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Abstract: Phytohormones have been acknowledged as an eco-friendly and alternative source for
plant growth promotion and abiotic stress tolerance. Heavy metal stress has attained considerable
attention worldwide because of its serious effects. Globally, it is a major cause of crop yield loss.
Soybean is an important legume crop that continuously faces environmental stress, such as heavy
metal stress. The application of plant growth regulators, such as phytohormones, enhances plant
tolerance toward heavy metals. Phytohormones augment the interaction with plants. They improve
plant productivity under stress due to the potential of phytostabilization. They are capable of
enhancing metal stress tolerance by reducing oxidation stress. In the present review, an attempt has
been made to summarize the role of phytohormones in metal chelation in a model plant, soybean.
The results suggest that among the phytohormones, ABA, JA, SA ET, GA, and IAA are synergistic
with metal chelation, whereas cytokinins are antagonistic. The application of phytohormones and
corresponding microbes enhances the production of glutathione (GSH), which enhances metal
tolerance by metal sequestration.

Keywords: phytohormones; growth regulator; soybean; heavy metal stress; abiotic stress

1. Introduction

The agricultural industry is currently facing a dual challenge: environmental stress and
an increasing global population. Environmental stress poses a constant threat to agricultural
productivity, leading to potential reductions of up to 70% [1,2]. Various environmental
factors contribute to these alarming levels of stress, including heavy metals, heat, drought,
salinity, chilling, and UV radiation. The proliferation of heavy metal pollution in the
environment has become more pronounced in recent years due to escalating human activity
and rapid urbanization, posing a threat to all forms of life [3,4]. The detrimental effects of
heavy metal toxicity on ecosystems, crops, and human health have become a global concern,
affecting millions of hectares of cultivable land worldwide [5]. Heavy metal (HM) stress,
categorized as an abiotic stress, presents a persistent challenge to agricultural practices and
significantly reduces the yield of vital crops, such as rice [6], maize [7], millet [8], wheat [9],
and soybean [10]. HMs are characterized by their high density, with a density exceeding
5 g/cm3, and they possess relatively higher osmotic weight. Although certain essential
heavy metals, such as zinc (Zn), copper (Cu), cobalt (Co), nickel (Ni), molybdenum (Mo),
and manganese (Mn), play crucial roles in plant metabolic and developmental pathways
when present in low concentrations, elevated levels of these metals in soil have detrimental
effects on plant physiology, metabolomics, and biochemical processes. Consequently, such
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elevated concentrations impede growth and production and ultimately lead to a decreased
overall crop yield [11,12].

The presence of heavy metals in soil can arise from either natural occurrences or
human activities. Natural causes include factors such as geological processes and the
weathering of rocks. On the other hand, anthropogenic sources contribute to elevated
levels of heavy metals in soil and encompass various activities, such as the excessive
use of pesticides and chemical fertilizers, smelting, mining operations, emissions from
automobiles, leather tanning, municipal waste disposal, the dyeing and processing of
textiles, and manufacturing processes [13,14]. Moreover, heavy metal stress in the ecological
system can also be caused by natural disasters, such as forest fires and earthquakes. In
many industrialized countries, the widespread use of agrochemicals, such as pesticides,
and the utilization of untreated irrigation water have significantly contributed to heavy
metal pollution, which in turn affects agriculture and the food chain. These pollutants
find their way into farmlands, get absorbed by plants, and accumulate within the food
web [15,16]. Additionally, human activities and natural processes, such as the formation of
land surfaces, have led to increased deposits and concentrations of heavy metals in the soil,
reaching toxic levels for plants [17]. The impact of heavy metal stress on the entire food
chain and human health has garnered significant attention in recent years, posing threats
to food and energy security [18]. It is now recognized as a major hazardous pollutant,
surpassing even pesticides in terms of its serious implications [19,20]. Figure 1 shows the
causes of heavy metal stress in plants.
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Soybean (Glycine max) is globally recognized as one of the most significant commercial
crops. Despite the continuous increase in soybean production, the presence of heavy metal
stress adversely affects plant productivity [21,22]. Soybean plants grown in heavy-metal-
contaminated soils also undergo stunted development due to metabolic changes [23]. The
disruption of nutrient absorption, decline in photosynthetic activity, suppression of electron
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flow, reduction in carbon dioxide (CO2) sequestration, chloroplast disruption, free-radical-
mediated damage, and the industrial production of toxic by-products are examples of the
potentially negative consequences of heavy metal stress on plants [24–28].

Plants exhibit diverse responses when faced with heavy metal stress. They employ
various strategies, including modifying their HM uptake and transport, employing chela-
tion or compartmentalization mechanisms, inducing structural changes in different plant
parts, regulating water balance, enhancing antioxidant defenses, and activating metal ion
transporters. To combat the toxic effects of HMs in contaminated soil and water, numerous
biological and chemical techniques have been employed. In recent times, there has been a
growing interest in utilizing phytohormones as an environmentally friendly approach to
enhance HM stress tolerance in plants [29,30]. Phytohormones serve as signaling molecules
that orchestrate a wide range of crucial physiological processes in plants. They also play a
significant role in enabling higher plants to withstand HM stress [31].

Numerous studies have been conducted to explore the bioremediation of heavy metal
toxicity in plants. However, there remains a knowledge gap regarding the response of
soybeans to heavy metal stress. Additionally, limited information is available regarding
the uptake of heavy metals by soybeans [32]. Given that soybeans are a significant global
crop with economic importance, it is crucial to investigate the uptake of metals by this
crop and to explore eco-friendly phytoremediation techniques. Furthermore, the increased
use of inorganic chemicals in agriculture has raised concerns about food safety for human
consumption, as well as social and environmental considerations [33,34]. This review aims
to provide the latest information on the response of soybean plants to HM stress and high-
light the importance of phytohormones in conferring resistance to heavy metals. Relevant
articles were carefully selected and reviewed, with comprehensive searches conducted
in electronic databases using keywords, such as “heavy metals,” “phytohormones”, and
“soybean”. This study included all available data until 2023, and excluded non-English
articles and conference papers.

2. Pro-Oxidant and Reactive Oxygen Species

Pro-oxidants are molecules that have the potential to initiate oxidative stress by trig-
gering the DNA and protein of the cells. These molecules act as signaling molecules to
enhance stress in the plant cells. However, plants try to minimize their stress levels via
activation of the intrinsic antioxidant system. If the hemostasis between pro-oxidant and
antioxidant molecules fails, then reactive oxygen species are rapidly generated [35,36].

Reactive oxygen species (ROS) and their derivatives are among the free radicals that
rapidly accumulate whenever a plant is subjected to heavy metal stress [37,38]. These
ROS include oxide, peroxide, singlet oxygen, and superoxide. The accumulation of these
ROS results in a disturbance in the hemostasis of the cell, triggering damage to various
cellular organelles and biomolecules, such as mitochondria, golgi bodies, proteins, and
DNA [11,39]. Moreover, oxidative stress causes downregulation of the non-cyclic transport
of ATP. Additionally, plants elevate their stress levels, which increases the likelihood of
damaging the molecular structure of the plant cells [40,41].

However, plant triggers can cope with the series of events needed to reprogram
cellular events to mitigate heavy metal stress [42]. For example, activation of the TCA
cycle through the mitogen-activated protein kinase (MAPK) pathway, the production of
secondary metabolites and phytohormones, activation of intrinsic antioxidant pathways
such as antioxidant enzymes (SOD, APX, and glutathione reductase (GSH)), and phenolic
compounds or the expression of some genes up to an optimum level of stress [3,43,44].
These involve the programming and reprogramming of cellular events. Plants attempt to
cope with metal stress; however, they are unable to reprogram the events due to continuous
stress. Plant cells show some symptoms of heavy metal stress, such as chlorosis, inhibition
of enzymatic metabolism, inhibition of growth, or sometimes death of the plant cells [40,45].
The entire mechanism is shown in Figure 2. Moreover, it is crucial to alleviate metal stress
because it causes genotoxicity. There is a rise in the buildup of ROS when the plant is
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exposed to heavy metal stress. ROS cause the deformation of essential proteins by directly
attacking the thiol groups. As a result, the bases are deleted and modifications to the genes
and dimers cause chromosomal abnormalities.
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3. Phytohormones in Heavy Metal Tolerance

In response to heavy metal stress, the antioxidant defense system is activated. Fur-
thermore, if the antioxidant defense system fails to cope with the stress, the plant alters
its endogenous phytohormone levels, including ABA, JA, and SA levels. These hormones
are important for cross-talk between the stress elevation pathways. They have a complex
signaling pathway. The primary signaling pathway for the activation of phytohormones is
SCF (SKIP-CULLIN-F-BOX) [46,47].

Phytohormones are crucial for carrying out biological processes and are important
growth regulators in plants. In response to environmental stresses, many plant species
use a variety of distinct defense systems. Several studies suggest that phytohormones
are essential for stress mitigation [48–50]. Furthermore, phytohormones have gained
attention because they are important in stress alleviation. Exogenous phytohormone
treatment has been shown in numerous studies to reduce stress in a variety of plant
species [51–53]. Phytohormones may increase a plant’s resistance to the damaging effects
of heavy metals by activating a wide variety of molecules that are involved in regulation
and signaling [8]. Phytohormones are well-known for the functions they play in controlling
nutrient absorption through roots, since they enhance nutrient source–sink interactions,
root phenotypes, and the symbiotic connection between plants and rhizobacteria [48,49].
They not only provide systemic growth, but also give protection to plants by providing
them with systemic tolerance [54,55].

Phytohormones are chemical messengers that increase plant tolerance to metal stress,
enabling the plants to continue growing despite adversity [49]. Metals in the soil are taken
up by the tips of the roots and are then transported up the plant through vascular bundles
to the tissues of the shoots [50]. Auxin and cytokinin are examples of phytohormones that
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regulate the development of shoots and roots and enhance the uptake of nutrients and
heavy metals by plants [56]. Further studies have highlighted the contribution of ethylene
in the development of dense root hairs that facilitate the rapid absorption of minerals and
metals within plants [57]. Contrarily, certain microorganisms that produce phytohormones,
such as indole acetic acid (IAA), result in the physiological modification of plant root
exudates, enhancing nutrient mobility and active metal absorption [58,59].

Abscisic acid (ABA) is a derivative of sesquiterpenoid. It improves a plant’s ability to
tolerate heavy metals and plays a significant part in the regulatory network that controls
antioxidant-related activities [53,54]. As a direct consequence of stress, there is an imme-
diate and significant rise in the amount of ABA. It acts as a signaling molecule, causing
the inhibition of growth or germination and arresting the mounting stress. It also has an
integrative role in transmitting stress response signals downstream [60,61]. Various studies
show that it exhibits an adaptive response to abiotic stress. Moreover, upon exposure to
stress, there is rapid accumulation of ABA and its responsive gene. A study conducted on
soybeans demonstrated the upregulation of expression levels of NCED3 of up to 74% fol-
lowing the application of Cd and Pb [62]. Similarly, in 2022, a study showed that exposing
plants to arsenic toxicity resulted in the upregulation of endogenous phytohormones and
their responsive genes. Endogenous ABA levels increased from 9000 to 80,000 pmol−1 in
the dry weight of the plant sample [63]. The findings of the genetic research revealed the
overexpression of the genes GmbZIP and GmPYL1, which are involved in the accumulation
of the ABA signaling pathway containing the Pyrabactin Resistance1/PYR-like/Regulatory
Components of ABA Receptors. Upon attachment to the PYL, the negative directive of
ABA is reduced, leading to the activation of the element binding factors of ABA, which
are referred to as AREB/ABFs. They are called transcription factors (TFs), and they are a
kind of basic leucine zipper (bZIP). These transcription factors are located in the promoter
regions of target genes, and they look for ABA response elements. It has been shown that
the GmPYL1 and GmbZIP1 genes of soybean plants include ABA-responsive elements that
are capable of being triggered either by the administration of ABA or through the induction
of any form of abiotic stress [8,57,58].

Furthermore, the exogenous applications of ABA and ABA-producing microbes [64]
are found to tolerate cadmium [65–67], nickel [64], and chromium [68,69] via the activa-
tion of antioxidant molecules. Similarly, auxin also minimizes the determinable effect of
heavy metal stress by activating the intrinsic antioxidant system and reducing oxidative
stress [70–72]. Exogenous applications of auxin and auxin-producing microbes also trigger
activation of antioxidant enzymatic molecules (such as the production of CAT, APX, and
SOD) and non-enzymatic molecules (such as GSH) [73,74]. Moreover, aluminum toxicity
in soybean plants revealed that auxin is involved in the remediation of heavy metals via
induced citrate exudation through the upregulation of GmMATE [75]. Similarly, the ap-
plication of plant growth-promoting rhizobacteria (PGPRs) enhanced the level of auxin,
ultimately increasing the cellular processes in plants that augment metal resistance and
stress tolerance. A study conducted by [76] showed that the application of LHL06 enhanced
transcriptomic responses and metal stress, and there was overexpression of GmMATE1,
which also enhanced the auxin levels seen in the soybean plant. This suggests that auxin
also plays an important role in enhancing metal tolerance [76]. Auxin is an important
plant hormone that regulates various metabolic and cellular processes and aids in stress
mitigation via a reduction in oxidative stress [70,73,77]. In a similar study, cadmium stress
was mitigated via the inoculation of rhizobacteria, and the application of these microbes
enhanced the levels of auxin, which also contributed to metal tolerance [78].

Moreover, gibberellins also enhance metal tolerance in various plant species. Gib-
berellin (GA) is a precursor of diterpenoid. It promotes the antioxidant defense system of
plants and tolerates stress levels. Treatment with gibberellins and gibberellin-producing
microbes enhances heavy metal tolerance by producing an enzymatic and non-enzymatic
antioxidant defense system [79–81]. Various studies indicate that the application of gib-
berellins or GA-producing microbes also helps to mitigate stress. A study conducted in
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South Korea showed that the inoculation of GA-producing fungal endophytes is a promis-
ing approach to achieve sustainable agronomy [82]. Gibberellins have a synergetic effect
on soybean plant growth and productivity. GA is involved in a wide range of biologi-
cal processes. Studies have shown that a reduction in GA levels leads to a reduction in
plant growth [83]. In another study, nickel toxicity was reduced with the application of
gibberellins [84]. The priming of phytohormones, including GA, has been found to reduce
the negative effects of metalloids, including Pb, which induce stress in soybeans [85].

Recently, brassinosteroids (BRs) have gained popularity among researchers due to
their involvement in a wide range of metabolic reactions [68,86]. Brassinosteroids are
steroids in nature that can induce the activation of antioxidant molecules [87]. Various
studies support the hypothesis that the exogenous application of BRs enhances heavy metal
tolerance via the activation of different antioxidant molecules [87–89]. Furthermore, a study
was conducted on chromium toxicity in soybeans by applying brassinosteroids. The results
revealed that the application of BRs improved metal tolerance by adapting the mechanism
of translocation [90]. Several studies support that BRs have great potential in mitigating
heavy metal stress [87,91].

Interestingly, jasmonate and salicylic acid are also essential phytohormones that reg-
ulate biological processes in plants and lead to stress mitigation; however, they work
antagonistically [92,93]. Several scientific studies support the exogenous application of
JA [94,95] and salicylic acid [96,97]. Studies have also confirmed that the inoculation of
JA- and SA-producing microbes mitigates heavy metal stress in various plants, such as
soybean [98–100]. Salicylic acid is an important phytohormone that regulates metabolic pro-
cesses in plants. The application of stress leads to a reduction in salicylic acid. It enhances
systemic resistance in plants by inducing and provoking the antioxidant defense system.
SA also improves metal tolerance in plants. Furthermore, three independent studies con-
ducted on soybeans under cadmium stress showed that salicylic acid is involved in stress
tolerance. The mechanism of action of stress alleviation involves activation of the intrinsic
antioxidant system and, ultimately, the reduction of oxidative stress [101–103]. Another
study was conducted on germination metrics under zinc stress. The results revealed that
the application of salicylic acid improved the germination rate index and enhanced the
early seedling characteristics [104]. It has also been reported that the application of salicylic
acid confers aluminum toxicity in soybeans. Soybeans enhance immunity and promote the
overall general health of the plant [105–107]. Jasmonate is another important hormone that
enhances stress tolerance in plants. The rapid accumulation of JA has been observed when
plants are subjected to heavy metal stress. Furthermore, ABA and JA are synergistic with
each other. In addition, three independent studies reported that methyl jasmonate enhances
cadmium stress tolerance in soybeans. Cadmium is a toxic metal that has an adverse effect
on plant growth. Jasmonic acid mitigates the adverse effects of cadmium [108–110].

4. Metal Chelation and Activation of Phytohormones

Metal chelation is an essential mechanism of action by which a plant responds to heavy
metal tolerance. Chelation is a process that involves the binding of ions and molecules with
metal ions. It comprises the formation of distinct coordinating bonds between a polydentate
(multi-bonded) ligand and a single central metal atom [31,111,112]. These ligands are
termed chelators, chelating agents, or sequestering agents. Furthermore, metal chelators are
an essential mechanism of action by which the plant shows heavy metal tolerance [113,114].
Several biomolecules act as chelators, such as organic acids, secondary metabolites, and
proteins. Interestingly, chlorophyll acts as a natural chelator. It has a magnesium-binding
ligand that chelates with the metals. Thus, the plant can tolerate heavy metal stress up
to a certain threshold [115–117]. Further, chelators can be activated through exposure
to HM stress. For example, re-exposure of the plant to heavy metal stress results in the
activation of plant hormones. The activation of plant hormones in response to heavy metal
stress has been observed to be remarkably significant [56,118]. For example, in response to
heavy metal stress, the phytohormones ABA, JA, and SA rapidly accumulate in the model
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soybean plant, acting as metal chelators and tolerating stress [23,76,82]. Furthermore, the
phytochelatin biosynthesis pathway leads to the production of phytochelatin compounds,
specifically PC2–PC11. These are oligomers of GSH, and this pathway is directly related to
the availability of cysteine and the production of GSH [53,68].

Furthermore, the production of GSH in competition with cysteine and the assimilation
of sulfate leads to metal sequestration. This leads to reprogrammed cell events, including
the production of phytohormones (such as ABA, JA, SA, GA, and ET) in response to
heavy metal stress. It shows positive synergic regulation in response to heavy metal stress,
whereas cytokines and polyamines show an antagonistic effect on phytochelatin and the
production of GSH [20,119,120]. Glutathione (GSH), a tripeptide, is the most prevalent
low molecular weight thiol in all eukaryotes with mitochondria, including plants. GSH is
engaged in a variety of cellular functions in plants, including ROS defense, heavy metal
sequestration, and xenobiotic detoxification. GSH is also involved in the regulation of
developmental processes, such as cell division and flowering. Furthermore, GSH is a
key form for the transport and storage of reduced sulfur. GSH is produced in two ATP-
dependent processes in which glutamylcysteine synthetase (GSH1, E.C. 6.3.2.2) catalyzes
the creation of a peptide bond between the carboxyl group of glutamate and the carboxyl
group of cysteine [121,122].

Moreover, when a plant is subjected to heavy metal stress, there is an increased accu-
mulation of ROS, which leads to a transient increase in ABA levels. The ABA level also
augments the increase in metal tolerance by enhancing phytochelatin production [41,123].
ABA is an important phytohormone that is involved in various plant biological functions,
i.e., the activation of O-acetyl serine lyases, which ultimately causes the production of
cysteine biosynthesis [124,125]. A study reported that on exposure to heavy metal stress in
soybeans, there is an increase in ABA, which ultimately causes an increase in the production
of cysteine, and a marked increase in the production of GSH results in metal chelation [126].
Jasmonate is also an important phytohormone involved in the important physiological
processes of plant growth and stress mitigation. Various studies support the hypothesis that
jasmonate protects the soybean in polluted metal soil and helps the plant grow under stress
conditions [92,127]. Under heavy metal stress, the inoculation of beneficial microbes pro-
duced a significant amount of JA following ABA, which enhanced the production of GSH
and enhanced metal chelation [76]. Salicylic acid (SA) is an important phytohormone that
is gaining attention because of its protective role in a plant’s response to stress conditions.
Salicylic acid is activated in plants in response to heavy metal stress. Along with beneficial
microbe inoculation, it also enhances salicylic acid production. Sphingomas LK11 enhances
metal tolerance by mitigating the effect of chromium and improving plant growth. A study
found that it enhanced the production of GSH [76]. IAA is an essential phytohormone
that brings out important metabolic processes in various plant species. IAA is not only
responsible for carrying out physio-metabolic processes, but it also plays a significant role
in stress mitigation. Various studies have shown that the activation of IAA causes stress
inhibition by promoting cell growth. It has a positive synergetic response toward heavy
metal stress [128,129]. Cytokinins and polyamines are also important phytohormones.
Studies have revealed that it has an antagonistic effect on the production of GSH and
phytochelatin production. Several studies investigating the model plant soybean show that
it has a negative synergetic effect on metal chelation [47]. Figure 3 shows the biosynthesis
pathway of phytochelatin from its common precursors.
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HM toxicity exerts an adverse effect on soybean growth [130]. The present study
demonstrated that the application of phytohormones not only improves plant growth but
also enhances metal tolerance. The present study demonstrated the significant potential of
phytohormones in promoting the growth and physiology of soybeans (Glycine max) under
conditions of extreme heavy-metal-contaminated soil. Additionally, this study depicted
the synergetic interaction of phytohormones in reducing metal uptake in host plants and
remediating soil. In the present study, various phytohormones exhibited marked potential
against HM toxicity. Furthermore, improved soybean growth proved to be a vital source
of biofertilizer for sustainable agriculture. The phytohormones conferred tolerance to
increasing levels of metal phytotoxicity by reducing the level of metal toxicity in soybean
roots and shoots. They enhanced metal tolerance by facilitating the distribution of metals in
plant cells via the induction of hormonal and antioxidant regulation. Thus, the association
between phytohormones and their producing microbes (bacteria and fungi) may represent
a promising strategy for achieving profitable nontoxic crop production. The application of
phytohormones improved plant productivity by inhibiting the uptake and translocation
of metals, by enhancing the uptake of essential nutrients, and by modulating ATPase
regulation [131,132]. This approach further improved the oxidative stress induced by the
metals. Further studies on larger scales are required to explore the synergetic potential
of phytohormones.

5. Conclusions

Plants are sessile by nature; hence, they face constant environmental stress, including
heavy metal stress, which is due to several biotic and abiotic causes. Despite the tremendous
increase in the production of soybeans, soybeans are threatened by heavy metal stress.
Phytohormones and phytohormone-producing microbes are essential for phytostabilization
and mitigating heavy metal stress. The present review suggests that phytohormones
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mitigate heavy metal stress via activation of the antioxidant defense system, including the
production of GSH. Among the phytohormones, ABA, JA, SA, and ET have a synergetic
effect, whereas cytokinin has an antagonistic effect.

6. Future Prospects

The present study is significant since it greatly interests the researcher to do more
research on phytohormones because they alleviate abiotic stress. In addition, they do
not have hazardous effects and are environmentally friendly. The present study gave the
direction that more studies should be conducted on the application of phytohormones in
stress mitigation.
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