was performed to improve the running speed
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and accuracy of the model. Two commonly used dimensionality reduction methods were
selected in this study. Rice flowering detection was then conducted on the basis of feature
dimensionality reduction in order to obtain better results.

2.3.1. Principal Component Analysis

Principal Component Analysis (PCA) [21] is the most widely used data dimensionality
reduction algorithm. The main idea of the PCA algorithm is to map n-dimensional features
to k-dimensional features. These new orthogonal features, also called principal components,
are reconstructed from the original n-dimensional features. The job of PCA is to find a set
of mutually orthogonal axes in turn from the original space, and the choice of new axes is
closely related to the data itself. The first new axis is selected in the direction of the greatest
difference in the original data. The second axis is selected in a plane orthogonal to the first
axis to maximize the variance. The third axis is selected in a plane orthogonal to the first
and second axes to maximize the variance. By analogy, n such axes are obtained. The new
axis obtained in this way contains most of the variance of the first k axes, and the variance
of the last axis is almost zero. This is equivalent to reducing the dimensionality of the data
features by retaining only the dimensional features that contain most of the variance and
ignoring the dimensional features that contain almost zero variance.

By calculating the covariance matrix of the data matrix and then obtaining the eigen-
value and eigenvectors of the covariance matrix, the matrix consisting of the eigenvectors
corresponding to the k features with the largest eigenvalue (i.e., the largest variance) is
then selected. The data matrix is transformed into a new space to achieve dimensional-
ity reduction in data features. At present, there are mainly two methods to obtain the
eigenvalue and eigenvector of covariance matrix: the PCA algorithm based on eigenvalue
decomposition covariance matrix and the PCA algorithm based on the SVD decomposition
covariance matrix.

2.3.2. Genetic Algorithm

A Genetic Algorithm (GA) is a computational model that simulates the biological
evolution process of natural selection and genetic mechanism in Darwin’s biological evo-
lution theory. It is a method to find out the optimal solution by simulating the natural
evolution process. When solving complex combinatorial optimization problems, it usually
obtains better optimization results faster than some traditional optimization algorithms.
GA has been widely used in combinatorial optimization [22], machine learning [23], signal
processing [24], adaptive control [25] and artificial life.

GA starts with a population that represents a set of possible solutions to a problem. A
population consists of a certain number of genetically coded individuals. Each individual is
actually a chromosomal entity with characteristics. After the initial population is generated,
according to the principle of survival of the fittest, it evolves generation by generation
to produce better and better approximate solutions. In each generation, individuals are
selected according to their fitness in the problem domain, and combined crossover and
mutation are performed with the help of natural genetic operators to generate a population
representing a new set of solutions. This process will produce a metapopulation similar to
natural evolution, which is more adaptable than its predecessors, and the best individuals
in the previous generation are decoded and can be used as approximate optimal solutions
to the problem.

2.4. Evaluation of Algorithm Accuracy

The prediction results of the model for rice flowering detection were as follows: TP
(true positive): positive samples were correctly predicted as positive samples, i.e., the data
of spikelet flowering were predicted as flowering. FP (false positive): a negative sample
is incorrectly predicted as a positive sample, i.e., a non-flowering spikelet is predicted
as flowering. TN (true negative): negative samples were correctly predicted as negative
samples, i.e., non-flowering data were predicted as non-flowering. FN (false negative):
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positive samples were wrongly predicted as negative samples, i.e., the data on flowering of
spikelets were predicted as non-flowering.

The evaluation indexes are precision (the proportion of the total number of rice
spikelets flowering that can be correctly detected) and recall (the proportion of correctly
predicted rice spikelets flowering in total actual flowering), which can be calculated by
Equations (2) and (3), respectively.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

3. Results
3.1. Classification Accuracy before Feature Dimensionality Reduction

The 800 sets of 751-dimensional hyperspectral data from Hainan, 800 sets of
751-dimensional data from Hunan and 1600 sets of 751-dimensional mixed data from
Hainan and Hunan were input to the traditional classifiers and deep learning model for
training. A total of 200 sets of Hainan data, 200 sets of Hunan data, and 400 sets of mixed
data were used for validation. The correlation results of each group are shown in Figure 8.
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As can be seen from Figure 8, the precision and recall rate of validation from the
Hainan data set ranges from 36% to 100%. BP neural network model received the highest
score, and the accuracy of both evaluations obtained by training with the Hainan data set
reached 100%. The RF algorithm obtained the lowest score. Its accuracy of training using
the Hunan data was 36–45%. The RF scores for the Hunan validation ranged from 47%
to 93%. Among the four models, the highest score was achieved by the CNN algorithm
model, which reached 87–90% when trained with mixed data. The lowest scores were also
observed in the CNN model, which resulted in 47–62% when trained with Hainan data.
The score range of the mixed validation data was 55–95%. The highest score was obtained
by the CNN model. When the mixed data were used for training, the evaluation accuracy
of the CNN model reached 93%. The lowest was the RF model, which was trained with
Hunan data with an accuracy of 60–61%.

The reason that the RF model performed the worst may lie in the fact that it does not
provide a continuous output. When performing regression, it cannot make predictions
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beyond the range of the training data set. This leads to overfitting when modeling data with
some specific noise, or there are many similar decision trees that mask the true results. The
CNN model performed the best. The reason may be explained by the fact that convolutional
neural networks have a parameter sharing mechanism. This mechanism greatly reduces
the number of parameters of the network and trains a better model with fewer parameters,
which can effectively avoid overfitting. The sparsity of the network connections allows the
data to be given better and more effective weights.

3.2. Classification Accuracy after Feature Dimensionality Reduction
3.2.1. Feature Extraction with PCA algorithm

For each group of 751-dimensional data, the PCA algorithm was used to extract
features from the data and the 751-dimensional data were then downscaled to 200 dimen-
sions by optimizing the parameters. After dimensionality reduction, the 800 groups of
200-dimension Hainan data, 800 groups of 200-dimension Hunan data and 1600 groups of
200-dimension mixed data from Hainan and Hunan were input to traditional classifiers
and deep learning model for training. Another 200 groups of Hainan data, 200 groups of
Hunan data were used and 400 groups of mixed data from Hainan and Hunan were used
for validation. The final accuracy result is shown in Figure 9.
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As can be seen from Figure 9, the correlation range of Hainan validation data was
21–100%, of which the BP model has the highest accuracy. When training with Hainan data,
the precision and recall rate are both 100%. The lowest score was observed in the RF model,
which was trained with Hunan data, and its accuracy was only 21–22%. The score range for
Hunan validation data was 46–100%, in which the BP model received the highest accuracy
of 96–100% when trained with the mixed data set. The lowest accuracy was observed in
the SVM model, which was only 50–60% when trained with Hainan data. The scores for
the mixed validation data ranged from 29–99%, with the highest detection model being
the BP model, trained using mixed data, at 96–99%, and the lowest being the CNN model,
trained using Hunan data, at 29–33%.

Compared with the original data before dimensionality reduction, the accuracy of the
trained models was improved. The best BP algorithm model can handle the data of Hainan
up to 100%, which is relatively stable and has good generalization ability. The results of
the Hunan validation data have a relatively large improvement, with the highest score of
96–100%. In the four algorithm models with PCA feature extraction, some performance
improves and some performance worsens.
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3.2.2. Feature Selection with GA

The 751-dimensional original data of Hainan, Hunan and mixed data were used
for GA feature selection. After dimensionality reduction, the three sets of data were
downscaled to 350, 384 and 362 dimensions by parameter optimization, respectively. Then,
800 sets of 350-dimensional Hainan data were input to the traditional classifier and deep
learning model for training. The 200 sets of 350-dimensional Hainan data, 200 sets of
350-dimensional Hunan data and 400 sets of 350-dimensional Hainan–Hunan mixed data
were used for validation. The 800 sets of 384-dimensional Hunan data and 1600 sets of
362-dimensional mixed data also performed the same operation. Final accuracy results are
shown in Figure 10.
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By observing the results in Figure 10, the precision and recall rate of Hainan validation
data ranged from 40–100%. Among Hunan data, the highest score goes to RF and BP
models with 97%–100%. The lowest scores lie in the RF model, which was only 40–54%
based on the training results of Hunan data. The scores of the Hunan validation data
ranged from 48% to 95%. The optimal model is the CNN model, which was trained with
the Hainan–Hunan mixed data, reaching 86% to 89%. The lowest is the SVM model, which
received 50–71% based on the training results using Hainan data. The scores of mixed
validation data ranged from 54% to 94%, and the highest was the CNN model, which was
trained with mixed data from Hainan and Hunan, reaching 92% to 93%. The lowest was
the SVM model, which was trained with Hunan data and its accuracy was only 54–68%.

Compared with the original data before dimensionality reduction, the dimensionality
reduction data after GA feature selection received about 2% lower accuracy, but the input
dimension was reduced by nearly half, which reduced a lot of operations. The less effective
model was the SVM model, and the best one was the BP model.

3.2.3. Combination of PCA Feature Extraction and GA Feature Selection

Feature extraction was performed first on the 751-dimensional data from Hainan using
the PCA method. Then, the original 751-dimensional data generated new 751-dimensional
feature data in order of importance. Finally, GA was performed to reduce the new
751-dimensional data through feature selection to 404-dimensional data. Hunan data
and mixed data were similarly reduced to 369 and 388 dimensions by performing the above
operations, respectively.

After dimensionality reduction, 800 sets of 404-dimensional Hainan data were input to
the traditional classifiers and deep learning model for training. At the same time, 200 sets
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of 404-dimensional Hainan data, 200 sets of 404-dimensional Hunan data, and 200 sets of
404-dimensional Hainan-Hunan mixed data were used for validation. The same training
and validation operations were performed for the 800 sets of 369-dimensional Hunan data
and the 1600 sets of 388-dimensional mixed data. The final results are shown in Figure 11.
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The results in Figure 11 show that the precision and recall rate of Hainan validation
data ranged from 18–100%, among which the optimal model was the RF model trained
by Hainan data and the BP model trained by mixed data. The evaluation results of these
two models were 99%. The RF model trained by Hunan data performed the worst with
an accuracy of 18–19%. The scores of the Hunan validation data ranged from 49% to 98%.
The BP model trained by mixed data reached 92% to 98%, while the CNN model trained
by Hainan data only reached 50% to 89%. The score of mixed validation data was 32–96%.
The BP model trained by mixed data received an accuracy up to 95–96%. The lowest scores
lie in the CNN model trained with Hunan data—the accuracy was only 32–35%.

After PCA feature extraction for the original data and then GA feature selection, the
result does not combine the advantages of the two dimensionality reduction methods well.
The result is even lower than that of the original data; therefore, the combination of PCA
and GA methods for dimensionality reduction is not applicable for hyperspectral data
identification of flowering and non-flowering rice spikelets.

4. Discussion

This study innovatively proposed the application of hyperspectral technology to detect
the flowering state of rice spikelets and made full use of the advantages of hyperspectral
technology to obtain better detection results. Compared with artificially judging the
flowering state of rice spikelets, the detection method combining hyperspectral technology
and machine learning is faster and more accurate. In the future, the results obtained in
this study can be made into hyperspectral sensors, which can realize remote flowering
detection, which greatly saves labor costs.

Zhang et al. [26] obtained rice spikelet images from a visible light camera. Series
Otsu (SOtsu) was applied in tandem to extract the spikelet anthers through the visible
light blue channel. In the meantime, deep learning models, such as FasterRCNN and
YOLO-v3, were used to identify the spikelet anthers and the opening spikelet hull. The
most suitable method was selected for flowering characteristics detection to compare the
precision, recall and the F1 coefficient of different models. Results showed that the precision,
recall rate, F1 coefficient and Pearson correlation coefficient of the FasterRCNN model
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in spikelet hull detection were 1, 0.97, 0.98 and 0.993, respectively, while those of SOtsu
in spikelet anthers detection were 0.92, 0.93, 0.93 and 0.936, respectively. It inferred that
the SOtsu and FasterRCNN models were both capable of rice flowering detection, but the
opening spikelet hull was more suitable than the spikelet anthers for the rice flowering
features detection with the deep learning model; however, compared with the detection
method with a visible light camera, the hyperspectral data collected in this study carries
more effective information and is easier to process. The hyperspectral data can clearly
perceive the changes in spectral reflectance caused by the subtle changes in the flowering
process of rice glumes. In addition, the application of machine learning algorithms to
build classification models can make full use of the spectral information carried by the
hyperspectrum, making the predictive ability of the models more powerful compared to
the application of other detection methods.

Due to the overlapping signature and negligible difference between flowering and
non-flowering spectra for both Hainan and Hunan locations, we used full-band reflectance
data for modeling. In addition, the result of data dimensionality reduction through the GA
algorithm shows that it contributes to the detection of rice flowering status in almost the
whole waveband range, and the contribution values do not differ significantly.

Among the four data processing methods, PCA feature extraction has the best result
in terms of overall effectiveness, followed by the original data modeling, the PCA and GA
combination and the GA feature selection. Among the PCA feature extraction processing
methods, the BP model achieved the highest evaluation accuracy. The precision and recall
rate is between 96% and 100% when trained by Hainan and mixed data, indicating that
the BP model has an excellent classification effect and strong generalization ability for
rice flowering detection. Although the results derived from the GA feature selection did
not improve, the dimensionality of its input was reduced by nearly half while it still
maintained the acceptable score, indicating that nearly half of the 751-dimensional data
were not very useful for the classification of this study and could be eliminated. From
the selected bands, their effective bands were basically evenly distributed, with some
concentration in individual places. Most likely, it results from the similarity of the adjacent
bands. After GA feature selection, the redundant information was removed to ensure
the efficiency of the information; therefore, the feature reduction serves to remove the
redundant and interfering features in feature bands, which in turn improves the accuracy
of the processing results.

Among the four classification models, the BP algorithm model achieves a comprehen-
sively better result, followed by the CNN model, RF model and SVM model. The results
obtained by the BP algorithm model may be due to the (1) nonlinear mapping ability:
BP neural network essentially realizes a mapping function from input to output; math-
ematical theory proves that the three-layer neural network can approach any nonlinear
continuous function with arbitrary accuracy, which has strong nonlinear mapping ability.
(2) Self-learning and self-adaptive ability: during training, BP neural network automatically
extracts “reasonable rules” between input and output data through learning and adaptively
memorizes the learning content into the weight of the network with high self-learning and
self-adaptation ability. (3) Generalization ability: in the design of the pattern classifier, it
cares about whether the network can correctly classify the patterns not seen before or those
with noise pollution after training and has the ability to apply the learning results to new
knowledge. (4) Fault tolerance: BP neural network will not have a great impact on the
global training results after its local or partial neurons are damaged; the system can still
work normally when local damage occurs and it has a certain fault tolerance. The reason
for the relatively poor results of the CNN algorithm may be that it learns by convolution,
which may lose some parts of the data and ignore the correlation between the local and the
whole, thus affecting the results. RF model may be overfitted for noisy data. SVM model
may not be optimal for the selection of parameters, which can only be chosen empirically
and through human selection, with a certain degree of arbitrariness.
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From the results of multiple processing, Hainan data have a good classification ef-
fect, probably because there is a more obvious difference between the flowering and
non-flowering bands in Hainan data; however, the classification effect of Hunan data is
poorer, probably because there is more noise in Hunan data or the difference between the
flowering and non-flowering bands is not obvious, which makes it more difficult to classify.
Comparing the generalization ability of Hainan data alone with that of Hunan data, the
classification algorithm has a better generalization ability. The BP algorithm model in PCA
feature extraction processing has improved generalization ability for mixed data, and the
results of Hunan validation data can have a 1% improvement compared with the training
results of Hunan data alone. There is a big difference between Hainan data and Hunan
data. When applying the model trained by one site to validate the data from another site,
the precision and recall rate is basically around 50%.

In summary, the algorithm adopted in this study is quite effective in detecting the
hyperspectral data before and after rice flowering. Considering the operational problems
in the data acquisition process and the influence of the objective physical environment on
the instrument may cause interference to the acquisition of rice flowering hyperspectral
data, there will be some influence on the results of machine identification. In addition, the
sample data set adopted in this study is still small, and the algorithm should be further
explored to improve the generalization ability of the algorithm for the identification of
different varieties of rice flowering in different regions.

5. Conclusions

This study proposed to acquire rice spikelet flowering information using hyperspec-
tral technique and machine learning in order to meet the needs of hybrid rice pollination
rapidly and automatically. The hyperspectral data of rice before and after flowering were
collected by a spectroradiometer. Based on traditional machine learning algorithms and
deep learning algorithms, preliminary classification models were constructed to identify
rice flowering status. The traditional classifiers used in this study include the SVM algo-
rithm, RF algorithm and BP network. The deep learning classifier is the CNN algorithm. By
comparing the four algorithm models, it can be found that the CNN algorithm model has
the best accuracy in the detection of rice flowering. The average accuracy and recall rate of
the model is 93% when using the data collected from two locations mixed as data input.
Three methods, PCA feature extraction, GA feature selection and the combination of PCA
and GA algorithm, were applied to transform hyperspectral data into a new feature space
based on the feature dimension reduction method and then carried out the classification of
rice flowering in this space combining with machine learning algorithms. It can be found
that the PCA algorithm was applied to feature extraction of rice spikelet spectral data,
which could make full use of the effective information in the spectral band and improve
the accuracy and recall rate of the model. Although the GA algorithm did not improve the
accuracy and recall rate of the model, it reduced the dimension of model input information
and reduced the complexity of model calculation while maintaining the accuracy of the
model. The feature extraction method combined with PCA and GA failed to integrate
the advantages of the two algorithms, and its accuracy even decreased when compared
with the preliminary classification model based on machine learning algorithms. By com-
prehensively comparing the combination of different feature dimensionality reduction
methods and classification models, the optimal model was constructed by using the data
processed by the PCA feature extraction method and then classified by the BP algorithm.
The accuracy and recall rate of mixed data is 96–100%. The experimental results show
that the hyperspectral technology and machine learning algorithm proposed in this study
can effectively obtain the flowering status of rice spikelets, which is expected to provide
decision-making information for timely pollination in mechanized seed production of
hybrid rice.
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