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Abstract: Climate change poses a major threat to vegetation and land cover worldwide. The loss of
vegetation as a result of climate change can alter the functions and structure of the environment and
its ecological systems. In the first part of this study, Sentinel-2 data, normalised different vegetation
index (NDVI), and multiple regression methods were used to examine the impacts of the climatic
factors of humidity, rainfall, and air temperature on vegetation dynamics from 2015 to 2021 in
Dhofar, Southern Oman. In the second part of this study, random forest regression was employed to
model the relationships between the NDVI and temperature, humidity, rainfall, soil map, geology
map, topographic wetness index, curvature, elevation, slope, aspect, distance to buildings, and
distance to roads. The multiple regression values revealed significant associations between the spatial
distributions of the NDVI and the abovementioned climatic factors. The findings also indicated an
increase of 1 ◦C in air temperature fluctuations between 2018 and 2021 over all five sites, with a
strong tendency over Qairoon Hairiti Mountain. The rainfall records clearly indicated an increasing
tendency from 2018 to 2020 due to the impact of frequent cyclones. Therefore, the results revealed
a significant increase of 0.01 in the vegetation cover trend in 2018, 2019, and 2020 along the Sadah
Mountain range and the eastern part of the Jabal Qara Mountains under the areas directly impacted
by the cyclone, whereas there was a decrease along the western mountain range consisting of Jabal
Qara and Jabal Qamar Mountains due to the impact of warm, dry air. The results revealed that
NDVI values were sensitive to heavy rainfall over Jabal Samhan Mountain. The 12 variables that
influenced NDVI levels had different levels of importance. Soil types, elevation, slope, rainfall,
curvature, humidity, and temperature had the highest importance, while topographic wetness index,
distance to urban area, aspect, distance to roads, and geology map had the lowest. The findings
provide a significant foundation for Oman’s planning and management of regional vegetation, water
conservation, and animal husbandry.

Keywords: climate change; Sentinel-2; NDVI; vegetation; Salalah; Sultanate of Oman

1. Introduction

Through photosynthesis and surface albedo processes, land vegetation cover plays an
important role in regulating the carbon cycle in terrestrial ecosystems [1]. Vegetation cover
also plays a key role in the economic structure and development of a country or region,
particularly in arid and semi-arid areas, where agricultural and livestock production are
the main economic activities [2,3]. There are several factors that affect land vegetation,
including natural effects (e.g., climate) and human activities [4]. The intensification of hu-
man activities and urbanisation have put significant pressure on nature, thereby leading to
shortages of natural resources worldwide. Seto et al., 2012 [5] calculated that urbanisation
will disrupt 5% of global habitat, biomass, and carbon storage by 2030. A more recent study
discovered a high correlation between the vegetation index and the building index, thereby
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implying that urbanisation has an indirect impact on vegetation in Dhofar’s mountains,
plains, and coastal areas [6]. The study also found, using a linear methods tool, that urbani-
sation was responsible for a decline of 18.5% in other plant species found in mountainous
areas. Prior studies [7,8] have primarily used linear correlations to illustrate the influence
of human activities on vegetation change. Climate change has caused a reduction in plant
cover in numerous places around the world, which has had major economic effects and
significant losses in biodiversity and the ecosystem [9]. For example, drought afflicted
an average of 21 million hectares in China between 1949 and 2000, thereby resulting in
a loss of over 60 million tons of grain in 2000, the largest documented loss in 51 years
in the country [10]. A recent study in the United States found that global warming had
already contributed considerably to the loss of national-level crop insurance to the tune of
USD 27.0 billion between 1991 and 2017 [11]. However, a deeper knowledge of vegetation
changes and their response to climatic influences is crucial for forecasting future climatic
change and vegetation growth and health pattern conditions [12].

Numerous studies have found that global change has had a significant impact on the
normalised difference vegetation index (NDVI) worldwide [13–15]. Furthermore, many
of the studies conducted at regional levels to investigate the relationship between NDVI
and climatic conditions revealed variations in the mechanisms underlying the response of
vegetation to climate change due to differences in regions, vegetation characteristics, and
study methods [16]. For example, Liu et al. [17] found that vegetation coverage has a high
positive correlation with rainfall in the arid western parts of north-eastern Asia, whereas
changes in NDVI—which are driven mainly by temperature—are less pronounced. Schultz
et al. [18] found that NDVI measurements on a global scale are not strongly associated with
rainfall. However, only a few studies have been undertaken on the impact of climate change
and its associated vulnerabilities in the Sultanate of Oman [19–21]. For example, a study
conducted to compare temperature and rainfall trends between 1980 and 2013 found that
Oman was sensitive to climate change [21]. According to the findings, the north of Oman
(the non-monsoonal subregion) had the greatest statistically significant warming trends
of 0.6 ◦C per decade−1, whereas the lowest warming trend values were recorded over the
monsoonal area of Dhofar and along the southeast coast (0.1 ◦C per decade−1 in Salalah).
In terms of total annual rainfall, the results revealed negative trends over Salalah station
in southern Oman, with a negative trend of 10.8 mm per decade−1, whereas Saiq station
in northern Oman had a negative trend of 74.0 mm per decade−1 [21,22]. Furthermore,
there was a significant increase in tropical cyclone events in Oman between 2007 and 2021.
Among these cyclones were Cyclone Gonu in 2007 [23], cyclone Phet in 2010 [24], Cyclone
Mekunu in 2018 [25], and Depression ARB01 in May 2020. Cyclone Mekunu hit the region
(Dhofar) with over 500 mm of rain. It caused catastrophic flooding and had an impact on
groundwater recharge as well [25].

Despite numerous studies demonstrating global NDVI changes, few studies have been
conducted on vegetation cover and NDVI values in response to climate change, particularly
in the Dhofar governorate in southern Oman. Galletti et al. [7] reported that between 1988
and 2013, there was a decline in the NDVI in Salalah’s coastal plain. However, each of
the mechanisms used to scrutinise the relationships between the dependent (NDVI) and
independent variables (climate, environmental, and human activities) discussed previously
are traditional statistical methods, which occasionally might not fully reflect the complex
relationships between NDVI and human, climatic, and situational influences in the study
area. We contend that most current research on vegetation cover has concentrated solely
on ecology, human activities, or control mechanisms. Because of the lack of an adequate
network of monitoring stations, the unsuitability of small areas for cultivation, large
areas that are unreachable and uninhabited, and a lack of personnel for effective database
management and analysis, and a lack of short-term and specific weather data, analyses on
these aspects to study the relationship between the NDVI and climatic factors—such as
temperature and humidity—are limited in Oman. There has been very little research linking
NDVI spatial and temporal distributions to human, environmental, and meteorological
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activities that promote its survival and development on a geographical and temporal scale.
Understanding the distribution and affinity of the NDVI in terms of these variables, as
well as data mapping, can play an important role in its control and management as well
as in capacity planning. The data indicate that grazing activities and urbanisation are the
principal drivers of these changes.

Thus, this study was carried out to analyse how vegetation in the Dhofar areas
responded to climate change from 2016 to 2021 and to examine the spatiotemporal variation
vegetation pattern using satellite datasets from Sentinel-2. We structured this study into
two parts to fulfil these objectives. The first section of this study looks at individual climate
parameters and their relationships with NDVIs. In the second phase of this study, we used
more advanced predictive models and regression analytic approaches to investigate the
combinations of climate, ecological, and human activity elements that are most conducive
to vegetation cover survival. From 2016 to 2021, spatial regression methods were employed
to investigate the effects of climate parameters such as air temperature, humidity, and
rainfall on vegetation dynamics. To model and predict the interactions between the NDVI
and temperature, humidity, rainfall, soil type, geology types, topographic wetness index
(TWI), curvature, elevation, slope, aspect, distance to buildings, and distance to roads,
Random Forest Regression (RFR) was utilised.

2. Materials and Methods
2.1. Study Area

The study area was located in southern Oman and extended from 16◦ N–18.5◦ N to
52.5◦ E–55.5◦ E. Salalah is the capital city and is located in the southern region of Oman. It
is bound on the southeast by the Arabian Sea, on the south by the Republic of Yemen, and
on the northwest by the Empty Quarter Desert (Figure 1). The area is distinguished by its
complex terrain, which divides it into two physiographic zones: (1) the mountain ranges
of Jabal Samhan, Jabal Qara, and Jabal Qamar, and (2) the Salalah plain. The elevation
rises abruptly from the flat coastal plain to approximately 2100 m in the mountain ranges
(Figure 1). The climate is generally arid, with cooler summers here than in the northern
or inland parts of Oman. Moreover, the region is affected by south-westerly winds in the
summer, which cause an upwelling of cold seawater off the coast, thereby causing the air
temperature to reduce to 18 ◦C and the average rainfall to increase to 100 mm [26,27]. In
winter, winds from the northeast influence the temperature in the area, with the average
temperature varying between 18.8 ◦C and 28.7 ◦C.

Salalah Plain is regarded as a pillar of economic growth in the Sultanate, and its crops
(coconut, papaya and bananas) contribute to the productivity of the agricultural sector [28].
The city is rich in natural plants that cover the mountains tops and spread across the valleys
and plains; many of these plants were well-known in the past for their various uses and
benefits, whether these were food, medicine, or a source for numerous industries and
businesses. The frankincense tree is one of the most important plants in the Salalah plain,
where it has historical significance and serves as a link to ancient civilisations. In addition,
76 species of rare plants that are not found anywhere else in the world have been recorded
to be found here. The primary biomes formed due to the intermixing of the three most
prevalent natural land coverings are forests, shrublands, and grasslands. The forests are
typically found in high altitudes in the mountains and wadis areas (river valleys).

Drought and upcoming water shortages are becoming more commonplace due to
climate change. The effectiveness of climate change adaptation will ultimately depend on
the commitment made through programmes and regulations in the context of sustainable
development. Consequently, it is essential to examine the present conditions to plan current
and future investment models [29].
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Figure 1. The study area: (a) the Dhofar elevation map with weather station locations and the Dhofar 
portion of the Salalah plain and mountain ranges (Jabal Qara, Jabal Qamar, and Jabal Samhan). (b) 
Data from Sentinel-2 indicate the land use and land cover zones in the study area. 

  

Figure 1. The study area: (a) the Dhofar elevation map with weather station locations and the Dhofar
portion of the Salalah plain and mountain ranges (Jabal Qara, Jabal Qamar, and Jabal Samhan).
(b) Data from Sentinel-2 indicate the land use and land cover zones in the study area.
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2.2. Data Sources and Analysis
2.2.1. In Situ Meteorological Data

There are a few weather monitoring stations scattered throughout the Governorate of
Dhofar (Table 1). Five stations (Mirbat, Qairoon Hairiti, Sadah, Salalah Port, and Thumrait)
were selected to examine trends in air temperature, relative humidity, and rainfall from
2016 to 2021. Data from two of the five stations, one coastal (Salalah Port) and the other
mountainous (Qairoon Hairiti), were analysed for correlations between the observation
data and the ERA5 model (Table 2). All weather data were obtained from the Civil Aviation
Authority (https://www.caa.gov.om (accessd on 25 October 2012). Furthermore, the inverse
distance weight (IDW) in ArcGIS Pro 2.8 was used to estimate the spatial pattern of average
rainfall, humidity, and temperature in the study area. The IDW method is a predetermined
interpolation method that creates a smooth surface by fitting a mathematical function
to input data [30]. By synthesising the NDVI surface and the surfaces corresponding to
the various climate variables, data were extracted to investigate the correlations among
the layers.

Table 1. Longitude and altitude for different observing stations over Dhofar.

No. Station Longitude Latitude Elevation (m)

1 Thumrait 54.024 17.681 448
2 Qairoon Hairiti 54.084 17.256 881
3 Salalah Port 54.008 16.934 24
4 Mirbat 54.773 16.966 16
5 Sadah 55.056 17.100 88

Table 2. Annual 2-metre air temperature and total rainfall over Salalah Port and Qairoon Hairiti station.

Year
Air Temperature (◦C) Total Precipitation (mm)

Salalah Port Qairoon Hairiti Salalah Port Qairoon Hairiti

2000 25.7 22.0 0 0.8
2001 25.4 21.4 0.2 0
2002 25.5 20.7 181.4 348.8
2003 26.0 20.8 70.4 76.4
2004 25.6 20.8 184.4 248.2
2005 25.7 20.5 112.6 175.4
2006 25.9 20.7 112.2 163.8
2007 26.2 21.4 132.4 154
2008 25.2 20.6 102.8 90.6
2009 26.1 17.2 59 0.4
2010 26.2 21.6 78.8 10.2
2011 25.8 21.0 162.2 385.4
2012 25.9 21.4 44 101.8
2013 26.0 21.2 79.6 203.4
2014 26.2 21.2 72 96.8
2015 26.5 21.5 47 89.4
2016 26.2 21.4 90 78.4
2017 26.5 21.4 54.4 2.2
2018 25.9 21.2 1366 510.8
2019 26.9 21.5 59.4 145.6
2020 26.5 22.1 135 500.0
2021 26.3 22.7 67 70

https://www.caa.gov.om
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2.2.2. Trends Analysis of Climatic Factors

One of the commonly used statistical methods to examine trends in climatic factors is
linear regression. A simple linear regression model involves the following equation:

y = a + bx (1)

where “y” refers to the dependent variable, which represents the climatic factor being
evaluated, and “x” represents the independent variable, usually representing time, such as
a year. “a” signifies the intercept, or the value of “y” when “x” is zero, whereas “b” denotes
the slope, which represents the rate of change in “y” concerning “x”. The equation was
used to estimate the connection between the climatic factor and time and determine the
trend in the climatic factor over time [31,32]. A positive slope means an upward trend,
while a negative slope indicates a downward trend in the climatic factor over time. The
magnitude of the slope signifies the rate of change in the climatic factor over time. The
equation can also be utilised to predict future values of the climatic factor by examining
past trends. Overall, the trends analysis of climate factors shows that climate change is
happening at an unprecedented pace, requiring urgent action to mitigate its impacts.

2.2.3. ERAS Model Data

The ERA5 model is the fifth and most recent generation of European reanalysis gen-
erated by the European Centre for Medium-range Weather Forecasts (ECMWF), and is
a crucial component of the Copernicus Climate Change Services [33]. It computes atmo-
spheric variables at 139 pressure levels and has a horizontal resolution of approximately
30 km. It began operating on 1 January 1979 and has been continuously extended forward
in almost real time. ERA5 reanalysis combines in situ observation, satellite data and model
forecasts in data assimilation techniques to provide a reliable description of the climate.
The ERA5 model produces a 2 m air temperature. Furthermore, monthly ERA5 products
of air temperature and total rainfall were obtained from the Copernicus climatological
data store (https://cds.climate.copernicus.eu (accessed on 30 December 2020)). The ERA5
model dataset with a 0.250 resolution is rather useful for capturing the different patterns of
rainfall, air temperature, and drought predictions on an annual and seasonal basis. The
model also enables decision makers to collect more precise information on the impacts of
climate change on the area and land status [34]. However, to investigate the impacts of
climate change on various plant species, higher-resolution numerical models are required,
and this research study will be further developed in this regard in the future. The model
had a resolution of 0.25 × 0.25◦ and covered the period from 1 January 2000 to 31 December
2020. It is based on models and satellite record observations and is sufficiently precise for
meteorological applications, particularly when surface measurements are unavailable [35–37].
In this study, the ERAS model was used to analyse temperature, humidity, and rainfall
patterns over a vast scale of the study area.

2.2.4. NDVI Trends Based on Sentinel-2 Data

Sentinel-2 satellite cloud-free images were acquired six times between 2016 and 2021
(https://earthexplorer.usgs.gov (accessed on 30 October 2021)). Sentinal-2 is equipped with
electrical, optical spatial, and spectral sensors with a spatial resolution of 10–60 m in the visible,
near-infrared, and short-wave infrared spectral zones (13 spectral bands), thereby permitting
detection of differences in vegetation structure conditions—including temporal changes—
while minimising the impact on atmospheric photography quality [38,39]. The images were
georeferenced to the World Geodetic System 1984, projected into the UTM Zone, and
processed using ArcGIS Pro 3.0. The NDVI measures reflectance in near-infrared [40,41].
NDVI values can be calculated in the following manner:

NDVI = (P(NIR) − P(R))/(P(NIR) + P(R)) (2)

https://cds.climate.copernicus.eu
https://earthexplorer.usgs.gov
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where Red and NIR are spectral reflectance in the red and near-infrared wave satellite
bands, respectively [42]. The data processing system went into operational status to enable
updates on a global scale with an implemented validation data collection system. In this
study, NDVI data from October with a resolution of 10 m were selected for the period from
2016 to 2021 (http://land.copernicus.eu/global (accessed on 30 October 2021)). In certain
regions, the month of October is commonly used for NDVI analysis due to the reduced
cloud cover and atmospheric moisture, which can result in clearer and more dependable
data. This makes it easier to detect changes and patterns in vegetation growth. Nonetheless,
the selection of the specific time period for NDVI analysis should take into consideration
other environmental factors that may influence vegetation growth, such as temperature,
soil moisture, and the timing of the rainy season. While selecting October for NDVI analysis
based on low cloud cover is a valid option, it is crucial to consider other pertinent factors
and to employ appropriate methods for analysing the data [38,43,44]. NDVI data were
then used to analyse changes in vegetation cover and model the trend relationships with
climatic factors (rainfall, humidity, and temperature) in the study area.

2.2.5. NDVI Trends Based on Proba-V Satellite Data

One of the widely used methods for ecological and environmental research is analysing
the trends in Normalised Difference Vegetation Index (NDVI) with the help of satellite
data. Proba-V is a dedicated satellite mission that focuses on monitoring the growth of
vegetation, which makes it an excellent resource for studying changes in plant life over
extended periods of time [45,46].

To analyse trends in NDVI using Proba-V satellite data, we first obtained and pre-
processed the satellite imagery, calculated NDVI values using appropriate software and
the NIR and RED bands of the imagery, and used linear trend (slope) test to analyse the
temporal trends.

2.2.6. NDVI Condition Factors

The distribution and health of vegetation can be influenced by a range of environ-
mental variables, such as elevation, soil types, slope, aspect, topographic wetness index,
geology types, curvature, temperature, rainfall, humidity, and distance to urban areas and
highways. For example, elevation can affect temperature and precipitation patterns, which
can impact vegetation growth and survival, while soil types can affect nutrient availability
and water retention, which are crucial for photosynthesis and growth. Slope and aspect can
influence the amount and quality of sunlight reaching the vegetation, which can impact
photosynthesis rates and overall health, and TWI can influence the water content of soil,
which is important for plant growth and survival. Geology types can impact the types
and availability of nutrients in the soil, and curvature can affect the amount of sunlight
and water that reaches the vegetation [47–50]. In general, understanding the interactions
between these environmental variables and vegetation is important for predicting and miti-
gating the effects of environmental change on vegetation. By analysing the relationships
between NDVI and these environmental variables, we can gain insights into how vegeta-
tion responds to environmental changes and identify strategies for promoting healthy and
resilient vegetation in the face of future environmental changes.

To analyse the environmental variables affecting vegetation and their spatial distribu-
tion, the study employed various methods. Initially, the Digital Elevation Model (DEM)
was utilised using ArcGIS Pro 3.3 to derive key factors such as slope, aspect, curvature,
and topographic wetness index. The IDW method was also employed to predict the spatial
distribution of rainfall, temperature, and humidity. Furthermore, the Euclidean distance
method was used to determine the distance from urban areas and roads to better under-
stand their impact on vegetation. The DEM, which has a 5 m two-dimensional resolution,
was acquired from the National Survey Authority in Oman using light detection and
ranging (LiDAR) data (http://nasom.org.om (accessed on 22 November 2021)).

http://land.copernicus.eu/global
http://nasom.org.om
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Geological maps and soil types were obtained from The Ministry of Agriculture,
Fisheries Wealth & Water Resources in Oman (https://www.maf.gov.om (accessed on
30 October 2021)), and weather data were sourced from the Civil Aviation Authority
(https://www.caa.gov.om (accessed on 27 February 2022)). All indicator factors were
georeferenced to the World Geodetic System 1984, projected into the UTM Zone, and
processed using ArcGIS Pro 3.0.

2.3. Spatial Relationships Analysis
2.3.1. Spatial Ordinary Least Square

To explain the overall spatial relationships (spatial stationarity) between the explana-
tory climate variables and the dependent NDVI, the traditional ordinary least square (OLS)
regression was employed. OLS was used to investigate the spatial correlations between
NDVI and climate variables (temperature, humidity, and rainfall) in order to comprehend
the climatic factors underlying the observed spatial patterns and anticipate NDVI-related
spatial outcomes based on historical weather stations from 2016 to 2021 [51].

2.3.2. Multivariate Correlation Coefficient and Forest-Based Classification and Regression

The multivariate correlation coefficient method is a statistical technique that can be
used to explore the relationships between multiple continuous environmental variables.
It assesses the strength and direction of linear associations among variables, providing
insights into how changes in one variable might affect others. This method involves creat-
ing a correlation matrix that shows the pairwise correlations between all variables, which
can be visualised as a heatmap. The multivariate correlation coefficient method is particu-
larly useful in environmental studies with many variables, such as ecology, meteorology,
and climatology [52,53].

The study employed multivariate correlation coefficient method to investigate re-
lationships between multiple continuous environmental variables, including soil type,
elevation, slope, aspect, humidity, temperature, rainfall, geology curvature, distance to
roads, distance to settlements, and topographic wetness index. The authors also utilised
a forest-based classification and regression (FBCR) method to analyse the geographic re-
lationships between the dependent variable (NDVI) and the independent environmental
variables. FBCR generates a model from known values in a training data set that can
then be used to estimate unknown parameters in a prediction database that has the same
explanatory elements. This method adapts Leo Breiman’s random forest technique, a
supervised machine learning method, to develop models and forecast outcomes [54–56]. It
produces a large number of decision trees, referred to as an ensemble or a forest, that are
utilised to make predictions. Each tree generates its own forecast, and all the forecasts then
put through a voting method to decide the final projections. The final forecast is based on
the entire forest as opposed to any one tree. This reduces the possibility of over-fitting the
model to the training data set, which occurs when a random subset of the training data and
a random subset of explanatory variables are used in each forest tree [57,58].

3. Results
3.1. Trend Analysis of Climatic Factors

Figure 2a depicts the change in the mean annual air temperature from in situ ground
observation stations in the Dhofar Governorate between 2015 and 2021. In comparison with
the mountainous region stations, air temperature records revealed high values in stations
in Thumrait, Mirabat, and Salalah Port in the range of 26–28 ◦C.

Air temperature recorded over mountainous regions indicated low values in the
range of 23–24 ◦C (Figure 2a). Due to global warming, air temperature values increased
significantly at all in situ observation stations (~1 ◦C) between 2018 and 2020, followed by
a decrease in 2021 at Thumrait, Mirabat, and Salalah Port stations.

https://www.maf.gov.om
https://www.caa.gov.om
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Figure 2. (a) Annual variations in air temperature from in situ observation, (b) variations in annual relative
humidity from in situ observation, (c) annual accumulation of rainfall (mm) from in situ observation
(Qairoon Hairiti and Salalah Port), and (d) total accumulation of rainfall from the ERA5 model.

These observation records confirmed the World Meteorological Organisation’s pro-
visional statement that 2016, 2019, and 2020 were the top three warmest years. The trend
results of air temperature in the Dhofar Governorate are summarised in Table 3. The
observed air temperature trends for the period 2015–2021 reveal large differences between
stations (Table 3). We observed that the annual average air temperature trends rose at a rate
of 0.01 ◦C/year−1, 0.05 ◦C/year−1, 0.04 ◦C/year−1 in Sadah, along coastal area stations in
Salalah Port and Mirbat, respectively. The Qairoon Hairiti and Thumrait stations showed
the highest trends at the rates of 0.187 ◦C/year−1 and 0.072 ◦C/year−1, respectively.

Table 3. Annual trend of air temperature from observation stations during 2016–2021.

Station Trend (θ Slope)

Thumrait 0.07
Qairoon Hairiti 0.19

Salalah Port 0.05
Mirbat 0.04
Sadah 0.01
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Furthermore, the relative humidity values (Figure 2b) increased in Salalah Port from
72% to 75% and 70% to 75% in Mirabat from 2016 to 2019. In Qairoon Hairiti station,
these values increased from 70% to 75% between 2018 and 2020, then decreased to 70% in
2021. Thumrait is an inland city approximately 80 km north of Salalah, with an average
low humidity ~40%, a value that has dropped dramatically since 2019. Cyclone Mekunu
in May 2018 and Depression ARB01 in 2020 caused significant increases in rainfall over
1000 mm in Salalah Port and 500 m in Qairoon Hairiti [25]. The increasing rate of rainfall
from the observations (Figure 2c) coincided with the results from the ERA5 model in
Figure 2d. The total rainfall trends from the ERA5 model are summarised in Table 4.
Annual rainfall accumulation has a trend of 100 mm/year−1 in Mirbat and Sadah stations
(Table 4), whereas Sadah station had a trend of 72 mm/year−1. The lowest trend of
annual rainfall accumulation was observed in Thumrait inland station, with a value rate of
50 mm/year−1 and at Salalah Port with a rate of 53 mm/year−1.

Table 4. Annual trend of rainfall accumulation from 2015–2020 obtained from the ERA5 model.

Station Trend (θ Slope)

Thumrait 50
Qairoon Hairiti 72

Salalah Port 53
Mirbat 124
Sadah 117

3.2. Analysis of ERA5 Model of Air Temperature and Total Rainfall

The findings of the ERA5 model for air temperature and total rainfall are presented in
Figure 3. The model results revealed high mean annual air temperature values, exceeding
27.5 ◦C in inland areas (Figure 3a), with a decline in temperature across the mountain range,
with a mean value of 23 ◦C.

Figure 3b depicts the differences in the annual mean air temperature for the period
between 2019 and 2015; it reveals contrasts in air mass characteristics with a high rate
of air temperature change (0.4 ◦C) in inland dry areas that extend into Salalah Port and
Qairoon Hairiti. This is primarily due to dry, warm inland air. Furthermore, the rate of
mean annual air temperature change was slow (0.2 ◦C) along the coast of Jabal Qamar,
the eastern coast of Salalah Port and Samhan Mountain. This is due to the cold upwelling
water during the summer monsoon, which slows the rate at which the air temperature rises.
Total rainfall accumulation results revealed high annual mean rainfall values along the
eastern coastal areas of Salalah Port during the 2015–2017 monsoon season in the range of
400–600 mm (Figure 3c). Cyclone Mekunu in 2018 and Depression ARB01 in 2020 both hit
the eastern part of the Dhofar Governorate, dumping over 1000 mm of rain in the eastern
part of Salalah Port and ~800 mm in the western part of the port (see Figure 3d).

3.3. Spatial and Temporal Trends of NDVI and Its Degree of Change

Figure 4 depicts the October 2015 NDVI (Normalised Difference Vegetation Index)
values across the study area, with a small box highlighting the contrast between forested
areas (dark green) and grasslands (light green). Meanwhile, Figure 5 illustrates the spa-
tiotemporal distribution of NDVI values over the period of study, which spans from 2016 to
2021. The spatial destinations of the NDVI values were examined using Sentinel-2 remote
sensing data. We found that the peak NDVI values ≥ 0.5 were located in the mountain
ranges of Jabal Qara and Jebel Qamar, and minimum values < 0.1 occurred along the
flat coastal plain. We also found a low level of NDVI values along the highest peaks of
Jabal Samhan Mountain. Forests are typically found at high altitudes in the mountain
ranges of Jebel Qamar and Jabal Qara. Figure 6a–f depict the spatial–temporal distribution
differences in the NDVI mean values in October between 2015 and the years between 2016
and 2021. Overall, the difference in NDVI mean values between 2016–2015 and 2016–2017
was high in the Jabal Qamar and Qara Mountains, ranging from 0.5 to 0.8 (Figure 6a,b).
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Figure 3. ERA5 model results: (a) spatial distribution of annual air temperature (◦C) for the period
of 2015–2017, (b) change in air temperature between 2015 and 2019, (c) total annual rainfall (mm)
accumulation for the period 2015–2017, (d) total annual rainfall (mm) accumulation for the period
2018–2020. The white-coloured line depicts the mountain peaks’ border.
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Cyclone Mekunu caused an increase of 0.4 in the rate of change in NDVI values along
the Jabal Samhan Mountain range between 2018 and 2015, whereas this rate decreased in
the Jabal Qamar Mountain range (Figure 6c). However, the difference in NDVI values from
2019 to 2015 indicated slight improvements on the western side of the Dhofar Governorate
in the Jabal Qamar Mountain range and decreased in the eastern part along Jabal Samhan
Mountain (Figure 6d).

There was a sharp decrease in the difference in NDVI values for the period 2020–2015
over Jabal Qamar Mountain—approximately −0.8 in the Jabal Qamar Mountain and an
increased rate of ~0.5 over Jabal Samhan Mountain (Figure 6e). However, in 2021, there
was an increase in the NDVI values over Jabal Samhan Mountain, whereas there was an
increased in these values over Jabal Qamar Mountain (Figure 6f).
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3.4. NDVI Trend Analysis Based on Proba-V Satellite Data

Using the continuous long-record data from the Proba-V satellite, the NDVI trend
from 2016 to 2020 was calculated, as depicted in Figure 7. The variation trend of NDVI
(θ slope) in the study area was divided into five grades [59], as presented in Table 5.

Table 5. Annual mean trend of NDVI for the month of October during the period 2015–2020.

Dynamic Trend θ Slope

Significant increase 0.0043 ≤ θ ≤ 0.0540
Slights increase 0.0009 ≤ θ ≤ 0.0042

No obvious change −0.0007 ≤ θ ≤ 0.0008
Slight decrease −0.004 ≤ θ ≤ −0.0008

Significant decrease −0.1267 ≤ θ ≤ −0.0041

Overall, there was mostly a significant increase in NDVI over Jabal Samhan Mountain
and over the eastern part of Jabal Qara Mountain, with a trend value ~0.01. The NDVI of
vegetation revealed a slight decrease in the western part of the Jabal Qara and Jabal Qamar
Mountains, with a value range ~0.004.
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Figure 7. NDVI trends in the study area during the period 2015–2020. Data obtained from the
Proba-V satellite.

3.5. Findings from the Regression and Prediction Analyses
3.5.1. Spatial–Temporal Relationships between NDVI and Climate Variables

Figure 8 depicts the relationships between NDVI and climatic factors. Overall, for
the six-year model (2016–2021), multiple linear regression using the OLS model revealed
that the NDVI values were significantly positively correlated with average annual tem-
perature, rainfall, and humidity factors. Moreover, there was a general trend of strong
linear relationships between NDVI levels and climatic factors, with varying coefficients of
determination R2 (Figure 8). The multiple regression model confidently predicts 97% for
the period 2016–2019, 99% for 2020, and 97% in 2021.
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3.5.2. Selected NDVI Variables, Forest-Based Classification (FBCR) and
Regression Findings

This study examined 12 significant NDVI variables: elevation (Figure 9a), soil types
(Figure 9b), slope (Figure 9c), aspect (Figure 9d), topographic wetness index (Figure 9e),
geology types (Figure 9f), curvature (Figure 9g), temperature (Figure 9h), rainfall (Figure 9i),
humidity (Figure 9j), distance to urban area (Figure 9k), and distance to highways (Figure 9l).
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Our research uncovered strong spatial correlations among several environmental
variables, including slope, elevation, rainfall, curvature, aspect, humidity, temperature,
distance to roads, distance to urban areas, soil types, geology types, and topographic
wetness index. These correlations suggest that these variables play important roles in
determining vegetation cover and health within the study area. Our predicted coefficients
for these environmental parameters are presented in Figure 10.
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Figure 10. Predicted coefficients for various environmental parameters, including slope, elevation,
rainfall, curvature, aspect, humidity, temperature, distance to roads, distance to urban areas, soil
types, geology types, and topographic wetness index, which are strongly correlated with vegetation
cover and health within the study area.
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The findings of the FBCR model’s training and validation for relationships between the
dependent variable (NDVI) and the independent variables (temperature, humidity, rainfall,
soil types, geology types, topography wetness index, curvature, elevation, slope, aspect,
distance to buildings, and distance to roads) had high accuracy according to Breiman’s
random forest algorithm criteria (0.92). The validation result revealed that the forest-
based classification was highly effective in modelling the relationships between NDVI and
climatological, ecological, and human activities variables. The results of the importance of
the relationships between the dependent variable and independent variables based on the
forest-based classification and regression method are presented in Table 6. Furthermore,
the 12 variables that influenced NDVI levels had different levels of importance. Soil types,
elevation, slope, rainfall, curvature, humidity, and temperature had the highest importance,
while topographic wetness index, distance to urban area, aspect, distance to roads and
geology had the lowest (Table 6). Figure 11 depicts the correlations between NDVI levels
derived using forest-based categorisation and the regression model. Each independent
variable’s link with NDVI levels was given as a probability range from 0 to 1. Based on
the natural break approach in ArcGIS Pro 3.0, this chance was graded as very low, low,
moderate, high, and very high. The most suitable areas for vegetation based on selected
independent variables were in the central and southern portions of Salalah as well as the
southern portions of Rakyhut and Dalkat (Figure 11).

Table 6. Importance of variables in the relationships between NDVIs and combinations of climatolog-
ical, environmental, and human activities factors.

Variable Importance %

Soil map 2.0 18
Elevation 1.70 15

Slope 1.68 15
Rainfall 0.98 9

Curvature 0.83 7
Humidity 0.72 6

Temperatures 0.70 6
Topographic wetness index 0.63 6

Distance to urban area 0.57 5
Aspect 0.55 5

Distance to roads 0.51 5
Geology map 0.26 3
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4. Discussion

The vegetation ecosystems in the Dhofar Governorate exhibit a series of spatiotemporal
variations as a result of global climate change, which has a direct impact on the ecological
environment. In this study, Sentinel-2 data, Proba-V remote sensing data, NDVI, weather
station data, ERA5, and multiple regression and FBCR models were used to examine the
impacts of climate, environments, and human activities factors on vegetation dynamics for
the period from 2015 to 2021. In the first phase of this study, OLS was used to evaluate the
spatial association between NDVI levels and climate parameters such as air temperature,
humidity, and rainfall. In the second phase of this study, FBCR was used to model and
predict the spatial correlations of combinations of climate, environment, human activities,
and NDVI. Our analysis of the simulation of the ERA5 model data sets and meteorological
observations of temperature and total rainfall from 2000 to 2021 indicated good performance
and was generally rather satisfactory. Our findings are consistent with those of a previous
study by Al-Sarmi et al. [21], who found an increasing trend in air temperature between
1980 and 2013 in the northern region of the Sultanate of Oman (0.6 ◦C per decade−1) and
over the Dhofar Governorate (Salalah 0.1 ◦C per decade−1). However, previous studies
reported a decline in annual rainfall from 1980 to 2013, whereas our study found an increase
in rainfall from 2018 to 2020. The trends in air temperature were high in Thumrait and
Qairoon Hairiti, at a rate of 0.07 ◦C per year−1 and 0.19 ◦C per year−1, respectively. This
is due to the effect of dry, warm, inland desert air, which causes high-temperature trends
to persist. In addition, air temperature trends along the coastal stations were low (at the
Mirabat, Salalah Port and Sadah stations), in the range of 0.05 ◦C per year−1, which was
due to cold upwelling water that lowered air temperatures and caused temperature trends
to remain low [60].

Furthermore, rainfall records revealed a clear tendency to increase from 2018 to 2020
due to the impact of frequent cyclones [61]. Several studies have reported that increased
warming leads to a significant increase in tropical cyclone events and rainfall [62–64]. A
study by Putnam and Broecker [65] also indicated that global warming could cause a
redistribution of the Earth’s rain belts in three possible ways. The first possibility is that the
amount of rainfall in the tropics will increase and that in the subtropics and mid-latitudes
will decrease. Another possibility is that the rain belts along the thermal equator will shift
northward. A third possibility is that both scenarios will occur simultaneously. This type
of repetition over a long time will likely result in a close correlation between rainfall and
NDVI levels. According to our findings, NDVI was more sensitive along hilly slopes, with
values > 0.4. Moreover, NDVI values were sensitive to heavy rainfall rather than moderate
or light rainfall over Jabal Samhan Mountain and the eastern part of Jabal Qara Mountain.
NDVI values demonstrated a significant increase and peaked in 2019 and 2020, after
Cyclone Mekunu in 2018 and the deep depression (ARB 01) of May 2020. The observed
dynamic change in the NDVI indicated a large contract response under climatic factors
(temperature, humidity, and rainfall) in different areas of the Dhofar Governorate. In
comparison to the Sadah and Mirbat stations (see Figure 6c–e), Salalah city areas had low
NDVI values in the period from 2018 to 2020.

Previous research has found that climate change is one of the primary drivers of
vegetation change, with human disturbance causing abrupt changes in vegetation in the
study area [66]. There is also a clear trend towards grassland degeneration as a result
of urbanisation in the Salalah area. Furthermore, a more recent study discovered a high
correlation between the vegetation index and the building index, thereby implying that
urbanisation has an indirect impact on vegetation in Dhofar’s mountains, plains, and
coastal areas. The study also found that urbanisation was responsible for a decline of 18.5%
in other plant species found in mountainous areas during the study period [6]; however,
this could also be attributed to climate change. Although many studies have found that
construction development [7], population growth [67], and increased livestock [68] impact
NDVI, our study revealed that climate change is one of the primary drivers of vegetation
changes in the study area. Variations in air temperature and rainfall from 2015 to 2021
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had varied and noticeable impacts in the regions of the Dhofar Governorate. The values
of vegetation cover decreased in the western regions of Jabal Qara and along the Jabal
Qamar mountain ranges (Figure 7d,e), particularly in 2019 and 2020, when the average air
temperature reached its greatest values (Figure 3a).

Compared with global studies [19,69–71], this study uncovered that the spatial distri-
bution of NDVI varies with space and time. The multiple linear regression model revealed
that NDVI is significantly and positively associated with average rainfall, temperature,
and humidity. In general, there is a strong linear correlation between NDVI and weather
factors, with varying coefficients of determination R2. Moreover, the rate of NDVI changes
differed among the regions. The area’s bedrock soil type, altitude, slope, rainfall, curvature,
humidity, air temperature, topographic wetness index, distance to urban areas, aspect,
distance to roads and geology, all played important roles in the distribution process of
vegetation in the study area (Table 6). In addition, the observed dynamic changes in NDVI
revealed a large contract response under climate factors in various areas of the Dhofar
Governorate (Figure 12). Ghazanfar et al., 2003 [72] reported that the Dhofar Mountains
feature numerous unique vegetation zones that are determined by climatic and topographi-
cal characteristics, such as distance from the sea, height, aspect, soil characteristics, and the
quantity of precipitation from mists or rainfall and monsoon.
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The distribution of rainfall is critical in determining the richness of diverse plant
species that are prevalent in the Dhofar Governorate [26]. The distribution of plants on
the high dry plateau is becoming less diverse due to the blowing of hot, dry air from the
desert, which hinders the formation of clouds and rain shadow (Figure 13). The current
findings have significant implications for current and future availability of freshwater, with
a specific emphasis on inland freshwater ecosystems. The trend of increasing vegetation
may benefit the bio environment, socio-economics, and environmental sustainability [73].
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4—dry plateau; 5—northern cliffs; 6—desert (modified source from source: Hildebrandt et al., 2007).

5. Conclusions

This study examined the impacts of climate, ecology, and human activities on vegeta-
tion dynamics in Dhofar Governorate, southern Oman, from 2016 to 2021 using satellite
data, the ERA5, OLS, and FBCR models. The findings obtained from observation records
revealed that the mean annual air temperature trends increased over all stations in air tem-
peratures of 1 ◦C from 2018 to 2019. Furthermore, the study also examined the interactions
between climate variables and the NDVI for the month of October for the period from 2015
to 2021. The results indicated that the trend of warming and humidification, as well as the
frequency and intensity of tropical cyclones, was strengthened, thereby creating favourable
conditions for the ecological restoration in the region. Moreover, there was an increase
in NDVI data changes over the eastern part of Jabal Qara and along the Jabal Samhan
mountain ranges, and there was synchronism between rainfall and NDVI over the study
area. The current findings have significant implications for current and future freshwater
availability, with a specific emphasis on inland freshwater ecosystems. Increased rainfall
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has a positive impact on the Dhofar Governorate’s agricultural and livestock sectors, which
require the use of available water, particularly economically, especially over Jabal Samhan
Mountain. Furthermore, the importance of the 12 variables that influenced NDVI levels
also varied. The importance of soil type, elevation, slope, rainfall, curvature, humidity,
and temperature was highest, while TWI, distance to metropolitan area, aspect, distance to
roadways, and geology were lowest. The increasing trend in vegetation may benefit the
bio-environment, socioeconomics, and environmental sustainability in the region.
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