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Abstract: The pear leaf blister moth is a significant pest in apple orchards. It causes damage to apple
leaves by forming circular mines. Its control depends on monitoring two events: the flight of the first
generation and the development of mines up to 2 mm in size. Therefore, the aim of this study was
to develop two models using artificial neural networks (ANNs) and two monitoring devices with
cameras for the early detection of L. malifoliella (Pest Monitoring Device) and its mines on apple leaves
(Vegetation Monitoring Device). To train the ANNs, 400 photos were collected and processed. There
were 4700 annotations of L. malifoliella and 1880 annotations of mines. The results were processed
using a confusion matrix. The accuracy of the model for the Pest Monitoring Device (camera in trap)
was more than 98%, while the accuracy of the model for the Vegetation Monitoring Device (camera
for damage) was more than 94%, all other parameters of the model were also satisfactory. The use
of this comprehensive system allows reliable monitoring of pests and their damage in real-time,
leading to targeted pest control, reduction in pesticide residues, and a lower ecological footprint.
Furthermore, it could be adopted for monitoring other Lepidopteran pests in crop production.

Keywords: apple pests; automatic monitoring systems; deep learning models; site-specific crop
management; sustainable agriculture

1. Introduction

The pear leaf blister moth (Leucoptera malifoliella (O. Costa, 1836)) (Lepidoptera: Lyo-
netiidae) is one of the most important economic pests in apple production [1]. It occurs
in orchards in Europe and Asia [2]. It is a multivoltine species [3], and due to climate
change, it is becoming more common and with larger populations [4]. L. malifoliella is a
typical physiological pest, whose larvae penetrate the leaf and feed on the mesophyll of
the leaf tissue, leaving the epidermis untouched, forming circular mines. One mine has an
average size of 0.88–1.04 cm2 and represents a loss of 3.4–4.6% of the leaf surface. A higher
number of mines (more than 40 per leaf) causes premature defoliation during August or
early September [1]. Early defoliation has a negative effect on bud differentiation, while a
severe infection on the leaves directly affects the size, yield, and quality of apple fruits [5].
Namely, the overwintering population is noticed too late due to the small dimensions of
this pest and its hiding behavior, which is mostly why the damage in apple orchards is not
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noticed in time [6]. Chemical treatments that are applied too late can only lead to worse
results [5].

For successful control of L. malifoliella, monitoring of the first-generation flight and the
beginning of its oviposition need to be conducted, as well as monitoring of the embryonic
development of larvae, their perforation in the leaf and the initial development of mines
up to 2 mm in diameter [5]. Synthetic pheromones have proven useful for monitoring
L. malifoliella [4]. The most favorable time for insecticide treatment is the occurrence of mines
of the first generation. It is considered that the critical number of mines per leaf is two to
three. Such an infection enables the further development of L. malifoliella leading to damage
of an economically significant scale [7,8]. Considering that mines are difficult to notice
due to their small dimensions, it is necessary to use more precise and faster monitoring
methods, in order to react in time and prevent the occurrence of significant damage.

Decision thresholds based on pest capture are the basis of integrated pest management
(IPM) and are used to optimize the timing of insecticide treatment. However, IPM requires
frequent visits to inaccessible orchards and checking traps on a weekly basis can lead to
late interventions and ineffective control [9]. Due to climate change, agricultural systems
are exposed to increasing pressures, and significant changes have been recorded in pest
phenology [10]. Changes in air temperature directly affect the population dynamics, the
relationship with natural enemies, and creates an increase in pest reproduction, which
results in the occurrence of a greater number of generations and, consequently, greater
damage. Considering the unpredictability of pest occurrence and the impracticality of
existing monitoring methods, it is crucial to develop more sophisticated monitoring meth-
ods [11]. Therefore, automatic pest monitoring systems have recently been intensively
developed [12,13]. The need to use automatic systems for pest monitoring is particularly
important in crops that are grown on large areas, such as apples.

Apple (Malus domestica Borkh., 1803) is one of the most economically important fruit
crops worldwide, whose fruits are consumed fresh or processed throughout the year [14].
It is grown on an area of 4.6 million hectares, and the global production in 2020 was 86.4
million tons [15]. The apple is the most commonly consumed fruit in Croatia and occupies
36% of the total fruit production [16]. Despite its importance, pest management, as well as
early pest monitoring methods in apple production are mostly outdated and unreliable.
Therefore, scientists developed automatic systems for monitoring apple pests [17,18],
mostly for monitoring the most dangerous apple pest, codling moth (Cydia pomonella
(Linnaeus, 1758)) (Lepidoptera: Tortricidae) [19,20]. L. malifoliella is a significant apple
pest as well, and due to its morphology (small dimensions of all developmental stages),
its detection is difficult using classical monitoring methods. Therefore, there is a need to
develop and deploy automatic systems for monitoring this pest as well.

The use of deep learning for automatic pest detection from photos is increasingly
being used to detect insect pests in a timely manner [21]. These works can serve as a basis
for developing automatic systems to monitor other important pests and their damage. For
example, Sabanci et al. [22] used two different deep learning architectures for detecting sunn
pest-damaged wheat grains and achieved high classification success, with a classification
accuracy of 98.50% and 99.50%. Zhong et al. [23] used neural networks to detect flying
insects, and the detection accuracy was over 92%. Moreover, Sütő [24] developed a smart
trap using a deep learning-based method for insect counting and proposed solutions to
problems such as “lack of data” and “false insect detection”. El Massi et al. [25] used a
neural network and a support vector machine as a classifier for classifying and detecting
damage caused by leaf miners, with more than 91% accuracy. Grünig et al. [26] presented
a deep learning-based system for monitoring damage by L. malifoliella. The used neural
network showed good results in categorizing different damage classes from 52,322 leaf
photos taken under standardized conditions as well as in the field. However, for the above
system to be fully effective in the timely detection of pests, it is critical that the system
monitors the number of adult individuals in addition to leaf damage, as this will allow for
earlier response and damage prevention.
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In addition, Ding and Taylor [19] used deep learning techniques to develop a fully
automated codling moth monitoring system. Namely, artificial neural networks were
trained to recognize adult codling moths based on 177 collected red-green-blue (RGB)
photos. The model was effective, but for the system to be even more reliable and successful
in detection, a larger data set needs to be collected. Albanese et al. [27] developed a smart
trap for monitoring codling moth using various deep learning algorithms. The advantage
of this system is that photo processing is performed in the trap where big data is limited
to a small message. In this case, only the detection results are sent to the external server,
and the limited energy available in the field is used optimally. However, there is a need
to develop these types of systems for monitoring L. malifoliella as well, so that they can be
practically used under field conditions.

Most deep learning models are based on artificial neural networks (ANNs) [28,29],
which have recently been applied in various fields, including agriculture [30]. In light of
this, many researchers have adopted ANN-based detection methods for pest monitoring in
agriculture [21,31]. Besides insect detection, artificial neural networks and their variants
have been shown to be the most effective method for object detection and recognition [32].

Considering that there are no particularly effective ecological friendly control mea-
sures for L. malifoliella and that its management relies mostly on chemical control [2], it is
extremely important to use as precise monitoring methods as possible, in order to limit
chemical insecticides to only targeted and thus effective applications.

Therefore, this paper makes two main contributions. Firstly, the development of the
model using artificial neural networks for early detection of L. malifoliella and its damage
on apple leaves that is accurate, precise, fast, and requires minimal pre-processing of data.
Secondly, the development of a Pest Monitoring Device (PMD) for monitoring L. malifoliella
individuals and a Vegetation Monitoring Device (VMD) for detecting its damages. This
system is based on detecting pests and their damage from photos taken with a monitoring
device in the field. In these devices, data processing is performed on-the-node, which
enables lower energy consumption, and thus a longer lifetime of the entire system, as well
as less need for human intervention. Automatic pest monitoring is still in its infancy, and
this system is an innovative solution for faster and more reliable pest monitoring.

The hypothesis of this study is that artificial neural networks and the proposed moni-
toring devices are a reliable tool for monitoring the pear leaf blister moth individuals and
their damage if the detection accuracy is more than 90% compared to visual inspection by
an expert entomologist.

2. Materials and Methods

The study is divided into four phases, which are shown in Figure 1. The first phase
involves photo acquisition for the purpose of learning the ANN. In the second phase, data
were processed, and the photos labelled. In the third phase, the learning (or training) ANNs
were provided, in order to build an analytical model for automatic detection of L. malifoliella
and its damage. In the final, fourth phase, monitoring devices were built to implement the
developed model for monitoring pests and damage (Figure 1).
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Figure 1. The methodology of the study.

2.1. Data Acquisition

The collection of photos was set up and structured so that it might be possible to obtain
enough photos for all classes of defined observations. This was performed so that two
EfficientDet Object identification (ANN) models could be trained [33]. No more than two
ANN models were used in this work. Each of the two ANN models was used to identify a
separate class. The two classes were: 1. the pest, L. malifoliella; and 2. the damage caused by
this pest (leaf mines). The number of classes that can be seen is dependent on the quality
of the photos taken, the accuracy of the detection methods, and the economic significance
of the classes. How the characteristics of each class could be seen under different weather
conditions was examined. This was done before the decision was made to observe a
certain class.

In the period between April and September 2022, 400 photos for each model (photos of
adhesive pads with adult L. malifoliella and photos of mines on the apple leaves) were taken
in apple orchards in Zagreb County, Croatia (Petrovina Turopoljska, Mičevec, and Staro
Čiče). Petrovina Turopoljska and Mičevec are orchards that use IPM strategies, whereas
Staro Čiče is an orchard with organic production. Adults of L. malifoliella were caught on
adhesive pads with traditional Delta traps, and pheromone lures (Csalomon®) were made
for this species. Traps were inspected, adhesive pads were changed, and photos were taken
on a weekly basis.

RGB camera was mounted in the polycarbonate housing, which mimics the housing
of the Pest Monitoring Device (PMD), and used for data acquisition, in order to achieve
similar shooting conditions as those taken later by the PMD. The adhesive pads were
transferred from the Delta traps to the housing. Photos of adult L. malifoliella and apple
leaves were taken manually in the field in a real production situation under different
lighting conditions (sunny, cloudy, etc.) in order to create the model for automatic pest
detection. The RGB cameras for both models were connected to the SBC (single board
computer) of the Raspberry Pi 4 foundation, from where the camera is controlled. Photos of
adult L. malifoliella from the Delta pheromone trap were taken in parallel with the collection
of photos of vegetation. The data were collected on a weekly basis using an RGB camera.
Photos of the central part of the apple tree were taken from a distance of 50 cm to detect
mines on the leaves.
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2.2. Data Preparation

The collected photos, both of the adhesive pads with pests, and of vegetation, were
processed with the program LabelImg. Entomological experts were used to detect L. mali-
foliella adults (Figure 2) and their damage on apple leaves (Figure 3), which were marked
manually with bounding boxes.
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Figure 2. Annotated class MINES (L. malifoliella adults)—marked with yellow bounding boxes, class
OTHER (other objects) marked with purple bounding boxes, class INSECTS (other insects) marked
with blue bounding boxes in the LabelImg program from images of adhesive pads.

Figure 3. Annotated class MINES (damage caused by L. malifoliella)—marked with pink bounding
boxes, class OTHER (other objects, healthy leaves, etc.) marked with light blue bounding boxes in the
LabelImg program from images of vegetation.
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For establishing a model for detecting L. malifoliella adults in the PMD, three classes
were defined and annotated: MINER i.e., L. malifoliella adults, INSECT i.e., other insects
and OTHER i.e., other objects (e.g., remains of leaves, branches, etc.). To make a model for
detecting mines on apple leaves, two classes: MINES i.e., damage caused by L. malifoliella,
and OTHER i.e., other objects (e.g., healthy leaves, nutrient deficiency on leaves, fruit
coloration, etc.), were taken out of the 32-class model that is still under development. There
are several less important subclasses for the development of both models, all of which
have been set as class OTHER to better distinguish them from the important classes listed
above. The 1880 annotations of the class MINES (damage) and 4700 annotations of the class
MINER (pests) were used for the learning ANNs. The annotation format is PascalVOC, an
XML structure. Thus, the images from the PMD consist of the segments shown in Figure 4,
while the images from the VMD consist of the segments shown in Figure 5.
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2.3. Creating Analytical Models for Automatic Detection of L. malifoliella and Its Damage

Automatic object detection was performed by an artificial intelligence algorithm. The
annotated images were used to create two ANNs. The ANNs are computer processing
systems that are based on biological nervous systems. They are mostly made up of a
large number of connected computing nodes called neurons, which work together in a
distributed way to learn from inputs and improve the final output [32].

Learning (or training) ANNs to make an analytical model starts with raw images,
extracting important features, such as edges and blobs, and bounding boxes of the objects
(L. malifoliella adults and their damage) for the data set. During image processing, they
were changed to fit the purpose by applying annotations and modeling concepts. A data
set of 400 images was used for learning each ANN. Images were rotated by 0, 90, 180, and
270◦, and copies were made that were mirrored on the horizontal and vertical axes. In the
end, 12 images were taken from each original image. Then, the original image (size 4000
× 3900) was cut into smaller images (size 640 × 640), and 30 images were obtained from
each of these 12 images. This gave 144,000 images for training ANN for pest detection and
144,000 images for training ANN for damage detection.

The images were randomly divided into three sets: the training set, the validation set,
and the test set. For training, 80–95% of the images were used, while 20–5% of the images
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were used for validation. The validation of the model is the first step of the model’s quality
examination, which is carried out during the model’s creation [34]. For the validation
phase, various basic statistical elements that define the precision of object detection were
used. Namely, Average Recall (AR) and Average Precision (AP), as well as statistical
indicators, which refer to indicators during the model’s creation and validation at the end
of each epoch, and final statistical indicators of the entire model and the classes included in
the model.

Checking the accuracy of the validation during training allows for early termination
and avoidance of overfitting [35]. Learning loss is a measure of how well a deep learning
model fits the training data. Namely, it evaluates the error of the model on the training set.
The training set is a portion of the data set used to initially train the model. The learning
loss was calculated using the sum of the errors for each training sample [36]. Validation
loss is a metric used to evaluate how well a deep learning model performs on the validation
set. The validation set is a subset of the data set used to evaluate the performance of the
model. Similar to the learning loss, the validation loss was calculated by accumulating the
errors for each validation set [36].

For the test data set, it was important to select the most complicated images that the
model had never seen before and test the model on this data set. The test results were
statistically evaluated using the confusion matrix. Confusion matrices represent the number
of predicted and actual values and indicate the accuracy of the model. The confusion matrix
consists of 4 categories (TP—“true positive”, TN—“true negative”, FP—“false positive”,
and FN—“false negative”) [37]. The confusion matrix was used to calculate the data on
accuracy, precision, sensitivity (recall) and F1 score. The F1 score is the harmonic mean of
Precision and Recall. Recall indicates the number of miners correctly identified as positive
relative to the total number of miners in the image [38]. All of the aforementioned metrics
were calculated using the equations of Aslan et al. [39]. The equation for each metric was
defined from Equations (1)–(4). All metrics were calculated using correspondences across
the entire data set and do not represent averages across individual images [19].

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score =
2TP

2TP + FP + FN
(4)

The analytical models, themselves, were made through a series of algorithm tests and
parameter changes to obtain the best performance for the model’s intended use. The Python
3.6 programming language was chosen to run the program using the TensorFlow artificial
intelligence library. Python makes it easy to write scripts quickly [40], and TensorFlow has
all the functions needed to make models already built in. For the production application, the
TensorFlow Lite platform was used. This means that the analytical models that were built
can be used on ‘’end” devices with less power consumption, such as SBC [41]. Taking into
account the use of analytical models on “end” devices with the TensorFlow Lite application,
the quality of detection was tested on different concepts of analytical models, such as SSD
(Single-Shot Detector) MobileNet in different versions, SSD ResNet in different versions,
and EfficientDet-Lite in different versions. Finally, the network structure of EfficientDet-Lite
4 showed the best detection quality. EfficientDet is a new family of object detectors that are
more accurate and use fewer resources than the current state-of-the-art [42].

Emerging technologies, such as computer vision, require accurate object identification
but have limited processing resources. These requirements are not met by many high-
accuracy detectors. Real-world object detection solutions use different platforms and
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resources. “Scalable and Efficient Object Detection” (EfficientDet), an accurate object
detector that uses few resources, was made by the authors in [33]. EfficientDet is nine
times smaller and uses less computation than preceding state-of-the-art detectors. For its
backbone for image feature extraction, it uses EfficientNet (Figure 6) [33]. The weighted
bi-directional feature pyramid network (BiFPN) gives the input features more weight based
on their resolution. This helps the network understand how important they are. In the next
step, the feature network takes multiple levels of features from the input and sends out
fused features that show the most important aspects of the image. All regular convolutions
are replaced with depth-wise separable convolutions. Finally, a class or box network uses
fused features to predict the class and location of each object. The EfficientDet neural
network architecture can have a different number of layers in BiFPN and class or box
networks based on how much processing power is available [43].
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Figure 6. The structure of the EfficientDet neural network, where the number of layers changes
depending on how much processing power is available [33].

Two separate ANNs were trained to identify L. malifoliella (MINER) and mines caused
by this pest (MINES). Objects in RGB images (adult L. malifoliella and mines on leaves)
were used to create analytical models based on what was seen and the structure of the
corresponding object detection classes. The analytical models were divided into groups
depending on what they are used for. For example, the PMD has an analytical model for
insects (L. malifoliella) and the VMD has an analytical model for mines. Different concepts
of algorithms have been used to develop analytical models depending on their intended
use (e.g., the quality of detection, the speed of detection required, the amount of energy
required for detection, etc.).

Once a model is created, each one must be tested and adjusted, and production pa-
rameters must be changed. Analytical models are constantly being improved. Regardless
of the purpose or version of the camera control server, a way has been found to automati-
cally update the analytical models. Computers specifically set up for this purpose have
been used for storing data and to create analytical models. A computer with a special
hardware configuration was acquired to ensure that models requiring more processing
power could be created. A separate virtual server was set up for the appropriate storage of
image material.

2.4. The Pest Monitoring Device (PMD) and Vegetation Monitoring Device (VMD)

The Pest Monitoring Device (PMD) for pest monitoring (Figure 7a) was housed in
a milky-white polycarbonate shell. The housing contains an RGB camera, a temperature
sensor for the battery and electronics, an adhesive pad, a pheromone lure, and a power
supply system with a battery and a solar panel. On the other hand, in the Vegetation
Monitoring Device (VMD), the RGB camera was placed in a separate housing (Figure 7b).
The software for both cameras allows users to use a remote monitoring service with image
transmission and processing. One PMD is sufficient for use on 1 to 3 ha of the orchard. The
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devices (including the associated models) have been designed to be used throughout the
vegetation and are resistant to weather conditions thanks to an external structure.
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2.4.1. Trap Housing

During the building process, a lot of thought was put into how to protect the house
from things like rain and sunlight. Because the devices were attached to the stakes in the
orchard, special mounting stands had to be made. The trap, which was made specifically
for several sorts of insects, also protects the camera within. The rectangular-shaped trap
features two entrances on its two opposing sides. The openings are 16 cm wide and 10 cm
high, while the house is 25 cm long, 24 cm high, and 16 cm broad. The antenna for the 4G
and 5G networks is on top of the housing, along with the solar panel.

2.4.2. Camera

When making the camera, the features of the orchard, especially during the growing
season, as well as how it would be used and the conditions in which it would work, were
taken into account. The cameras were built around single-board computers (SBCs) from the
Raspberry Pi Foundation. The cameras have an Rpi HQ sensor, which allows different M12
lenses to be used depending on what the camera is going to be used for. Lens specifications
for the PMD are 75◦ HFOV, 1/23”, and 3.9 mm, while those for the VMD are 28◦ HFOV,
1/25”, and 12 mm. The resolution utilized was 12.5 megapixels, or 4056 × 3040 pixels.
A SIM card was included in each camera to enable 4G network communication. The
temperature of the battery and electronics can be observed from the temperature sensors.

2.4.3. Battery

The power supply system was made up of three Panasonic NCR18650B rechargeable
lithium-ion batteries connected in series. These batteries have a 3350 mAh capacity, a 5 A
maximum current capacity, and a 10.8 to 12.6 V voltage range. The Battery Management
System (BMS) is in charge of making sure that charging and discharging work well so that
the battery lasts as long as possible. The system is autonomous and has a long lifespan
without assistance from people. The batteries were recharged using solar panels. A solar
panel charges the battery system during the day so that it can run on its own.
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3. Results

Two artificial neural networks or analytical models were established, one for the
automatic detection of L. malifoliella adults within the developed PMD and one for the
automatic detection of mines on apple leaves within the VMD.

3.1. Validation Phase

The validation parameters and final statistical indicators of the models and included
classes are shown in Table 1. The Average Precision (AP) for the class MINER was 0.69 in
the model for the PMD, while AP for the class MINES was 0.62 in the model for the VMD
(Table 1). The AP of the whole model for the VMD was quite a bit lower than the AP of the
MINES class, due to other classes in the model that were still in the training process.

Table 1. Validation parameters of the models for the PMD and VMD.

Parameter Model for PMD Model for VMD

AP 0.6630534 0.467365

AP50 0.9308306 0.6163057

AP75 0.79948294 0.538607

Aps 0.41702107 0.38043988

Apm 0.64587986 0.3874695

Apl 0.57356155 0.50087154

Armax1 0.3027751 0.5197058

Armax10 0.70718616 0.6650187

Armax100 0.75332874 0.6722461

Ars 0.5896679 0.68923765

Arm 0.73534316 0.57283384

Arl 0.6281324 0.6942948

AP_MINER 0.69061697 /

AP_MINES / 0.62485766
* ‘AP’—% AP at IoU = 0.50:0.05:0.95 (primary challenge metric); ‘AP50’—% AP at IoU = 0.50 (PASCAL VOC metric);
‘AP75’—% AP at IoU = 0.75 (strict metric); ‘Aps’—% AP for small objects: area < 322; ‘Apm’—% AP for medium
objects: 322 < area < 962; ‘Apl’—% AP for large objects: area > 962; ‘Armax1’—% AR given 1 detection per image;
‘Armax10’—% AR given 10 detections per image; ‘Armax100’—% AR given 100 detections per image; ‘Ars’—% AR
for small objects: area < 322; ‘Arm’—% AR for medium objects: 322 < area < 962; ‘Arl’—% AR for large objects: area
> 962; ‘AP_/apple_trap_leaf_miner’—average precision of the class ‘MINER’; ‘AP_/apple_leaf_miner’—average
precision of the class ‘MINES’ [44].

Statistical indicators during the model’s creation and validation at the end of each
epoch are shown in Figure 8. The EfficientDet-Lite model uses 50 epochs by default
(Figure 8), which means it went through the training data set 50 times. Additionally,
validation loss was measured after each epoch (Figure 8). This indicates whether the model
requires additional adjustments.
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Device, VMD – Vegetation Monitoring Device).

In the case of the model for the VMD, the validation loss was greater than the learning
loss (Figure 8), indicating underfitting of the model. Underfitting occurs when the model
cannot accurately model the learning data and, therefore, produces large errors [45]. This
result suggests that the model for the VMD needs to be improved with a larger data set
for future use of the other classes (not mentioned in this paper), but our focus was on the
class MINES. For the model for the PMD, both the learning and validation losses decreased
and stabilized at a certain point (Figure 8), indicating an optimal fit (without overfitting or
underfitting), so no further adjustments to the model are needed.

3.2. Test Phase

Due to the importance of the model’s work in practice, the model was tested, i.e., its
quality was checked after the overall creation. The data set used for model testing consisted
of the 30 most complicated photos for each ANN. These photos were not used to train or
validate the proposed two ANNs. The examples of automatic counts on the test photos
(results of the model) are shown in Figures 9 and 10.
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Figure 9. Example of the automatic counts of the model for the Pest Monitoring Device (PMD). Red
bounding boxes – detected class MINER (L. malifoliella adults), green bounding boxes – detected
classes OTHER (other objects) and INSECT (other insects).

The model was tested by comparing the automatic counts (Figures 9 and 10) to counts
provided by an expert entomologist. The results were processed and shown using a
confusion matrix (Figures 11 and 12).

In this case, the automatic counts given by the proposed detection algorithm were
similar to the manual counts given by an expert entomologist. In Figure 11, which repre-
sents the confusion matrix of the model for the PMD, it can be seen that the number of class
INSECT and class OTHER was high (>400).
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However, there were no false positive (FP) detections, which points to the high preci-
sion of the model for the PMD (1.0) (Table 2), while the data set was big enough to build a
model with a high level of accuracy (1.0) (Table 2). A high number of true positives (TP)
were detected (54) and 19 objects were marked as false negatives (FN) (Figure 11). The
overall model accuracy was 98.03%, and the detection accuracy of the MINER class was
98.13% (Table 2).

Table 2. Metrics per class in the model for the Pest Monitoring Device (PMD).

Class (n) Truth (n) Classified Accuracy Precision Recall F1 Score

MINER 73 54 98.13% 1.0 0.74 0.85
INSECT 491 509 98.03% 0.96 1.0 0.98
OTHER 453 454 99.9% 1.0 1.0 1.0

In the case of the model for the PMD, the precision value was 1.0, which indicates
a completely precise model for detecting L. malifoliella (Table 2); while in the model for
the VMD, the precision value was 0.94 (Table 3). The recall in the model for the PMD was
0.74 and 0.91 for the VMD. For detecting L. malifoliella adults in the PMD model, the F1
score was 0.85 (Table 2), and 0.92 in the model for the VMD (Table 3). All aforementioned
metrics (accuracy, precision, recall and F1 score) were calculated and the values are shown
in Tables 2 and 3.

Table 3. Metrics per class in the model for the Vegetation Monitoring Device (VMD).

Class (n) Truth (n) Classified Accuracy Precision Recall F1 Score

MINES 1916 1856 94.59% 0.94 0.91 0.92
OTHER 3446 3506 94.59% 0.95 0.97 0.96

In the model for the VMD, 115 FP detections were recorded (Figure 12), while the
number of FN detections was 175. However, there was a high number of annotations
and TP detections (1741 mines) (Figure 12). Finally, the overall accuracy of the model was
94.59%, as was the detection accuracy for the class MINES (Table 3).

The detection algorithm (model) started working as soon as an image was captured.
On-site data processing was performed with a storage limit of 15 MB. The execution of
the proposed method takes six minutes on average. Due to the built-in on-site detection
mechanism, the detection result is sent with as few bytes as possible, which makes it
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suitable for rural areas. Larger models require more storage space and more time to
run, making them difficult to use. The optimization phase aims to reduce the model size
while minimizing the loss of accuracy or performance to find the optimum. This allows
faster evaluation while minimizing accuracy loss. The proposed implementation applies
optimization both during the training phase and before the evaluation of the training model.

4. Discussion

In this study, while testing the model for the PMD, there were no false positive (FP)
detections, which points to the high precision of the model. In contrast, Preti et al. [20]
developed a smart trap for monitoring the codling moth (C. pomonella) (Lepidoptera:
Tortricidae), which had a high number of FP detections, accounting for 90.7% of the
automatic counts. The majority of FP detections were represented by shadows on the
adhesive pads, lures, and flies. The low precision was caused by the high number of FP
detections, suggesting that adjustments to the detection algorithm are required. They point
out that the reason is a small data set, and Du et al. [46] proved this with a theoretical
calculation that the error in the ANN algorithms class is correlated to the data set size.

Moreover, in the model for the PMD, several detected objects were marked as false
negatives (FN), mostly due to the change in color and decomposition of the insects over
time. Ding and Taylor [19] analyzed errors caused by different factors and emphasized
that many errors are related to time. Hence, the same insect pest could have different
wing poses and decay conditions over time. Moreover, decaying insects could make the
originally transparent adhesive pad become dirty and reduce the contrast between the
insects and the background. Errors caused by time-related factors could be largely avoided
in real production systems if adhesive pads in the smart trap are changed approximately
once in every ten days, in order to avoid insect decomposition and dirt accumulation, and
thus, a higher number of misdetections.

The difference between counts detected by an algorithm and counts detected manually
by an entomologist is called detection accuracy. An accuracy equal to 100% means that the
number of objects marked and counted automatically by the ANN matches the number of
L. malifoliella adults on the adhesive pad. An accuracy lower than 100% means that there
were L. malifoliella adults that were not recognized by the model. An accuracy greater than
100% represents counting non-target insects or other items as the miner; thus, the automatic
identification overestimated the true occurrence of miners, which was the case in Preti
et al. [20]. In our case, there were no FP detections in the model for the PMD, whereas in the
case of the model for the VMD’s accuracy, this was not impacted by FP detections, due to
the similar number of FN detections (Table 3). The precision parameter can range between
0 and 1. Values of precision close to 1 mean that the occurrence of false positives is very
low, and therefore, the total automatic detection corresponded to the correct detections of
L. malifoliella adults (showing that the algorithm is precise and does not mark non-target
insects or other items) [20].

In the model for the VMD, several FP and FN detections were recorded (Figure 12).
The reason for more FP detections is that the mines on leaves were misidentified as part of
a branch or dry leaf. Most of these missed detections happened at the edges of the picture,
where the mines were not fully shown and were, therefore, not seen. Even though there
were more FP and FN than in the PMD model, and the overall accuracy, as well as the other
parameters (Table 3) were slightly lower, the results are oddly satisfying, and the model is
usable in practice, because there was a high number of annotations and TP detections.

When compared to other successful works concerning detecting Lepidopteran apple
pests using ANNs, both models demonstrated the potential to work in practice. The
accuracy of the considered models is higher than 90% [27,47], as well as in this work.
Therefore, one can consider the models proposed in this work efficient for practical use.
Suárez et al. [47] used the TensorFlow library and the programming language Python to
make a model for detecting codling moths. The overall accuracy of the developed model
was 94.8%. Similar results were obtained by Albanese et al. [27]. By using different deep
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learning algorithms in their trap, they achieved an accuracy of 95.1–97.9% in detecting
codling moths. Grünig et al. [26] created an image classification model for detecting damage
on apple leaves, using neural networks to achieve good results in categorizing different
damage classes from photos of leaves taken under standardized and field conditions. The
model was 93.1% accurate at detecting damage caused by L. malifoliella. This means that
the model is good for automatic damage detection. However, there is no available model
for the automatic detection of this pest in a trap, nor the developed automatic system, and
works by Grünig et al. [26] and El Massi et al. [25] only classify damage caused by this
pest. For the above-mentioned system to be fully effective in controlling pests in a timely
manner, it is critical that the system monitors the number of adult individuals, in addition
to leaf damage, so that it can intervene earlier and prevent damage (mines) from occurring.

The proposed model is accurate, precise, fast, and requires minimal preprocessing of
data. In addition, the Pest Monitoring Device (PMD) for monitoring L. malifoliella adults
and Vegetation Monitoring Device (VMD) for detecting its damages on apple leaves are
both portable, independent devices that require no additional infrastructure installation.
Most of the time, they are operating in sleep mode. This means that they use less energy,
last longer, and have less need for human intervention. This system is specific, because
the output of each device is the number of objects of a certain class that it detects (not the
whole image). Due to the fact that the output is represented as a small amount of data, it
is sent quickly over a mobile network. The results of detection are sent to the web portal,
which is where all further analysis and reporting are performed. Several smart traps for
monitoring apple pests are available on the market [48,49], but there is no available trap,
nor comprehensive system for automatic monitoring of L. malifoliella or its damage.

Therefore, in this work, a comprehensive system consisting of two object detection
models and accompanying devices for pest and vegetation damage monitoring (the PMD
and VMD) was developed to obtain complete information in the orchard about L. mali-
foliella occurrence, to react in a timely manner, and prevent the occurrence of economically
important damage. This proposed system contributes to the improvement of automatic
pest monitoring and, thus, to its wider application. The use of this system allows for
targeted pest control, thus reducing the use of pesticides, decreasing the negative im-
pact on the environment, and ultimately allowing for higher quality and more profitable
apple production.

5. Conclusions

The developed models showed high accuracy in detecting L. malifoliella (>98%) and its
damage (>94%), compared to visual inspection by an expert entomologist. Therefore, the
hypothesis established is accepted and the proposed system is an effective and reliable tool
for monitoring the pear leaf blister moths and their damage. The system is also operative
in field conditions. Automatic monitoring systems are still in their infancy, and to date,
there are no research results on automatic monitoring of L. malifoliella individuals. The
proposed solution can provide comprehensive detection results (pest and damage moni-
toring) directly from apple orchards to enable site-specific management and sustainable
apple production. Further research is recommended to extend this system for the detection
of other important apple pests as well as other Lepidoptera pests in crop production. In
precision agriculture, innovative solutions, such as automatic monitoring systems, are a
key element of decision support systems. Therefore, they are expected to be used as the
gold standard for pest monitoring in the future.
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