
 
 

 

 
Agriculture 2022, 12, 780. https://doi.org/10.3390/agriculture12060780 www.mdpi.com/journal/agriculture 

Article 

Neural Network Model for Greenhouse  
Microclimate Predictions 
Theodoros Petrakis 1, Angeliki Kavga 1,*, Vasileios Thomopoulos 2 and Athanassios A. Argiriou 3 

1 Department of Agriculture, University of Patras, 26504 Patras, Greece; tpetrakis@upnet.gr 
2 Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece;  

vthomopoulos@upatras.gr 
3 Laboratory of Atmospheric Physics, Department of Physics, University of Patras, 6500 Patras, Greece;  

athanarg@upatras.gr 
* Correspondence: akavga@upatras.gr 

Abstract: Food production and energy consumption are two important factors when assessing 
greenhouse systems. The first must respond, both quantitatively and qualitatively, to the needs of 
the population, whereas the latter must be kept as low as possible. As a result, to properly control 
these two essential aspects, the appropriate greenhouse environment should be maintained using a 
computational decision support system (DSS), which will be especially adaptable to changes in the 
characteristics of the external environment. A multilayer perceptron neural network (MLP-NN) was 
designed to model the internal temperature and relative humidity of an agricultural greenhouse. 
The specific NN uses Levenberg–Marquardt backpropagation as a training algorithm; the input 
variables are the external temperature and relative humidity, wind speed, and solar irradiance, as 
well as the internal temperature and relative humidity, up to three timesteps before the modeled 
timestep. The maximum errors of the modeled temperature and relative humidity are 0.877 K and 
2.838%, respectively, whereas the coefficients of determination are 0.999 for both parameters. A 
model with a low maximum error in predictions will enable a DSS to provide the appropriate 
commands to the greenhouse actuators to maintain the internal conditions at the desired levels for 
cultivation with the minimum possible energy consumption. 

Keywords: greenhouse; neural networks model; multilayer perceptron; decision support system; 
Levenberg–Marquardt; temperature modeling; relative humidity modeling 
 

1. Introduction 
Due to the increase in the world’s population, the focus of the agricultural sector has 

primarily been on increasing food production quantity without degrading its quality. 
These requirements have highlighted the need to use advanced technologies. Today, we 
are in a stage of great growth in the agricultural sector with the use of computers, artificial 
intelligence, robotics, and the Internet of Things (IoT) having reduced traditional 
agriculture to a smart version of itself. In the era of smart agriculture, the receipt of large 
amounts of data from various sources for various times and locations, has helped to better 
monitor and manage crops, resulting in natural resource savings and reduced energy 
consumption, and allowing people to become more prudent and efficient in their choice 
to avoid products that could cause serious problems not only for the ecosystem but also 
for human health (e.g., pesticides). Smart agriculture with the help of innovative 
techniques and technologies can benefit from every aspect of the production process, from 
the planting stage to the final stage of harvest [1]. 

Greenhouses that have the ability to produce food out of season in quantities that 
can meet the needs of the ever-growing population, present significant advantages in the 
field of agriculture. A high greenhouse efficiency requires controlling the microclimate 
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inside the greenhouse, mainly the temperature and relative humidity. The deviation in 
the values of these parameters from the desired levels can cause stress on plants, and the 
likelihood of the growth of pathogenic microorganisms inside the greenhouse is high and 
usually destructive to the crop [2,3]. More specifically, the exposure of plants to extreme 
temperatures can negatively affect both productivity (from the stage of reproduction to 
the formation of fruits) and the phenological growth of plants [4,5], and it is considered 
that the increase in relative humidity to levels outside the desired range not only favors 
the growth of pathogenic microorganisms, but at the same time, it delays the growth of 
plants by impeding them from absorbing nutrients [4]. However, proper control and 
regulation of the greenhouse microclimate results in a greater quantitative and qualitative 
food yield and also presents significant economic benefits. The largest share of the energy 
consumption of a greenhouse (~90%) is due to the so-called basic energy consumption, 
which includes among other things, heating, cooling, and dehumidifying, the latter 
corresponding to almost 50% of the total energy consumption of the greenhouse [6]. 
Finally, environmental benefits can also be achieved through better management of 
energy consumption and water use [5]. 

In Greece, the total arable area amounts to about 132 million acres. Of these, only 
61,000 acres are covered by greenhouse installations. These greenhouses are mainly used 
to produce vegetables at a rate of about 92%, whereas the remaining percentage (8%) 
corresponds to ornamental crops. Most greenhouse facilities are in the region of Crete 
(⁓45%) followed by the region of Peloponnese (⁓15%). The rest are scattered in regions 
throughout the country. The main greenhouse cover material in Greece is plastic 
(polyethylene), with the percentage of vegetable production in such greenhouses being 
equal to 95.18%. The remaining percentage of vegetable production corresponds to 
production in glass-covered greenhouses [7,8]. 

Greenhouses are complex, nonlinear, dynamic systems whose internal microclimatic 
conditions are highly dependent on the constantly changing external conditions. Apart 
from the influence of the external conditions on parameters such as temperature and 
relative humidity inside the greenhouse, processes that take place inside the greenhouse 
also contribute. For example, evapotranspiration is a process during which the release of 
water vapor, both from plants and from the soil, acts as a catalyst for the relative humidity 
inside the greenhouse, and the temperature depends highly on the incident solar 
radiation, not only due to the thermal energy transferred directly to the indoor air of the 
greenhouse but also because of the energy stored in the ground which greatly modulates 
the indoor temperature during the nighttime. The interaction between the indoor climatic 
parameters is intense, with the relationship between temperature and relative humidity 
being direct, whereas other parameters, such as the concentration of carbon dioxide (CO2), 
have an important contribution to the system. 

Due to the existence of the boundary layer from a few hundred meters up to the first 
1–2 km in the atmosphere, the meteorological conditions (e.g., temperature, humidity, 
wind speed, etc.) are greatly affected by the ground, which leads to a strong diurnal 
variability and makes it imperative that the time scales at which the various processes are 
investigated be as small a step as possible [9]. This intense variability of the parameters of 
the external environment of a greenhouse, combined with the strong interaction between 
the external and indoor conditions, makes the control of the microclimate of the 
greenhouse particularly difficult. Therefore, to better manage the yield and the energy 
consumption of a greenhouse, the maintenance of the desired greenhouse climate should 
be based on a computational decision support system (DSS), which will be particularly 
flexible to the continuous changes of the parameters of the external environment, and the 
decisions should be taken on many different time scales. It is important that the accuracy 
of the models based on these systems is as high as possible so that the operation of the 
various actuators (e.g., for heating, cooling, ventilation, etc.) is targeted and has as 
immediate as possible a response, whether they are passive actuators or mechanically 
engineered with electricity requirements [10–12]. 
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Modeling the microclimate of a greenhouse differs depending on the purpose. There 
are two main categories of models, the physical ones, which are mainly used if the main 
purpose is the study and knowledge of the natural processes that take place within the 
greenhouse, and the black-box models, if the main objective is the applications and design 
of systems related to greenhouse management. The development of a physical model 
presents a high degree of difficulty, especially because the greenhouse is a nonlinear 
complex. Such a model is mainly based on the laws of thermodynamics and of heat 
transfer and mass transfer. Therefore, parameters such as solar irradiance and factors 
related to heat and mass transfer need to be calculated with high accuracy [13–15]. On the 
other hand, the black-box models are based on the system identification (SI) process. SI is 
a methodology that depends mainly on experimental input and output data. These 
models provide an effective and accurate description of the behavior of various 
parameters without the need to model the internal system processes [16]. To develop such 
a model, it is necessary to follow a procedure that includes signal measurements at a 
specific time, a choice of model structure, the selection and definition of how the 
appropriate parameters of the model will be calculated, and the validation and evaluation 
of the model using a dataset separate from the one used for the rest of the process [17]. 

As mentioned above, greenhouses are dynamic, nonlinear, and highly complex 
systems with constant interactions between the microclimate variables. Therefore, the 
combination of the above with the need to create models that will be applied directly to 
the control of the greenhouse gives the black-box models and artificial intelligence 
techniques in general special value. One of these techniques is the modeling and control 
of the greenhouse microclimate through neural networks. Neural networks (NN) are 
based on the logic of the biological neural system, where signals received from a cell body 
through a network called dendrites are transferred to different neurons through a fiber 
called an axon. The connection of an axon with a dendrite of a different cell body is called 
the synapse. The state of such a system largely depends on the arrangement of the above, 
and the forces between the synapses are strengthened or weakened depending on the 
process of learning [18]. In an artificial neural network (ANN), the signals are transferred 
starting from the nodes (neurons) of the input layer to the nodes of a “hidden” layer, 
which are activated according to their power, finally transferring the signal to the nodes 
of a final layer called the output layer. The above process for the extraction of remarkable 
results requires a careful choice of how neurons are connected (topology), a learning 
algorithm according to which learning process will be performed, the number of hidden 
layers and nodes, and the variables that will introduce the information into the network 
[19]. 

Neural networks are widely used in greenhouses not only for the control, but also 
the prediction of microclimatic parameters, producing very remarkable and clear results. 
The research in this field concerns the use of different architectures for creating a neural 
network, such as the use of feedforward or recurrent neural networks and also different 
training algorithms. More specifically, Singh & Tiwari [2] tested a feedforward NN with 
only one hidden layer and a different number of nodes to predict the indoor temperature 
and relative humidity one day ahead. After several experiments with the use of three to 
ten hidden nodes, it was found that the structure with four hidden nodes showed the best 
results, with the coefficients of determination being equal to 0.980 and 0.967, for 
temperature and relative humidity, respectively. Castañeda & Castaño [20], created a 
multilayer perceptron Neural Network with Levenberg–Marquardt as a training 
algorithm, which can predict the indoor temperature, with the calculated coefficients of 
determination being equal to 0.9549 and 0.9590, for the winter and summer season, 
respectively, to control the frost inside the greenhouse. Choi et al. [21] also trained an MLP 
neural network using the data of both the external and internal greenhouse conditions as 
the input variables, to predict the indoor temperature and relative humidity for 10 to 120 
min later. The neural network consisted of four hidden layers and a different number of 
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nodes for temperature and relative humidity, with the coefficients of determination being 
equal to 0.988 and 0.990, respectively. 

Recurrent NNs are also widely used with the Elman structure among others being 
the most well-known. Hongkang et al. [22] created an Elman network that is based on a 
dynamic backpropagation training algorithm. As input variables, they used the 
parameters of the internal environment, such as air and substrate temperature, relative 
humidity, CO2 concentration, and illumination. From this model, coefficients of 
determination greater than 0.9 were obtained, and more specifically their values for 
temperature and relative humidity were equal to 0.925 and 0.937, respectively. Moreover, 
Salah & Fourati [23] combined an Elman network with a deep multilayer FF neural 
network for the greenhouse control. The first network for the simulation of the direct 
dynamics of the internal processes was used, whereas the second one was for the inverse 
dynamics. Finally, Taki, et al. [24] compared three different models for the estimation of 
three different temperatures inside the greenhouse, the air temperature, the soil 
temperature, and the plants’ temperatures. After comparing a radial basis function (RBF) 
model, an MLP, and a support vector machine (SVM) model, it was found that the first 
one presented the best results. 

The present study aims to create a model using artificial neural networks (ANN), 
which can predict temperature (Tin) and relative humidity (RHin) inside the greenhouse, 
based on outside temperature (Tout) and relative humidity RHout), wind speed (WS), solar 
irradiance (SR), as well as internal temperature and relative humidity up to half an hour 
before. After extensive research in the literature in recent years, no similar study has been 
found. The goal is for the model to show as low a maximum error as possible between the 
predicted and observed data so that it can respond adequately to a decision support 
system (DSS). 

2. Materials and Methods 
2.1. Greenhouse 

The greenhouse used to conduct the research is located on the premises of the 
University of Patras (38°17′27.9′′ N, 21°47′23.9′′ E). It is a real scale, MULTI-SPAN type 
greenhouse with the orientation of the ridge being in the East–West direction. The 
greenhouse’s East–West axis is meant to be physically identical to that of productive 
greenhouses, and it will host greenhouse production operations to examine the quality of 
the products yielded. It consists of four separate units, 3.2 m wide each (single-span 
design). The overall dimensions of the greenhouse are 12.8 m wide and 16 m long, and 
the ridge and gutter heights are 4.5 m and 3.3 m, respectively. The total ground area 
covered by the greenhouse (Ag) is equal to 204.8 m2, the total volume (V) is 798.72 m3, and 
the surface of the cover (Ac) is 461.44 m2. It is a high-tech greenhouse constructed of high-
quality materials. Its frame is made up of steel pieces with different cross-sections. These 
glass panes in particular can withstand chemicals, high wind speeds, and pollution. 

The greenhouse is equipped with an automated natural ventilation system through 
openings positioned on the north and south sloped roof panes and on the side sections. 
To obtain the microclimatic data, the unit located in the northern part of the greenhouse 
corresponding to ¼ of the total covered area (approximately 51 m2) was used. Within this 
section, in the center of the width of the unit and the positions corresponding to ¼ and ¾ 
of the length of the greenhouse, two ad hoc data acquisition systems have been installed. 
These systems are equipped with sensors that can record the inside temperature and 
relative humidity, the solar irradiance transmitted through the cover, and the 
photosynthetically active radiation (PAR). In addition to the sensors inside the 
greenhouse, an automatic weather station (AWS) has been placed outside the greenhouse 
facing the east side of it. The station can record environmental conditions, such as 
temperature, relative humidity, wind speed, solar radiation, sky temperature, IR 
radiation, and rainfall. The recorded data from the inside and outside of the greenhouse 
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is stored in a data logger installed on the station and taken remotely. The sensors inside 
and outside the greenhouse are presented in Table 1. 

Table 1. Recorded parameters, sensors used to record them, and sensor manufacturers. 

Recorded Parameter Sensor Manufacturer 
Automatic Weather Station 

Datalogger CR1000 Campbell Scientific 
Temperature (Tout) MP101A-T7-WAW at 3 m Rotronic 

Relative Humidity (RHout) MP101A-T7-WAW at 3 m Rotronic 
Wind Speed (WS) A100K at 6 m Scienter 

Solar Radiation (SRout) CMP3 at 5 m Kipp & Zonen 
Rainfall (R) 52203 Campbell Scientific 

Sky Temperature (Tsky) CGR3 at 5 m Kipp & Zonen 
IR Radiation (IRrad) CGR3 at 5 m Kipp & Zonen 

Greenhouse 
Temperature (Tin,1 & Tin,2) MP101A-T7-WAW Rotronic 

Relative Humidity (RHin,1 & 
RHin,2) MP101A-T7-WAW Rotronic 

Solar Radiation (SRin,1 & SRin,2) CMP3 Kipp & Zonen 
Photosynthetically Active 
Radiation (PAR1 & PAR2) 

ParLite Kipp & Zonen 

2.2. Data and Methodology 
This study used a dataset of approximately 62 days, from 14/2/2022 14:00 to 18/4/2022 

8:10, for the training and testing of the model. The time is expressed in EET for the period 
under study and the timestep of the data (ts) is equal to 10 min. Data from 28/2/2022 9:20 
to 3/3/2022 10:00 were missing. Therefore, the total amount of data is equal to 8594 
samples. As independent input variables, data of the external environmental parameters 
were used, i.e., the outside temperature (Tout), the outside relative humidity (RHout), the 
wind speed (WS), and the solar irradiance (SR). In addition to the parameters describing 
the external conditions, for the estimation of the temperature (Tin) and relative humidity 
(RHin) inside the greenhouse at time t0 equal to 0, as input variables were also used for the 
internal temperature and relative humidity with a time delay of one (t = t0 − ts), two (t = t0 
− 2ts) and three (t = t0 − 3ts) timesteps. The internal temperature and relative humidity were 
calculated as the average value of the two individual stations installed inside the 
greenhouse, which allows a more reliable view of the indoor conditions. The relationships 
between input and output variables are described by: 𝑇 ሺ𝑡ሻ = 𝑓ሾ𝑇௨௧ሺ𝑡ሻ, 𝑅𝐻௨௧ሺ𝑡ሻ, 𝑊𝑆ሺ𝑡ሻ, 𝑆𝑅ሺ𝑡ሻ, 𝑇 ሺ𝑡 − 𝑡௦ሻ, 𝑅𝐻 ሺ𝑡 − 𝑡௦ሻ, 𝑇 ሺ𝑡− 2 ∗ 𝑡௦ሻ, 𝑅𝐻 ሺ𝑡 − 2 ∗ 𝑡௦ሻ, 𝑇 ሺ𝑡 − 3 ∗ 𝑡௦ሻ, 𝑅𝐻 ሺ𝑡 − 3 ∗ 𝑡௦ሻሿ (1) 

𝑅𝐻 ሺ𝑡ሻ = 𝑓ሾ𝑇௨௧ሺ𝑡ሻ, 𝑅𝐻௨௧ሺ𝑡ሻ, 𝑊𝑆ሺ𝑡ሻ, 𝑆𝑅ሺ𝑡ሻ, 𝑇 ሺ𝑡 − 𝑡௦ሻ, 𝑅𝐻 ሺ𝑡− 𝑡௦ሻ, 𝑇 ሺ𝑡 − 2 ∗ 𝑡௦ሻ, 𝑅𝐻 ሺ𝑡 − 2 ∗ 𝑡௦ሻ, 𝑇 ሺ𝑡 − 3 ∗ 𝑡௦ሻ, 𝑅𝐻 ሺ𝑡− 3 ∗ 𝑡௦ሻሿ (2)

On the left-hand sides of the above equations, the dependent variables of the model 
(indoor temperature and relative humidity for time t0) are presented. On the right-hand 
side of these equations, the independent variables of the model are presented, based on 
what function f will give the predictions for the dependent variables. More specifically, 
the variables presented in Equations (1) and (2) are: 

− Tin (t0): the indoor temperature at time t0 [°C] 
− RHin (t0): the indoor relative humidity at time t0 [%] 
− Tout (t0): the indoor temperature at time t0 [°C] 
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− RHout (t0): the indoor relative humidity at time t0 [%] 
− WS (t0): the wind speed at time t0 [m x s−1] 
− SR (t0): the solar irradiance at time t0 [W x m−2] 
− Tin (t0 − ts): the indoor temperature with a time delay of one timestep (ts) [°C] 
− RHin (t0 − ts): the indoor relative humidity with a time delay of one timestep (ts) [%] 
− Tin (t0 − 2 x ts): the indoor temperature with a time delay of two timesteps (2 x ts) 

[°C] 
− RHin (t0 − 2 x ts): the indoor relative humidity with a time delay of two timesteps (2 

x ts) [%] 
− Tin (t0 − 3 x ts): the indoor temperature with a time delay of three timesteps (3 x ts) 

[°C] 
− RHin (t0 − 3 x ts): the indoor relative humidity with a time delay of three timesteps 

(3 x ts) [%] 
− t0: the time equal to 0 
− ts: the timestep equal to 10 min 

Figures 1–6 show the time series for the above variables. For the specific period, the 
outside temperature ranges between 1.7 °C and 26.5 °C, outside relative humidity 
between 15.3% and 100%, wind speed between 0 and 6.3 m/s, and the maximum value for 
solar irradiance is 1010W/m2. Inside the greenhouse, the temperature ranges between 3.2 
°C and 50.7 °C, whereas relative humidity shows a minimum of 5.7% and a maximum of 
89.3%. 

 
Figure 1. Outside temperature training/validation and test data. 
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Figure 2. Outside relative humidity training/validation and test data. 

 
Figure 3. Wind speed training/validation and test data. 

 
Figure 4. Solar irradiance training/validation and test data. 
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Figure 5. Indoor temperature training/validation and test data. 

 
Figure 6. Indoor relative humidity training/validation and test data. 

As shown in the above figures, the input variables have neither the same units nor 
the same orders of magnitude. Thus, variables with higher values will contribute more to 
the output error, with the result that the algorithm gives more weight to them and less to 
variables with a smaller range of values [25]. For these reasons, it is necessary to normalize 
the variables in a range of 0 to 1 or −1 to 1, depending on the neural network activation 
function. In this study, the values of the input and output variables were normalized to a 
range between 0.01 and 0.99 according to Equation (3), where rmax and rmin are equal to 
0.99 and 0.01, respectively. Min/max normalization was chosen because it is the fastest, 
easiest, and the most flexible normalization method, and with the addition of the 
parameters rmax and rmin, the normalization range can be easily changed depending on the 
needs of each activation function, setting the corresponding maximum and minimum 
limit of the range on them. 𝑍 = ሺ𝑟௫ − 𝑟ሻ ∗ ൬ 𝑋 − 𝑋𝑋௫ − 𝑋൰  𝑟 (3)
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In Equation (3), Zi presents the normalized value of the Xi; Xmax, and Xmin present the 
maximum and the minimum value of the variable X, respectively; and the parameters rmax 
and rmin obtain the values of the desired normalization range limits. This range was chosen 
due to the use of the logistic sigmoid activation function in the hidden layer of the neural 
network. The logistic sigmoid activation function is characterized by Equation (4) and 
receives values in a range of 0 to 1, as shown in Figure 7; however, it was chosen to use 
narrower boundaries due to the existence of possible discontinuities at the range limits. 
At the end of the process, the values were denormalized to complete the comparison 
between predictions and observations. 𝑓ሺ𝑥ሻ = 11  𝑒ି௫ (4) 

 
Figure 7. Graphic illustration of logistic sigmoid activation function. 

Then, after completing the preprocessing of the data, the dataset was divided into 
two different subsets. The first one, consisting of 59 days and a total number of 8161 
samples, was randomly divided into two subsets with 80% of the samples used for 
training and the remaining 20% for the validation of the model. The remaining 3 days (433 
samples) were used to test the model and to examine the model’s ability to generalize the 
results The 59-day time series (training/validation data) is represented in Figures 1–6 by a 
blue line, while the 3-day time series (test data) from 27 March 2022 6:20 to 30 March 2022 
6:20 is represented by a red line. 

To check the results and the performance of the model the mean absolute error 
(MAE), the root mean square error (RMSE), and the coefficient of determination (R2) 
(Equations (4)–(6)), as well as the maximum error were calculated. The maximum error is 
a very important value for a decision support system, which will activate the various 
system management devices based on the results of the model. 

𝑀𝐴𝐸 = 1𝑁 ห𝑦ௗ. − 𝑦௦.หே
ୀଵ  (5)



Agriculture 2022, 12, 780 10 of 17 
 

 

𝑅𝑀𝑆𝐸 = ඩ ൫𝑦ௗ. − 𝑦௦.൯ଶ𝑁 ൩ே
ୀଵ  (6)

𝑅ଶ = 1 − ∑ ቂ൫𝑦௦. − 𝑦ௗ.൯ଶቃேୀଵ∑ ሾሺ𝑦௦. − 𝑦௦.ሻଶሿேୀଵ  (7)

2.3. Neural Network Model 
In this study, a multilayer perceptron (MLP) neural network was designed with three 

different layers, the input, the hidden, and the output layer. The input layer consists of 10 
nodes, one for each independent variable, whereas the output layer consists of 2 nodes, 
one for the inside temperature and one for the relative humidity at time t0. As for the 
intermediate layers, the addition of a single hidden layer was chosen because according 
to Kolmogorov’s theorem, in an MLP neural network one hidden layer with a suitable 
number of nodes can give reliable results for any process [2,26]. 

The trial-and-error method to find the best neural network architecture, the best 
training algorithm, and the activation functions, was used. For the best architecture, the 
number of nodes within the hidden layer varied from time to time. The training 
algorithms tested were three of the most well-known algorithms, the Levenberg–
Marquardt backpropagation algorithm, the Bayesian regularization backpropagation, 
and the BFGS quasi-Newton backpropagation; and four different activation functions for 
the hidden layer were also tested: the logistic sigmoid, the hyperbolic tangent sigmoid, 
the radial basis, and the positive linear. Table 2 presents the corresponding commands in 
the MATLAB programming language for both the above training algorithms and the 
activation functions. 

Table 2. MATLAB for the tested training algorithms and activation functions. 

Name MATLAB Coding 
Training Algorithm 

Levenberg–Marquardt backpropagation “trainlm” 
Bayesian Regularization backpropagation “trainbr” 

BFGS Quasi Newton backpropagation “trainbfg” 
Activation Function 

Logistic Sigmoid “logsig” 
Hyperbolic Tangent Sigmoid “tansig” 

Radial Basis “radbas” 
Positive Linear “poslin” 

Through the results, the Levenberg–Marquardt backpropagation algorithm was used 
as a training algorithm, an algorithm based on the Newton method. The LMBP training 
algorithm is a very reliable and fast solution for MLP neural networks and the 
optimization of function’s error consisting of a sum of squares of nonlinear processes 
[27,28]. Logistic sigmoid and linear were used as the activation functions for the hidden 
and output layers, respectively. Finally, mean square error (MSE) was used as a perform 
function. Α diagram of the generated model is shown in Figure 8. 

The model was developed and run with Matrix Laboratory (MATLAB). 
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Figure 8. Scheme of the neural network structure. 

3. Results and Discussion 
In the present study, an MLP neural network was used for the prediction of the 

temperature and relative humidity inside the greenhouse. To find the best architecture, 
and more specifically the number of nodes in the hidden layer, the model was trained and 
tested for the corresponding periods mentioned in Section 2. After performing the 
procedure for a different number of nodes each time (from 1 to 20) and based on the 
statistical indices MAE, RMSE, R2, and the maximum error, it was found that the best 
structure of the neural network is 10-7-2, which gave the most reliable results for the 
testing period. The model structure extracted from MATLAB is presented in Figure 9, 
whereas the values of the aforementioned indices are presented in Table 3, both for 
temperature and relative humidity. According to the specific structure of the neural 
network, the following graphs of comparison were made between the observed and 
predicted values of the two variables. 

 
Figure 9. ANN model structure in MATLAB. 

Table 3. Statistical indicators of comparison between observed and predicted values of internal 
temperature and relative humidity. 

Statistical Indicators Temperature Relative Humidity 
MAE 0.218 K 0.339% 
RMSE 0.271 K 0.481% 

R2 0.999 0.999 
MAX ERROR 0.877 K 2.838% 
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The model training process was completed after 89 epochs (Figure 10), where the 
validation mean square error (MSE) increased 6 times in a row. The number of epochs 
was selected to be 83 where the validation error presented its minimum value, which was 
equal to approximately 5.447 × 10−5. This value was obtained through the normalized input 
and output variables and presents the best performance of the model. 

 
Figure 10. Convergence of mean square error with epochs throughout training and validation 
process. 

Regarding the greenhouse temperature and based on the values of the MAE and 
RMSE, which were calculated at 0.218 K and 0.271 K, the ability of the model to predict 
the temperature to a fairly satisfactory degree is established. At the same time, the values 
of MAE and RMSE differ slightly from each other, indicating the absence of large errors 
produced by the model. The relative humidity is on the same wavelength, with the values 
of MAE and RMSE being very small and equal to 0.339% and 0.48%, respectively. The 
coefficients of determination are the same for both parameters and equal to 0.999, which 
indicates the very good performance of the model. Finally, the maximum errors are equal 
to 0.877 K and 2.838% for temperature and relative humidity, respectively. 

In Figures 11 and 12, the time series of the predicted and observed temperature 
values for the 3 days used for testing the model are presented as well as the errors between 
the respective values. As shown in Figure 11, the model has predicted temperature to a 
large extent, and the largest errors occur during the daytime hours when the temperature 
presents high values but also abrupt changes (Figure 12). These errors have the potential 
to be reduced by adding more samples before training the model. In Figure 13 and in the 
case of relative humidity, great predictability is presented again, with the two curves 
being almost identical. However, according to Figure 14 and unlike the temperature case, 
errors do not seem to follow a fixed pattern. 
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Figure 11. Comparison between indoor temperature predictions and observations for the testing 
period and 10-7-2 NN structure. 

 
Figure 12. Errors between indoor temperature predictions and observations for the testing period 
and 10-7-2 NN structure. 

 
Figure 13. Comparison between indoor relative humidity predictions and observations for the 
testing period and 10-7-2 NN structure. 
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Figure 14. Errors between indoor relative humidity and observations for the testing period and 10-
7-2 NN structure. In this study, to derive the optimal values of the model parameters, three different 
algorithms were initially used, the Levenberg–Marquardt backpropagation algorithm, the Bayesian 
regularization backpropagation algorithm, and the BFGS quasi-Newton backpropagation 
algorithm. The first of these three algorithms (methods) proved to be the best. In addition to the 
above, there are several different optimization techniques that could be used, such as different 
training algorithms (e.g., scaled conjugate gradient, conjugate gradient with Powell/Beale restarts, 
etc.). Relevant research comparing a large number of algorithms has already been conducted by 
Taki, et al. [24], with LMBP giving the best results. 

Three different types of error descriptions were used to evaluate the results and 
compare the predicted and observed values for the two parameters under study (indoor 
temperature and relative humidity). Thus, the comparison of the results with a wide range 
of literature studies was achieved, as in each study a different formula was used to 
evaluate the error. The values calculated for the MAE and RMSE were found to be quite 
small, which gives the created model special weight. At the same time, after extensive 
research of the literature, the coefficients of determination, R2, for both temperature and 
relative humidity, proved to be very good, presenting values very close to 1. Finally, the 
maximum error is not a widespread data comparison value; however, for the needs of this 
work, it was a very useful parameter, with its value being quite small [29]. 

4. Conclusions 
Modeling the greenhouse microclimate has proven to be a very difficult process due 

to the fact that a greenhouse is a dynamic system that is directly dependent on external 
environmental conditions, whereas the interactions between the parameters that 
constitute its internal conditions seem to be both strong and complex. Although physical 
models have been developed to estimate parameters such as indoor temperature and 
relative humidity, their complexity does not make them a useful tool, especially for 
decision support systems (DSS), which require models that in addition to high accuracy, 
can manage huge amounts of data with as little computing power as possible. The above 
requirements are largely met by modeling greenhouse conditions using artificial neural 
networks (ANNs), for which knowledge of physical processes is not necessary, providing 
a quick and easy way to assess the desired parameters through system identification 
processes. 

The purpose of this study was to create a multilayer perceptron artificial neural 
network model to estimate indoor temperature and relative humidity, taking as input 
variables the outside temperature and relative humidity, the wind speed, the solar 
irradiance, and the indoor temperature and relative humidity with a time delay of three 
timesteps. Model predictions can be used as a basis for a DSS. The main goal was for the 
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predictions’ maximum errors to be as small as possible, as this value plays a key role in a 
DSS. Even an incorrect prediction of the model is likely to either delay the operation of an 
actuator (e.g., heating or cooling system) or not even put it into operation, with crop 
destruction being a very likely possibility. At the same time, a clear assessment of the 
indoor environmental parameters will allow the actuators to be switched on only when 
really needed while keeping the energy consumption low. 

Before the implementation of the model, the data were preprocessed, removing the 
missing values, and normalized into a range from 0.01 to 0.99 in order to avoid the 
weighted contribution due to the input variables’ different orders of magnitude. For the 
training and validation of the model, 59 days of data were used, which were randomly 
divided into two subsets, with 80% referring to the training process and 20% to the 
validation process. The three remaining days were used to test the model. The structure 
of the model consists of three different layers, the input, the hidden, and the output layer. 
The Levenberg–Marquardt backpropagation algorithm was selected through the trial-
and-error method including two different algorithms, the Bayesian regularization 
backpropagation and the BFGS quasi-Newton backpropagation. logistic sigmoid and 
Llinear were used as the activation functions for the hidden layer and the output layer, 
respectively. The logistic sigmoid was chosen between the logistic sigmoid, the hyperbolic 
tangent sigmoid, the radial basis, and the positive linear. The model was implemented for 
a different number of nodes in the hidden layer (1 to 20), with the best results for the 
testing period being obtained for the 10-7-2 structure. The maximum error was equal to 
0.877 K and 2.838% for temperature and relative humidity, respectively, and the MAE, 
RMSE, and R2 were calculated to equal 0.218 K, 0.271 K, and 0.999 for temperature, and to 
0.339%, 0.481%, and 0.999 for relative humidity. The above values, both for the maximum 
error and for the rest of the statistics, prove that the specific model can satisfactorily meet 
the requirements of a decision support system. 

The above-proposed model can respond to a DSS, making it a very important tool. 
However, the existence of a crop inside the greenhouse could create problems in 
extracting reliable results from the model. Introducing biological processes, such as 
evapotranspiration, relative humidity, and consequently temperature, would add one 
more factor to influence them besides the conditions of the external environment. At the 
same time, as found in the results, the largest errors of the model occur at times when both 
the temperature and the relative humidity show abrupt changes. Therefore, the ability of 
the model to predict the above parameters should be studied in case the presence of 
actuators (e.g., heating systems, dynamic ventilation) causes relatively abrupt changes in 
the microclimate of the greenhouse. Finally, adding data describing extreme conditions, 
such as a summer heatwave or a very cold winter day, will be able to train the model in 
extreme cases that could cause significant crop problems. Future work could include 
studying the ability of the model to predict the temperature and the relative humidity 
under the influence of a crop on the internal greenhouse conditions, the addition of 
parameters concerning the actuators of the greenhouse but also the addition of more data 
to the model and train it in further cases, and gaining the ability to respond to extreme 
conditions and rapid dynamic changes. 
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