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Abstract: The detection of possible areas for the application of agroforestry is essential and involves
the usage of various technics. The recognition of forest types using satellite or aerial imagery is
the first step toward this goal. This is a tedious task involving the application of remote sensing
techniques and a variety of computer software. The overall performance of this approach is very
good and the resulting land use maps can be considered of high accuracy. However, there is also the
need for performing high-speed characterization using techniques that can determine forest types
automatically and produce quick and acceptable results without the need for specific software. This
paper presents a comprehensive methodology that uses Normalized Difference Vegetation Index
(NDVI) data derived from the Moderate Resolution Imaging Spectroradiometer instrument (MODIS)
aboard the TERRA satellite. The software developed automatically downloads data using Google
Earth Engine and processes them using Google Colab, which are both free-access platforms. The
results from the analysis were exported to ArcGIS for evaluation and comparison against the CORINE
land cover inventory using the latest update (2018).
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1. Introduction

The land use management system in which trees or shrubs are grown around crops or
pastures is called agroforestry. This combination of agricultural and forestry usages has
multiple advantages: the improvement of erosion protection, an increase in biodiversity,
carbon sequestration, etc. [1]. Mixed forest stands can be used for the establishment of
agroforestry systems; therefore, forest type identification is an essential procedure for
the application of environmental management practices as well as the identification of
the proper agroforestry system that can be applied [1,2]. Forest types depend mainly
on the geographical location of the forest, which, combined with different precipitation
and evapotranspiration levels, is responsible for different biomes. Tropical moist and dry
forests are located across the Equator, boreal forests are located around the North Pole and
temperate forests are located at middle longitudes. Forests established on higher elevations
tend to be more similar to forests located at higher latitudes [3]. In Europe and particularly
in Greece, which is located between 41.50306 S and 35.01186 N, well inside the temperate
zone, forests include broadleaf deciduous forests, evergreen coniferous forests and mixtures
between these types [4].

Forests are considered the largest land carbon pools accounting approximately for 85%
of the total land biomass [2]. The soil carbon stock of forests represents 73% of the total
(global) soil carbon [5]. Based on this fact, forests are a key factor in ecosystem management
for climate change mitigation and environmental improvement [6–8]. Mitigation can be
applied by reducing forest degradation and increasing forest resources, which can be
measured by performing an accurate mapping of forest types [9]. The typical method
of forest surveying for the estimation of biomass includes random sampling and a field
investigation of the selected plots, which is tedious and time-consuming work [10,11]. In
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order to speed up the process, remote sensing data can be used to obtain data from rural
areas, locations on extreme slopes and difficult-to-reach locations. Data of this type can be
combined with traditional methods to speed up forest surveying and reduce fieldwork.
Remote sensing data can be obtained either from aerial imagery or through various satellite
services [12]. Satellite data are very common these days especially due to the fact that
many companies exist that provide them either free of charge (Glovis, United States
Geological Survey (USGS) Earth Explorer, Copernicus, etc.) or at a cost (Landsat, Spot,
Aster) depending on the region required as well as the extent of the timeframe [13]. It is
up to the researcher to choose the type of data required for his research; however, it is
common knowledge that free-of-charge services provided lower resolution data at limited
timeframes whereas paid services provide several types of datasets at different resolutions
and more timeframes [13].

Nevertheless, even the combination of the aforementioned methods can also prove
to be insufficient, especially in the case where large areas must be mapped. This is mostly
the case when research is required to determine the optimal agroforestry system to be
applied in a certain area [14–16]. This paper describes a methodology for automating the
entire procedure by proposing (and testing) an algorithm that automatically downloads
data from the MODIS instrument of the TERRA satellite [17] using the Google Earth
Engine and subsequently processes the data using Google Colab by applying a harmonic
NDVI time series clustering to determine two main forest types (coniferous and mixed
forests/broadleaved forests). The results are then compared to land use data from the
CORINE land cover inventory. The methodology provided promising results, which can be
further improved by applying machine learning methods such as artificial neural networks,
random forests and expert systems [12,18,19], and the results can be used for the application
of forest policy as well as decision making [20–24].

This paper is organized as follows. The introduction (Section 1) provides useful
information regarding forest surveying and forest types, followed by the literature review
where surveying methodologies are presented. Materials and methods (Section 2) describes
the location used for the application of the methodology; the algorithm used; and the data
used. Results (Section 3) presents in detail the results produced, including comparison maps
and the clustering results. Section 4 is dedicated to a general discussion of the produced
results and Section 5 for the conclusion where future improvements to the methodology
are suggested. The presented methodology is an effort to automate the work presented by
Jakubauskas [25,26] and test its application against forest land cover types.

Literature Review

NDVI is a simple index, which is often used to analyze remote sensing data and
determine whether an area under study contains vegetation or not. NDVI is based on the
usage of visible and near-visible (infrared—IR) parts of the electromagnetic spectrum to
determine the existence of vegetation (as well as its health). This is performed by measuring
the ratio between near-infrared (NIR) radiation (which is strongly reflected from vegetation)
minus red (which is absorbed by vegetation) and NIR plus red. NDVI values range between
−1 and +1. Low NDVI values indicate moisture-stressed vegetation and higher values
indicate a higher density of green vegetation [27].

NDVI in combination with land cover type changes was used for the exploration of
relationships between the NDVI values of different land cover types, air temperature and
precipitation during the 1982–2015 period based on a dynamic grid. The results from this
comparison indicated that forests and shrubland areas increased as a large area of grassland
transformed to forest. Additionally, snow/ice tundra and grassland decreased during the
same period [28]. A methodology for the estimation of the conifer–broadleaf ratio in mixed
forests based on time series data was used by researchers at the Purple Mountain of the
Jiangsu Province in China. The researchers tried to demonstrate the feasibility of accurately
estimating the conifer–broadleaf ratio using satellite data and field measurements. In detail,
leaf area index time series data and forest plot inventory data were acquired. The data
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were then imported to the invertible forest reflectance model (INFORM) for simulating the
NDVI index of different conifer–broadleaf ratios. Fifteen Gaofen-1 (GF-1) satellite images
of 2015 were acquired. The conifer–broadleaf ratio estimation was based on the GF-1 NDVI
time series and semi-supervised K-means cluster method, which resulted a high overall
accuracy of 83.75% [29].

Other researchers explored and evaluated the potential of freely available satellite
imagery and an object-based random forest algorithm as a source for the identification of
forest types. In detail they used datasets from Sentinel-2A, Sentinel 1A in dual polarization,
a digital elevation model (DEM) from one-arc-second Space Shuttle Radar and LandSat
8 images. The usage of only satellite imagery had the least satisfactory results. The
combination of satellite imagery with DEM data improved the identification result accuracy
and the highest accuracy (82.78%) was achieved when using a combination of all data [30].
Forest composition mapping in various image availability conditions and how missing
data due to clouds or scan line problems affect classification accuracy were explored by
researchers [31]. In this research, a long-period (1 January 2014 to 31 December 2016)
Landsat imagery dataset was used in an area where most forest stands were mixed. For
classifying the type of stands, the researchers used decision trees and rule-based models
implemented in R. The results were then compared to the Reconnaissance Forest Inventory
Data (RECON) and showed that for pure stands the identification results were high ranging
from 96.2% for northern hardwoods to less than 10% correct identification for tamarack.
Eight-day composite MODIS NDVI data were used for the period between 2001 and 2014
to access the significant negative trend of seasonal natural vegetation in India. Forest
phenology data were extracted from the MODIS NDVI series. Data were harmonized and a
non-parametric trend analysis was applied (Mann–Kendall statistics and Theil–Sen slope).
Four types of negative trends were produced [32]. Twenty-year-long MODIS NDVI data
were also used for the estimation of spring vegetation green-up dynamics. In this study,
data for a period staring on 2000 and ending to 2019 were used for calculating green-up
duration (GUD). The GUD was calculated for 170,000 pixels for the wider Carpathian Basin
and exhibited large interannual and elevation-dependent variability, which indicates the
distribution of different species. The longest mean GUD occurred in 2017 (32.7 days) while
the shortest (14.5 days) occurred in 2018 [33].

Finally, MODIS data were also used for the evolution assessment of the vegetation
state and its relationship with the climate dynamics in the Mediterranean forest region
of Tunisia using land surface phenology (LSP) and NDVI data from MODIS. The results
showed that the LSP index changed significantly during the study period. Precipitation
and maximum temperatures represent the best climate parameters to explain the changes
in LSP. Finally, both NDVI and SPEI (standard precipitation-evapotranspiration index)
indexes showed a significant correlation on longer time scales [34]. Evidently, satellite data
in combination with the NDV index can be used for determining forest type, stand type,
vegetation status, etc. [35]. However, data processing can be difficult and in many cases the
data size required to be processed exceeds the capabilities of the average workstation [36].

All the aforementioned methods are trying to identify crop types or forest types
using a combination of satellite data and machine learning algorithms. Additionally, all of
them are optimized for producing optimal results in the case study area and/or specific
fauna types. Therefore, it would be difficult to use in other zones. Furthermore, all these
approaches share a common point, the exploitation of the NDV index. Result improvements
for these methods can be achieved by using additional data for the study areas. These
data can include the geographical location of the area (coordinates), the elevation derived
from the digital elevation model of the area (if available), prior phytosociological data,
etc. The usage of these data must be conducted carefully and in combination with the
advice of an expert (forester, agronomist, etc.). A lot of errors can be produced if we try to
generalize and match certain species with certain altitudes or geographic locations. For
example, there is a general approach that combines evergreen conifers forests with northern
latitudes and higher altitudes. Although correct, one cannot underestimate the fact that in
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southern countries (Greece, Spain, Italy, etc.) there are vast conifer forests located at sea
level. Similarly, many broadleaved deciduous trees can exist at higher altitudes (Fagus sp.,
Ulmus sp., etc.). Therefore, the application zone plays a critical role on the results as well as
their interpretation.

Obviously, it is up to the researcher to implement the optimal approach and addition-
ally interpret the results produced by the application of the selected methodology. Finally,
it must be noted that most of these methods must be modified substantially to be applied
in other research areas and therefore cannot be easily generalized.

In the present study, we try to overcome the aforementioned restrictions and explore
the possibility that the required satellite data are downloaded using a web service (Google
Earth Engine—GEE) directly to a cloud programming platform (Google Colab—GC), are
processed in order to calculate the harmonized NDV Index and clustered using the time
series K-means clustering algorithm. The usage of a cloud programming platform such
as GC has many advantages with the main one being that the user takes advantage of
the massive computer infrastructure of Google to perform all the difficult and processor-
intensive tasks. This approach allows the algorithm users to apply the methodology
without the need to allocate local computer resources and additionally provides them with
the capability to easily change the time period used for the satellite data.

Additionally, with Colab, users can create and share notebooks or documents, which
can be simultaneously edited from Google Docs, supporting platforms and development
collaborations regardless of the operating system each user has equipped or its location.
Colab supports version 2.7 and 3 of the Python scripting language and can be easily
accessed through Google’s browser Chrome. Finally, the software is also integrated with
Google Drive, so users can easily share projects or copy others’ shared projects onto their
own accounts. There is no need for high-end workstations to perform the work as it is
performed on the Cloud.

2. Materials and Methods
2.1. Study Area

The proposed methodology was applied in the Drama prefecture, which is in Northern
Greece, in Macedonia (Figure 1, left). The region is a part of the Rhodope Mountain Range, it
is mostly covered by forest ecosystems, and it constitutes the oldest land mass of the Balkan
Peninsula. The area is characterized by a diverse landscape, which includes grass meadows,
pastures and wooden lands and it is grazed not only by domestic animals (cattle, sheep, etc.)
but also by wild horses and red deer. The main forest species found are the following: Abies
alba, Abies borissi regis, Picea alba, Pinus nigra, Pinus peuce, Fagus sylvatica, Carpinus orientalis and
Quercus spp., which form various types of stands (conifer, broadleaf and mixed stands) [37].
The topography is characterized by steep slopes and mountains with many peaks above
2000 m, and the climate is characterized as Mediterranean (Csb according to Köppen climate
classification) [38].
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For this research, a polygon was randomly created by setting four random points, near
the border with Bulgaria, covering an area of 82,568.36 ha. Additionally, CORINE 2018 land
cover files were downloaded from the Copernicus Land Monitoring Service and processed
using ESRI ArcMap, in order to include only the required land uses (broadleaved forests
CLC 311, coniferous forests CLC 312, mixed forests CLC 313) for our study (CLC stands for
Corine land cover and is a term used to characterize each polygon in the Corine Database).
The total area covered by CLC 311, CLC 312 and CLC 313 land uses inside the study area is
69,954.82 Ha, or 84.72% of the total area (Figure 1, right).

2.2. Data Manipulation

The removal of the non-essential land uses was performed in two steps. At first,
a structured query language (SQL) was applied on the CLC database to select only the
required CLC area codes and their locations. The results from the query were exported
to a database and a new, spatial query was performed to clip features that were outside
the study area. Before the application of the methodology, we must perform some initial
tasks, which are presented inside the dashed box on Figure 2, Environment Initialization.
This initialization comprises all the essential steps that are needed to access Google Colab,
the application programmable interface (API) and the installation of the required Python
packages. Finally, during this process the user determines the coordinates (or sets them
randomly) of the polygon vertexes where the methodology will be applied. This section is
required to be performed only once at the beginning.
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The second section (Figure 2, outside of the dashed box) includes all the necessary
steps to apply the methodology. These steps can be considered procedures and functions
inside the algorithm. In detail, the steps are the following:

1. MODIS dataset acquisition. In this step, the algorithm downloads all the required
data for the study area and the time period specified by the user. The data include
daily NDVI images from the MODIS satellite. The normalized difference vegetation
index is generated from the near IR (NIR) and red (RED) bands as a ratio of (NIR
− RED)/(NIR + RED) and the ratio values range between −1.0 and 1.0. The data
are generated from the MODIS/006/MOD09GA surface reflectance composites. It is
worth noting that all data are stored temporally on the cloud (Google Colab) and not
locally on the user’s computer.
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2. Afterwards, we insert 100 randomly generated points and for these we estimate the
median monthly NDVI values for each point (steps 2 and 3).

3. The next step includes the usage of the ipygee tools for generating and viewing a
chart of the NDVI variation on each point for the time period we defined (step 4).

4. After the creation of the NDVI median chart, we apply the harmonic model (step 5).
A Fourier (harmonic) analysis permits a complex curve (such as the one created in
the previous step) to be expressed as a series of cosine waves (which are called terms)
and an additive term [39].

5. On the created harmonic model, we apply a clustering algorithm for the identification
of samples with similar characteristics and therefore of the same origin and create the
appropriate clusters. There are various clustering algorithms available, and in our
case we used the time series K-means algorithm to cluster the samples.

2.3. Harmonic Analysis

In the harmonic (Fourier) analysis, each wave is defined by a unique amplitude and a
phase angle, where the amplitude value is half the height of a wave, and the phase angle
(or simply, phase) defines the offset between the origin and the peak of the wave over the
range 0 to 2π (Figure 3A). Each term designates the number of complete cycles completed
by a wave over the defined interval (Figure 3B). Successive harmonic terms are added to
produce a complex curve (Figure 3C) and each component curve accounts for a percentage
of the total variance in the original time series [39].
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The harmonic analysis of the time series we have created aims at determining possible
seasonal changes in the spectral behavior of the points by performing a decomposition
of the time series in harmonic terms. Most of the observed variance in the dataset is
expected to be contained in the first period, similarly to other analysis such as the principal
component analysis. Over 90% of the variance in the original time series was captured in
the additive and the first two terms [25].

Harmonic analysis has been used for image and sound analysis [40–43] and for analyz-
ing datasets of successive regular multidate samples of satellite imagery [44–47]. Especially
in the case of land use and land use changes, harmonic analysis has been used to deter-
mine land use change on agricultural land in a yearlong period [25,26] and has proven as
useful in that seasonal and interannual cycles (such as the ones produced by leaf drop in
broadleaved forests) can be determined and highlighted.

2.4. Time Series Clustering

Time series data are considered one of the major data types, which are generated in
huge quantities nowadays. Satellite data in particular (which are time stamped) create
large data series of spatial measurements. In general, time series data are considered as
supervised data but, when their generation becomes vast and fluctuate, they behave as
unsupervised data (in general, supervised data use labeled input and output data, while
unsupervised data do not). Thus, time series clustering is a process that can help us to
cluster vast fluctuating time series data.
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The main difference between time series data clustering and data clustering in general
is that the data used contain time values, and we want to exploit this characteristic in order
to identify possible time clusters. There are various methods for performing this type of
clustering (agglomerative clustering, time series K-means, kernel K-means, etc.) [48]. In
this paper, we use K-means time series clustering mainly because we try to group similar
data points (median monthly NDVI values) and discover if there is an underlying pattern
between NDVI values and different forest types. Additionally, K-means requires a fixed
number of clusters (K), which is compatible with the approach we used, randomly placing
100 points. For the application of K-means, we defined k as 2 to determine the two main
forest types (coniferous and mixed forests/broadleaved forests).

In the standard K-means algorithm, total within cluster variation is defined as the sum
of the squared Euclidean distances between items and the corresponding centroid, which
is shown in the following equation [49].

W(Ck) = ∑
xi∈Ck

(xi − µk)
2 (1)

where xi is ith data point of cluster k (Ck), and µk is the mean value of points in cluster k.
A quick algorithm for estimating the value of W is the following:

Data: k numbers of clusters;
Result: set of k cluster initialization.
While the centroids do no change, do the following:

- Assign each point to its closest centroid;
- Compute the new centroid (mean) of each cluster;

end while
In classic K-means clustering, we would consider the median monthly NDVI values

on each location as data points, but by averaging data, valuable information would be lost.
The usage of time series clustering helps us to overcome the issue by considering all data
points simultaneously and grouping locations with similar time series into the same cluster.

3. Results

After the initialization of the platform, we set the boundaries of the study area, by
determining its vertex’s coordinates. For this polygon we downloaded the NDVI data from
MODIS/006/MOD09GA for the time period beginning on 1 January 2019 and ending on 31
December 2021. A three-year period was selected because we wanted to include land cover
variance, which is generated both from season change and from change in meteorological
conditions, which can also affect the NDV index of trees.

Afterwards, we inserted 100 randomly created points in order to apply the K-means
time series clustering method. In Figure 4, we present the study areas’ polygon vertexes
marked with red balloon icons. Inside the polygon depicted as red stars are the randomly
created points (steps 2 and 3).

Additionally, for each point we applied the ipygee tool to generate and view a chart
of the NDVI variation on each point for the selected time period (Figure 5). The variation
was graphically depicted using three colors (red, yellow, green) and it was also plotted as a
chart, where the mean NDVI values were set on the y axis, and the associated time stamp
on the x axis (Figure 5). It is evident that most of the value fluctuation is monitored on the
first two harmonic terms (time periods).

For the calculated median monthly NDVI values we applied the harmonic model to
decompose the time series presented in Figure 5 into harmonic terms. The additive term
and the phase and amplitude for the first two harmonic terms were extracted and used for
further analysis. The calculated harmonic terms for the MODIS NDVI time series as well as
the graphical representation of these values are presented in Figure 6.
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Finally, for the harmonized mean NDVI values we applied the K-means time series
clustering to cluster the harmonized mean NDVI values. The results are depicted on
Figure 7.
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From Figure 7, it is evident that the algorithm has determined the existence of two
classes. Broadleaved and mixed forests were estimated as one class and conifers as the
other. In order to test the provided results, we must compare them with actual land use
types. For this reason, we extracted the points and created a new geodatabase which was
then compared with the CORINE 2018 land use data (Figure 8).
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Figure 8. Results comparison with CORINE 2018 CLC.

Obviously, from the results it is clear that the suggested methodology successfully
managed to identify two major forest type stands. Conifer and broadleaved-mixed forest
stands. In Table 1, we present the results from the methodology application regarding the
correctly and incorrectly identified forest types.

Table 1. Results.

Correctly Recognized Percentage Incorrectly Recognized Percentage

Conifers 25 69.4% 11 30.6%

Broadleaved
and Mixed 56 87.5% 8 12.5%

Total 81 19

Kappa coefficient = 0.24

4. Discussion

The results from the application of the methodology are encouraging. Out of the
100 randomly placed points, the amount of correctly identified conifers stands was 69.4%
whereas the amount of correctly identified broadleaved-mixed stands was 87.5%.

The algorithm works better in the case of broadleaved and mixed forest stands. The
difference in the results can be easily interpreted by the fact that the broadleaved-mixed
forest stands present a strong seasonality in their appearance mainly due to the fact that
they drop their leaves during the winter. We believe that this fact plays an important
role in the accuracy of the proposed methodology as the NDVI variation is larger in these
stands during winter. Similar results were also produced in other efforts to automate
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the identification of different land uses (crop types) where the correctly identified crop
types ranged from 66% for wheat (Triticum aestivum) to 16% for milo (Sorghum bicolor) [25];
the identification of forest vegetation types using spatio-temporal fusion had an accuracy
Kappa coefficient of 95.6% [50]; mapping crop types had an overall map accuracy of
75.5% [51]; and land cover with Google Earth Engine, optical images and supervised
algorithms had results that showed 0.99% accuracy for the support vector machine, 0.95%
for the random forest and 0.92% for classification and regression trees. The kappa index
was as follows: 0.99% for the support vector machine, 0.97% for the random forest and
0.94% for classification and regression trees [52].

The algorithm could not successfully identify mixed stands from broadleaf stands,
mainly due to the lack of proper resolution on the satellite data. In many cases, methodolo-
gies such as the one described are confounded by the spatial resolution of the images being
produced by the scanner. Stands that are smaller than the resolution of the sensor cannot
be identified correctly. The same goes in the case of mixed forest stands where in some
cases the in-stand variations of the tree types (conifers and broadleaved) are small and
therefore difficult to identify due to data resolution [53,54]. The MODIS/006/MOD09GA
spatial resolution is 500 m; therefore, patches smaller than the spatial resolution cannot be
identified correctly.

A significant improvement on the result accuracy could be achieved using high-
resolution satellite imagery. Similarly, improvement can also be achieved by using a combi-
nation of satellite sources, which can result in overall better raw data.

Harmonic analysis can also be used as a tool for monitoring vegetation change [32].
Given that different land uses create different phase and amplitude values in the harmonic
analysis, the produced results suggest that the methodology can also be used to detect
changes in land use by examining changes in annual values of phase or amplitude. For
example, changes in seasonal amplitude while the phase remains unchanged could indi-
cate changes in vegetation condition. Changes in phases where the amplitude remains
unchanged could indicate a change in the time of maximum greenness, which can lead to
changes in planting time or even harvesting. Finally, changes in both amplitude and phase
over long periods (years) could indicate major changes in surface conditions indicating
variation in land management (crop rotations, land abandonment, climate change, etc.).

Finally, the presented methodology can work as a stand-alone tool in order to help
researchers identify quickly and efficiently possible areas where agroforestry can be applied
alone or in combination with other methodologies in a synergistic operation. In more detail,
the researcher can use (if available) aerial photographs instead of satellite imagery for
the study of the selected area. Additionally, the workflow of the methodology can be
enhanced by using drone imagery from platforms acquiring imagery from the IR section of
the electromagnetic spectrum.

5. Conclusions

The identification of priority areas for performing successful and active reforestation
interventions and the prioritization of the criteria affecting this are very important before
the application of an agroforestry system [16,55–57]. Therefore, correctly determining forest
type plays an important role in the selection of the application areas. Additionally, the
identification of forest stand types can also help researchers in the characterization of land
use types, understanding forest evolution and forest degradation, etc.

The objective of this paper is to implement an automatic methodology for identifying
forest types. On this end, we used harmonic analysis for processing satellite time series
data and compared the provided results with land uses created from the CORINE project.
Although preliminary, the results provided suggest that the identification is possible, and
the accuracy can be considered adequate for general usage. The methodology is quick and
automated to such a degree that it can be used multiple times on various time series for the
researchers to understand forest dynamics and forest change.
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There is a possibility that, like other methodologies that are based on the usage of
aerial imagery, the results can be affected in the case of bad weather conditions (cloudy or
rainy days). The user can overcome this problem by extending the time period in order to
include more imagery for the selected area.

Of course, this approach is not affected by the appearance of water bodies and burned
areas because their reflectance characteristics are distinctive and easily identified.

Improvements to the proposed methodology include the usage of machine learning
algorithms such as convolutional neural networks (CNN), which can learn from the results
of the proposed methodology and increase the results’ accuracy. CNN will be used mul-
tiple times in order to read results from various areas and subsequently learn the NDVI
patterns. Further improvement can be applied by using high-resolution imagery and more
timeframes.

Apart from the application of the presented methodology for the identification of pos-
sible areas were agroforestry can be applied, the proposed workflow can be easily used in
other cases in order to investigate the following: the extent of deforestation [58]; the effects
of climate change and possible mitigation methods [59]; or urban space development under
the green urbanism principles [60]. Obviously, the versatility and the overall openness of
the approach is a guarantee that there could be other fields where the methodology could
be used.
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