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Abstract: The problem of small and multi-object polished rice image segmentation has always been
one of importance and difficulty in the field of image segmentation. In the appearance quality
detection of polished rice, image segmentation is a crucial part, directly affecting the results of
follow-up physicochemical indicators. To avoid leak detection and inaccuracy in image segmentation
qualifying polished rice, this paper proposes a new image segmentation method (YO-LACTS),
combining YOLOv5 with YOLACT. We tested the YOLOv5-based object detection network, to extract
Regions of Interest (RoI) from the whole image of the polished rice, in order to reduce the image
complexity and maximize the target feature difference. We refined the segmentation of the RoI
image by establishing the instance segmentation network YOLACT, and we eventually procured the
outcome by merging the RoI. Compared to other algorithms based on polished rice datasets, this
constructed method was shown to present the image segmentation, enabling researchers to evaluate
polished rice satisfactorily.
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1. Introduction

China accounts for more than 28% of global rice production, and the stability of its rice
yield plays an important role in world food security. Rice is one of the prominent cereal
crops in China, as about 65% of the population feeds on it [1]. The production process
of polished rice is mainly composed of three steps: the milling and hulling of grains; the
removing of the brown outer bran layer; and the polishing of the bran particles. Polished
rice is no less than three-quarters the length of fully milled grains, and is twice or three
times the price of broken grains [2]. With the development of the Chinese economy and
the improvement of people’s living standards, higher-quality rice is required urgently.
The traditional manual detection method has been unable to meet the demand, due to
slow detection speed, low accuracy and high labor cost, as shown in Figure 1a. Machine-
vision-based quality inspection techniques of agricultural products have advanced rapidly
in recent years, with their advantages of fast speed, high precision and reproducibility,
thus providing the prospect of the quality detection of agricultural products [3]. In order
to detect quality appearance in rice accurately, it is necessary to obtain a decomposition
diagram of refined rice, by using image processing technology: the attached rice image is
partitioned into single grain rice, for further determining its physical and chemical indexes;
therefore, image segmentation is a significant stage in rice quality detection. However,
in the practical process of rice image segmentation, due to small targets with potential
irregular rice particles in the image, the mixture of refined and broken rice and uneven
levels of polished rice results in difficulties in the polished rice image segmentation, as
shown in Figure 1b.
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tion result. However, the initial cluster numbers and the initial cluster center positions 
have a large impact on the segmentation effect. Mariena et al. [9] came up with a hybrid 
K-mean clustering algorithm with a cluster-centric evaluation technique, to overcome this 
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contact or overlap of objects in the image. The concave point-based image segmentation 
steps generally include concave point detection, match and pair segmentation. The algo-
rithm effectiveness depends on the correct matching of concave points. YAO et al. [10] 
applied the Edge Center Mode Proportion (ECMP) method to concave point matching, 
and then used the Minimum Enclosing Rectangle (MER) to calculate the rice length for 
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characterized by simple methods and fast speed, such as the watershed algorithm; how-
ever, the traditional watershed algorithm is sensitive to weak edges, resulting in over-
segmentation issues, noises in the image and subtle grayscale changes on the surface of 
the object. In order to solve this problem, some pre-processing methods are introduced 
before the algorithm, or are combined with other algorithms for improvement. Liang et 
al. [11] proposed a watershed segmentation algorithm based on generative markers, by 
combining the optimizing core region strategy and the comprehensive segmentation strat-
egy: this method overcame the problem of over-segmentation and under-segmentation 
on images with dense and small targets, and the average segmentation accuracy was 
98.73%. Gamarra et al. [12] utilized the Marker-Controlled Watershed algorithm (MC-Wa-
tershed), combined with the Split and Merge Watershed (SM-Watershed) two-step algo-
rithm, to reach a segmentation balance using the inherent features of cells. Traditional 

Figure 1. Traditional artificial quality detection and rice sample diagram: (a) from Hubei Province
Cereals, Oils and Foodstuffs Quality Supervision and Inspection Center; (b) irregular rice mixed image.

In the process of image segmentation, different segmentation methods are needed for
various types of adherent particles images. More than a thousand segmentation methods
have been proposed, after decades of research and development [4–8]. At present, the
image segmentation method is generally classified into traditional machine-learning-based
and deep-learning-based algorithms.

Traditional machine learning algorithms for image segmentation include different
partitioning methods, based on threshold, cluster, edge, morphology, etc. One or more
thresholds are used to divide the image grayscale histogram into several types, and then
the image with grayscale value at the same class of pixel is regarded as one research object.
Although the calculation is simple and fast, object position relationships in space may
cause noise sensitivity and have a poor effect on the segmentation of different objects with
slight difference in grayscale. The cluster-based image segmentation algorithm uses feature
space points to represent the pixels in the image space, according to their positions in the
feature space for clustering, and then maps to the image space for the final segmentation
result. However, the initial cluster numbers and the initial cluster center positions have a
large impact on the segmentation effect. Mariena et al. [9] came up with a hybrid K-mean
clustering algorithm with a cluster-centric evaluation technique, to overcome this drawback.
The concave point is a feature point formed at the edge of the objects by mutual contact
or overlap of objects in the image. The concave point-based image segmentation steps
generally include concave point detection, match and pair segmentation. The algorithm
effectiveness depends on the correct matching of concave points. YAO et al. [10] applied the
Edge Center Mode Proportion (ECMP) method to concave point matching, and then used
the Minimum Enclosing Rectangle (MER) to calculate the rice length for identifying whole
polished rice. Morphology-based image segmentation algorithms are characterized by
simple methods and fast speed, such as the watershed algorithm; however, the traditional
watershed algorithm is sensitive to weak edges, resulting in over-segmentation issues,
noises in the image and subtle grayscale changes on the surface of the object. In order to
solve this problem, some pre-processing methods are introduced before the algorithm, or
are combined with other algorithms for improvement. Liang et al. [11] proposed a water-
shed segmentation algorithm based on generative markers, by combining the optimizing
core region strategy and the comprehensive segmentation strategy: this method overcame
the problem of over-segmentation and under-segmentation on images with dense and small
targets, and the average segmentation accuracy was 98.73%. Gamarra et al. [12] utilized
the Marker-Controlled Watershed algorithm (MC-Watershed), combined with the Split and
Merge Watershed (SM-Watershed) two-step algorithm, to reach a segmentation balance
using the inherent features of cells. Traditional segmentation methods are able to achieve
fast and simple segmentation of adherent particles, but their results are easily affected
by the external environment, and they have a relatively poor effect on complex adhesive
particles segmentation, especially when whole polished rice is mixed with broken rice.
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In recent years, Convolutional Neural Networks (CNNs) have been widely used as an
advanced algorithm in image classification, object detection and instance segmentation,
which avoids complex pre-processing of images, and directly inputs original images. The
CNNs consist of a series of connected convolutional layers. The output of the upper layer
after convolution is used as the input of the next layer in the forward propagation: each layer
calculates the activation value based on its output value and activation function, and then
passes the value to the next layer. In backward propagation, the error generated by forward
propagation is used to update the parameters of each convolutional layer by the gradient
descent method and chain rule: thus, the CNNs are able to learn useful features from image
data automatically. The research has confirmed that improving network performance by
adjusting the structure of CNNs can be better applied in the field of machine vision [13–17].

Deep-learning-based segmentation algorithms are mainly implemented via CNNs,
and are independent of artificial feature extraction. Additionally, their networks can learn
features during self-training, further reduce the influence of the external environment on
the segmentation results, and improve robustness by simulating particle images under
different conditions. Wang et al. [18] combined CNNs and Gradient-weighted Class
Activation Mapping (Grad-CAM) to achieve automatic detection of chalkiness in grain
images, accurately capturing chalkiness caused by high night temperature in rice. The
method trained a CNN model to distinguish between chalky and non-chalky grains, using
Grad-CAM to identify the area of a grain that was indicative of the chalky class, and then
using a smooth heat map to quantify the degree of chalkiness. Based on EfficientNet-B3,
Li et al. [19] introduced a Dual Attention Network (DAN) to sum up the output of two
channels for changing feature representation and further focusing on feature extraction:
their method realized the classification of rice germ integrity with an accuracy of 94.17%,
providing guidance for the rice and grain processing industry. Xiong et al. [20] proposed a
rice panicle segmentation algorithm called Panicle-SEG, based on simple linear iterative
clustering superpixel regions generation, CNNs classification and entropy rate superpixel
optimization: the algorithm was a robust method for panicle segmentation, creating new
opportunities for non-destructive yield estimation. Ni et al. [21] developed a web browser-
based application (Web App), by training two deep learning models, including MobileNet
SSD and MobileNet-UNet, and achieved accurate and fast determination of blueberry
scrapes along with online user access. This Web App provided a basis for blueberry
breeders, farmers and packers to assess berry bruises. Jia et al. [22] proposed a new
instance segmentation method named FoveaMask, which firstly extracted the features
of input images by ResNet, fused by Feature Pyramid Networks (FPN), and carried out
the classification and bounding-box regression of each spatial position on feature maps
directly by full convolution method. RoI Align layer was then applied, to fix the size of
the feature region, and at the same time to maintain accurate spatial locations. Finally,
instance-level fruit segmentation was completed by using embedded mask branches on
each proposal of pixel-level classification, which showed strong generalization ability
on different shapes of fruits, and balanced the contradiction of accuracy and efficiency
simultaneously. Pérez-Borrero et al. [23] proposed a strawberry instance segmentation
method based on improved Mask R-CNN, which designed a new architecture for backbone
and mask networks, removed the object classifier and the bounding-box regressor, and
replaced the non-maximum suppression algorithm with a new region grouping and filtering
algorithm, without increasing the complexity of the calculation. Lu et al. [24] proposed
applicable segmentation methods for an intelligent Sichuan pepper-picking robot that
could identify the fruit in images from various growing environments. This method not
only showed high accuracy for the recognition and segmentation of Sichuan peppers but
also provided support for the visual recognition of pepper-picking robots in the field.

At present, deep-learning-based segmentation algorithms are widely applied in the
image segmentation of adhesive particles, but the high leakage rate and inaccurate mask-
quality segmentation should be considered, especially in the image segmentation of pol-
ished rice with small and multiple targets: hence, precise decomposition of complex images
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is required in the appearance quality detection of polished rice. As object detection net-
work YOLO [25–27] is characterized by fast speed, low leakage rate and high accuracy,
and YOLACT [28] with fast detection and high portability, producing a high quality and
dynamic stability mask for simple target images, a new combined method of image seg-
mentation on adherent rice is proposed in this paper. In particular, the model regards
irregular mixed sticky polished rice as segmentation objects based on both the YOLOv5 and
YOLACT methods, and collects the photos of different sticky rice grains on the conveyor
belt to produce the dataset. The training model is used to achieve the refined segmentation
of polished rice, and the main contributions of this constructed algorithm are as follows:
(1) the complex image segmentation with small and multiple objects is decomposed into
the segmentation of multiple single large objects, which enables the YOLACT model to
learn the features of the polished rice, and to acquire segmentation results with low leakage
detection rate and a high-accuracy mask; (2) a better YOLACT model can be trained via
fewer samples, due to decreased image complexity; (3) the object-level labeling in the object
detection network reduces the workload of the pixel-level labeling required for the instance
segmentation network.

2. Methods and Materials
2.1. Overall Workflow

The workflow of this study is shown in Figure 2. In Step 1, the weights of YOLOv5
and YOLACT were trained by the self-built dataset. In order to ensure the accuracy of the
training weights, the training accuracy of Mean Average Precision (mAP) was set to 95%
and 75% in YOLOv5s and YOLACT, respectively. The weights greater than the training
accuracy were selected, and the weight with the best training accuracy was further selected.
The performance of this weight on the test set was used as the measurement criterion for the
accuracy of the weights in Step 1. In Step 2, the object detection network YOLOv5 was then
used to predict the location information of the RoI, and to extract the RoI from the whole
polished rice image, to reduce image complexity and maximize object feature differences.
Eventually, the mask of the RoI images was obtained by the instance segmentation network
YOLACT in Step 3, and the final results were obtained by merging and restoring the RoI.
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2.2. Image Acquisition Device

An image acquisition device was designed, to acquire the randomly distributed image
data of the polished rice. The acquisition equipment was mainly divided into hardware
and software parts. The hardware part consisted of hopper, roller, conveyor, cameras,
lighting devices and computing equipment. The schematic diagram of this device is shown
in Figure 3. A pipeline operation was conducted in the acquisition process, and randomly
distributed and non-overlapping polished rice was obtained by passing through the roller
under the operation of the conveyor after the initial storage of the hopper. Vimba Viewer
software was used to control the camera to acquire the original image data of the polished
rice, and the captured images were transmitted to the computer for further analysis. The
software part mainly included image acquisition, deduplication, image segmentation of
rice grains, and quality detection of rice grains after accurate segmentation, such as the
identification analysis of head, broken and chalky rice. The device acquired images at about
25 frames per second, and the conveyor belt speed was about 224 pixels per frame. There
were approximately 43 rice grains in each image. After deduplication, the actual detection
speed of the rice grains was about 30 instances per second. To prevent external light from
damaging the image quality, the illumination device was composed of an LED light source
and a black box. Considering economy, portability and image quality of acquisition, a
Prosilica GC1600CH industrial camera from Allied Vision, Germany, with a resolution of
1620 × 1220 1620 × 1220 and a frame rate of 25 frames per second, using a macro lens, was
used in this study. To meet the performance of different networks, the operating system in
the used computing device was Ubuntu 18.04, with Intel core i9-10900K CPU, 32 GB RAM
and NVIDIA GeForce RTX 3090 GPU, 24 GB video memory.
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2.3. Polished Rice Dataset Production

A CCD camera with a resolution of 1620 × 1220 was used for the collection of the
polished rice images, manually labeled using Labelme, to treat different rice grains as
different instances of the same class, as shown in Figure 4a,b. Labelme is an open source
annotation tool for labeling data required in target detection and image segmentation. In
particular, Labelme can generate rectangular or polygon boxes in images, and at the same
time produce corresponding json files containing all the boundary coordinate information
and labeled object categories in the image. In the labeling process, the image segmentation
needs to accurately label the boundary points of each instance, and the target detection
only needs to label the approximate positions of each instance (the upper-left vertex
and the lower-right vertex of the targets), as shown in Figure 4b,c. Thus, the pixel-level
annotation of the image segmentation was more difficult than the object-level annotation
of the target detection. In the annotation of the whole polished rice images and small
polished rice images, the workload of the former was much greater than the latter, due to
the different number of instances, as shown in Figure 4a (45 instances) and 4b (4 instances).
For experimental requirements, this proposed method divided the YOLOv5 format data
into 800 training sets, 100 validation sets and 100 testing sets, and the YOLACT format data
into 1172 training sets, 147 validation sets and 147 testing sets, both after annotation, while
the data in the other compared algorithms were divided into 727 training sets, 91 validation
sets and 91 testing sets after labeling. From the total number of images, the data quantity of
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this constructed method was greater than that of other algorithms; however, the workload
of this method was much smaller than that of other algorithms, in terms of labeling.
Moreover, the number of training segmentation instances required by this method was
much less than others.
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2.4. Model Structure

In 2015, Joseph Redmon presented YOLO [25], a fast and accurate convolutional neural
network for object detection, to treat the object detection task as a regression method of
target region and category prediction, doing away with the extraction of candidate boxes
in the Faster R-CNN [29], and completing fast and accurate end-to-end detection. YOLOv5,
one type of network that improves on YOLOv4 [30], reserves the performance benefit of
the YOLO series, and increases its speed and flexibility.

YOLOv5 consists of four parts: Input; Backbone network; Neck; and Head, as shown
in Figure 5. In the Input part, Mosaic data augmentation, adaptive image scaling and auto-
learning bounding box anchors are used in YOLOv5, which enriches the background and
the small target of the detected object, reduces the information redundancy due to scaling
filling, and greatly improves the network robustness. In the Backbone part, YOLOv5 adopts
Focus and CSPNet [31] structures. Focus is a structure similar to down-sampling, reducing
image size and increasing feature channel by slicing images; it also maintains effective
information when reducing feature dimension. CSPNet, as a structure similar to a residual
network, can effectively enhance the learning ability of CNNs, and reduce calculation
amounts. In the Neck part, YOLOv5 retains the FPN [32] and Path Aggregation Network
(PAN) [33] structures of YOLOv4, and adopts the CSPNet-designed CSP2 structure, to
enhance the fusion ability of the network features. In the Head part, YOLOv5 utilizes the
CIoU loss as the loss function of the bounding box that is derived from the Intersection
over Union (IoU) throughout a series of improvements, focusing on both overlapping and
non-overlapping areas, and achieving fast convergence.

LCloU = 1− IoU +
ρ2(b, bgt)

c2 + αv (1)

IoU =
|A ∩ B|
|A ∪ B| (2)

α =
v

(1− IoU) + v
(3)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(4)
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In Formula (1), α is a parameter used to balance the ratio, and ν is a parameter used to
measure the difference of width and height between prediction box and ground truth. The
values of α and ν are shown in Formulas (3) and (4).

YOLACT was designed by RetinaNet [34] via a series of improvements. Compared to
two-stage instance segmentation networks, YOLACT is a one-stage network independent
of the RoI concept, repooling operation and quantization errors, and thus significantly
improves the inference speed and predicted mask quality.

YOLACT mainly consists of four parts: the Backbone network; FPN; the Prediction
Head branch; and the Protonet branch, as shown in Figure 6. The Backbone network firstly
extracts the feature from the image information. When FPN fuses the multi-scale feature
information, it also provides a basis for the generation of the Prediction Head branch and
the Protonet branch. The Prediction Head branch generates category confidence, position
regression parameters and mask coefficients on each anchor, and the Protonet branch
generates a set of prototype masks. Meanwhile, YOLACT linearly combines prototype
mask with mask coefficients, to obtain the instance mask. These operations can be efficiently
implemented by using single matrix multiplication and sigmoid.

M = σ
(

PCT
)

(5)
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In Formula (5), P is a prototype mask matrix of w ∗ h ∗ k, and C is the product of
instance number n and k of the mask coefficient matrices.

In addition, YOLACT also uses Crop to clear the mask boundary, and uses Threshold
to binarize the mask, making it adaptable to small and multiple targets. A fast NMS
algorithm is used to improve segmentation speed with only a slight loss of accuracy.

YOLOv5 achieves high accuracy compared to the instance segmentation network,
topping out at nearly 55.0 mAP on the COCO2017 dataset, while the YOLACT network
only reaches 31.2 mAP. On the self-built dataset of polished rice, YOLOv5 had a lower miss
detection rate compared to the YOLACT network, as shown in Figure 7b. Nevertheless,
YOLOv5 as an object detection network only detects the position of each polished rice
without the generation of its mask. Although the YOLACT network attained an important
balance of speed and performance in instance segmentation, the YOLACT-predicted results
showed the poor performance of leakage detection and the inaccurate mask quality in the
whole polished rice image (Figure 7c), due to the segmentation of small and multi-object
adhesive rice particles. Therefore, the use of YOLOv5 in the decomposition of complex
images, and the use of YOLACT in the segmentation of decomposed images, are regarded
as effective methods to solve this issue.
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3. Network Selection
3.1. Evaluation Indexes

mAP is usually used as an important indicator in instance segmentation evaluation
metrics. The Average Precision (AP) was defined as the area formed by the Precision–Recall
curve and the horizontal axis, and a higher AP value meant better model performance.
mAP was calculated as the average of the APs of each category. The AP was equivalent to
mAP due to the polished rice being labeled as one class in this paper. The value comparison
between the pixel-level IoU of the predicted mask and the true mask, and the threshold
value, was used to determine whether the mask prediction was correct. The confusion
matrix of classification results calculated by the predicted data and the true situation is
shown in Table 1.

Table 1. Confusion matrix.

Predicted Actual

Positive Negative

Positive TP (True positive) FP (False positive)
Negative FN (False negative) TN (True negative)
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The precision P and recall R are defined as:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

The object detection task was calculated in a similar way, only computing out the
intersection ratio of detected and real boxes. The experimental results selected the IoU
with different thresholds (namely IoUall, IoU50 and IoU75), to comprehensively evaluate
the performance of the network model on the polished rice dataset, in which APall was the
average AP from IoU50 to IoU95 with an interval of 5.

3.2. Experimental Verification

YOLOv5 includes five versions: YOLOv5n; YOLOv5s; YOLOv5m; YOLOv5l; and
YOLOv5x, which can be selected according to different requirements. To select an appropri-
ate YOLOv5 network, we compared the performance of different versions of the YOLOv5
network on the whole image, as shown in Table 2.

Table 2. Performance of different versions of YOLOv5 on the polished rice dataset.

Box APall (%) Params (M) Speed/Image (ms)

YOLOv5n 88.4 1.9 11.3
YOLOv5s 92.1 7.2 11.4
YOLOv5m 92.8 21.2 15.3
YOLOv5l 94.4 46.5 17.4
YOLOv5x 95.6 86.7 27.0

AP means the accuracy and miss detection rate of network prediction; model parame-
ter means the network portability and equipment configuration requirement; and detection
speed means the efficiency of the network at image processing. A good lightweight network
is shown to possess both accurate prediction and efficient processing capabilities. YOLOv5s
has a high 92% of AP, while its model parameters are much lower than YOLOv5m, YOLOv5l
and YOLOv5x, and its inference speed is only 0.1 ms lower than YOLOv5n: therefore,
YOLOv5s was selected as the initial segmentation network, considering AP, inference speed
and model parameter quantity.

As the YOLACT network was used for further re-segmentation of the results of the
YOLOv5 network segmentation, it did not need to learn complex features: this enabled the
preservation of the accuracy of the YOLACT model as much as possible, while streamlining
the network structure and reducing the parameter quantity; therefore, the number of FPN
layers was adjusted in Figure 8. Meanwhile, the performance of YOLACT with different
FPN layers on the self-built small resolution dataset of the polished rice was compared, in
order to verify the performance of the improved algorithm. During training, the network
input image sizes were all set to 200, the batch sizes were all set to 16, and the other
parameters were kept consistent. Table 3 indicates the best training results obtained after
sufficient rounds of training.

From the experimental results in Table 3, it can be seen that the Mask AP first increased
and then decreased as the FPN layer decreased, while the Box AP continued to increase
under the approximately the same conditions. It is essential to notice that the Mask AP
remained higher than the Box AP in all cases. The FPN layer was designed to process the
multi-scale computation, and to enhance the performance of small object detection. The
image size after the YOLOv5 segmentation was smaller, and the percentage of rice grains
needed for segmentation was larger compared to the image, with fixed position and simple
background. As the mask needed to be more precisely extracted at the end stage, YOLACT
with backbone network of resnet101 and FPN layer of 4 was selected in the processing
method, considering the experimental results for Mask AP.
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Table 3. Performance of YOLACT network with different parameters on the polished rice dataset.

FPN
Num

Params
(M)

Speed
(Frame/s) Box (%) Mask (%)

APall AP50 AP75 APall AP50 AP75

ResNet101
3 194.4 3.76 79.34 97.91 89.84 79.99 97.85 91.44
4 196.7 3.74 77.55 97.86 89.43 81.28 98.83 91.58
5 199.0 3.73 71.78 95.59 85.17 77.13 96.74 89.65

ResNet50
3 118.0 4.54 78.57 98.76 90.50 80.17 97.88 90.99
4 120.4 4.52 77.53 97.83 89.52 80.55 97.86 91.51
5 122.7 4.51 75.06 97.86 90.15 78.96 98.52 91.30

4. Experimental Results

YO-LACTS was compared to YOLACT [28], Mask R-CNN [35], Mask Scoring R-
CNN [36], SOLO [37] and SOLOv2 [38], based on the results of whole image rice segmen-
tation. In order to compare the algorithm performance more accurately, the input image
size was set to 550 for YOLACT training and prediction on the whole image. As the Mask
R-CNN input size had to be a multiple of 2, it was set to 512 when training and testing on
the whole image. The best input size of 1333 × 800 was selected for SOLO, SOLOv2 and
Mask Scoring R-CNN. YO-LACTS set the YOLOv5s input size to 550, and set the YOLACT
input size to 256 when predicting the YOLOv5s results. All the models mentioned in the
paper underwent sufficient rounds of training on the same polished rice dataset, and the
optimal results were recorded in the final stage.

It can be seen from Table 4 that YO-LACTS was close to YOLACT, in terms of parameter
quantity and testing speed, and that its prediction accuracy for the entire image in Mask
APall was higher than that of the other algorithms. Compared to the test results of the
algorithms on the polished rice image, the algorithm segmentation results are shown in
Figure 9. In brief, YO-LACTS possessed a lower leakage detection rate in whole images,
and showed higher accuracy in masking on amplified details.

However, some conditions included uneven illumination, mixed impurities, large
aggregation density of adhered particles, and even overlap in practical rice quality detec-
tion, usually posing a huge challenge to algorithm stability. Therefore, this paper tested
the model performance on the complex images of adhesive rice, shown in Figure 10.
Based on the segmentation results, YO-LACTS exhibited greater robustness compared to
other algorithms.
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Table 4. Comparison between YO-LACTS and other methods.

Image Size Backbone Params (M) Speed
(Frame/s) Mask (%)

APall AP50 AP75

YO-LACTS
550 × 550,
256 × 256

ResNet50 134.8 4.31 75.49 89.72 86.09
ResNet101 211.1 3.52 83.90 98.83 94.91

YOLACT 550 × 550
ResNet50 122.7 4.51 73.69 98.00 96.74
ResNet101 199.0 3.73 73.66 98.99 97.52

Mask R-CNN 512 × 512
ResNet50 170.0 2.38 78.00 97.00 93.80
ResNet101 244.0 1.76 76.80 98.00 95.80

Mask Scoring
R-CNN

1333 × 800
ResNet50 481.4 1.63 75.49 89.72 86.09
ResNet101 630.9 1.15 81.90 96.00 93.80

SOLO 1333 × 800
ResNet50 318.3 1.72 82.50 95.00 93.70
ResNet101 470.6 1.26 82.60 95.00 93.50

SOLOv2 1333 × 800
ResNet50 369.4 1.70 82.20 95.00 93.90
ResNet101 546.9 1.21 80.70 94.50 90.90

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 

the algorithms on the polished rice image, the algorithm segmentation results are shown 
in Figure 9. In brief, YO-LACTS possessed a lower leakage detection rate in whole images, 
and showed higher accuracy in masking on amplified details. 

Table 4. Comparison between YO-LACTS and other methods. 

 Image Size Backbone Params (M) Speed 
(Frame/s) 

Mask (%) 

     APall AP50 AP75 

YO-LACTS 
550 × 550, 
256 × 256 

ResNet50 134.8 4.31 75.49 89.72 86.09 
ResNet101 211.1 3.52 83.90 98.83 94.91 

YOLACT 550 × 550 
ResNet50 122.7 4.51 73.69 98.00 96.74 
ResNet101 199.0 3.73 73.66 98.99 97.52 

Mask R-CNN 512 × 512 
ResNet50 170.0 2.38 78.00 97.00 93.80 
ResNet101 244.0 1.76 76.80 98.00 95.80 

Mask Scoring R-
CNN 1333 × 800 

ResNet50 481.4 1.63 75.49 89.72 86.09 
ResNet101 630.9 1.15 81.90 96.00 93.80 

SOLO 1333 × 800 
ResNet50 318.3 1.72 82.50 95.00 93.70 
ResNet101 470.6 1.26 82.60 95.00 93.50 

SOLOv2 1333 × 800 
ResNet50 369.4 1.70 82.20 95.00 93.90 
ResNet101 546.9 1.21 80.70 94.50 90.90 

 
Figure 9. Comparison of YO-LACTS and other algorithms on polished rice image segmentation. 

However, some conditions included uneven illumination, mixed impurities, large 
aggregation density of adhered particles, and even overlap in practical rice quality detec-
tion, usually posing a huge challenge to algorithm stability. Therefore, this paper tested 
the model performance on the complex images of adhesive rice, shown in Figure 10. Based 
on the segmentation results, YO-LACTS exhibited greater robustness compared to other 
algorithms. 
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To further evaluate the quality of the rice grains effectively, the type of rice grains was
classified, the quantity predicted, the actual instances of rice grains were compared, and the
corresponding error rate was calculated in Table 5. Meanwhile, the related confusion matrix
is shown in Figure 11. Then, a single rice grain in the whole image was numbered, and some
key evaluation parameters, such as chalkiness, broken rice rate and chalky grain percentage,
were determined, and are displayed in the upper left corner of Figure 12. Eventually, the
type, chalk rate, aspect ratio and chalky area (marked as red) of each polished rice were
visualized and compared with the original images, as shown in Figure 13.
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Table 5. Statistic results of rice grain types before improvement.

Predicted (Instance) Actual (Instance) Error Rate (%)

Head rice 14 19 26.3
Chalky rice 31 26 19.2
Broken rice 16 16 0.0
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From the analysis of the model test results, YO-LACTS with strong robustness com-
pleted the accurate segmentation of the rice grains under complex conditions, and further
assessed their quality. By comparing the original image and the visual analysis image of
the numbered rice grain (26) in Figure 13, it can be seen that overexposure in some areas of
rice grain image caused the misjudgment of the rice grain type and chalky area: in order to
reduce this error rate, the judgment of the exposure degree was added, and then tested on
a new test set of 500 images. The identification results and confusion matrix are shown in
Table 6 and Figure 14. The test results demonstrate that YO-LACTS achieves the accurate
segmentation of rice grains, enabling researchers to evaluate their quality satisfactorily.
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Table 6. Statistical results of rice grain types after improvement.

Predicted (Instance) Actual (Instance) Error Rate (%)

Head rice 15,917 15,949 0.2
Chalky rice 5478 5446 0.6
Broken rice 392 392 0.0
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5. Conclusions

The problem of sticking rice particles has been a difficult point that hinders industrial-
ized and intelligent development of rice quality inspection. In this paper, a new YO-LACTS
algorithm combining YOLOv5 and YOLACT is proposed for the refined segmentation of
adhesive rice grains in images, which lays the foundation for rice grain counting, grain
shape detection and other physicochemical index detection. In addition, YO-LACTS can
also be applied in other fields of small and multi-object segmentation, such as cells and
widgets. Compared to other algorithms, YO-LACTS is more stable, and shows better results
on mask quality. However, there are some flaws in this method. Although the detection
boxes predicted by YOLOv5s had high accuracy compared to other networks, and the
prediction boxes deviation of the YOLOv5s network could be corrected by its expansion,
the detection boxes predicted by YOLOv5s still had a minute quantity of leakage detection
and repetition. It is necessary to further calibrate the predicted results of YOLOv5s, to
improve the segmentation accuracy of the polished rice image.
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