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Abstract: Nowadays, machine learning (ML) is a useful technology due to its high accuracy in
constructing non-linear models and algorithms that can adapt to the complexity and diversity of
data. Thus, the current work aimed to predict the soil quality index (SQI) from extensive soil
data, achieving high accuracy with the artificial neural networks (ANN) model. However, the
efficiency of ANN depends on the accuracy of the data that is prepared for training. For this purpose,
MATLAB programming language was used to enable the calculation, classification, and compilation
of the results into databases within a few minutes. The proposed MATLAB program was highly
efficient, accurate, and quick in calculating soil big data for training the machine compared with
traditional methods. The database contains 306 vector sets, 80% of them are used for training and
the remaining 20% are reserved for testing. The optimal model obtained comprises one hidden layer
with 250 neurons and one output layer with a sigmoid function. The ANN achieved a high coefficient
of determination (R2) values for SQI estimation, with around 0.97 and 0.98 for training and testing,
respectively. The results indicate that 36.93% of the total soil samples belonged to the very high
quality class (C1). In contrast, the high quality (C2), moderate quality (C3), low quality (C4), and very
low quality (C5) classes accounted for 10.46%, 31.37%, 20.92%, and 0.33% of the samples, respectively.
The high contents of CaCO3, pH, sodium saturation, salinity, and clay content were identified as
limiting factors in certain areas. The results of this study indicated high accuracy of soil quality
assessment using physical, chemical, and fertility soil features in regression analysis with ANN. This
method, which is suitable for arid zones, enhances agricultural productivity and decision-making by
identifying critical soil quality categories and constraints.

Keywords: arid zones; artificial neural networks; big data; MATLAB; soil quality index

1. Introduction

It is expected that global food demand will increase by 70% by 2050 because of the
rapid growth of global population which may exceed 9 billion, and consequently lead
to human food insecurity [1,2]. Developing countries such as Egypt face food security
challenges due to the growth of population and the shortage of agricultural resources [3,4].
Soil is one of the critical resources that can help fill the gap in food demand and ensure
food security [3]. However, in recent decades, rapid growth in industry and agriculture,
as well as degradation and degrading the earth’s environment in various ways, have
posed a significant challenge in promoting environmental sustainability and improving
agricultural productivity [5–7].
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Soil quality is very important to focus on for the sustainable use of agricultural
lands [8,9]. Soil quality assessment can improve soil fertility, conserve soil, improve soil
environmental integrity, protect human health, and ensure long-term soil productivity [5,10].
Therefore, to protect and improve the quality of farmlands, it is necessary to assess and
search for soil quality, also improve agricultural productivity, and assist in food planning
for the ever-growing global population. However, comprehensive soil quality studies in
drylands have received little attention [10]. There are many complex methods to create
a soil quality index. This process includes selecting indicators, scoring, and then combining
them into a single index [11]. Soil physicochemical properties are indicators of soil quality,
reflecting ecosystem stability. Therefore, selecting appropriate evaluation methods is critical
to accurately assessing soil quality [12,13].

Artificial intelligence (AI) and machine learning (ML) techniques are successfully
being applied in agriculture. ML techniques use computer algorithms and sample data to
create a model for decision-making without explicit programming [14]. ML algorithms
utilize past experiments to establish successful relationships for data inputs, rebuild the
knowledge schema, and process them for future prediction [15,16]. They are used in
agriculture [17–19], especially in determining soil quality [20–22], to enhance efficiency,
reduce production costs, and minimize environmental impact [23,24]. Machine learning
methods can be supervised [25], unsupervised [26], or reinforcement learning [27]. Artificial
neural networks (ANN) are an example of an ML method under supervised learning and
can be used to optimize agricultural management [16,22,28]. Supervised learning builds
a model to predict the output from input data. It provides better accuracy for regression
and classification problems [14].

Artificial neural networks (ANN) have been used by several researchers to predict
soil attributes based on different variables [21,29,30]. ANN have proven to be successful in
solving complex problems in various agricultural research fields [31,32], especially when
the fundamental correlation is unclear. They can recognize and learn types of correlation
between independent variables and dependent target variables. Then, they can estimate
the dependent variables using recent independent variable datasets [33]. ANN are also
error-tolerant, adaptive to work with incomplete data, and to make decisions even in
uncertain situations [21]. The main drawback of the classical method is that it requires a linear
mathematical operation that cannot satisfy the objective function in nonlinear conditions [34].
Artificial neural networks (ANN) are comprised of three main types of neurons: the input
layer, the hidden layer, and the output layer [35]. These layers work in parallel, mimicking the
structure and function of the human brain. The parallel information transmission between
neurons is represented by these layers. Because of this arrangement, ANN can compute
faster than a sequential system [35] as each data set in ANN has different activation functions,
neurons, and layers that can have different results. Therefore, artificial neural networks are
currently considered the most preferred method to estimate soil quality in farmland [22].

Big data refers to the practice of gathering and scrutinizing large quantities of data
sets to uncover valuable and useful insights and patterns. Big data is utilized in various
advanced analytic techniques such as machine learning, deep learning, and predictive
modeling to help solve workplace problems and make more informed decisions [16,36].
Additionally, agricultural big data is a collection of technologies that can help farmers face
the challenges of the new era of data. When combined with machine learning, it enables
farmers to use data to address various issues such as decision making, water and soil
management, and crop and livestock management [16].

Programming languages are classified into two generations: third-generation languages
such as C, C++, Python, and Java and fourth-generation languages such as Matlab, which
stands for Matrix Laboratory. Third-generation languages are general-purpose and provide
granular control to create fast applications. Fourth-generation languages are designed
for scientific and technical computing and are ideal for data-driven fields [37]. Matlab
has a programming capability via written codes that allows users to create functions
for intended activities, making it fast and ideal for calculations [38]. It is used for soil
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quality assessment because of its ability to perform high-accuracy calculations, store results
digitally, and modify data easily with efficient, easy-to-use window-based software [39,40].

The aims of this work were as follows:

1. To propose an accurate approach for assessment soil quality, used in Egypt, using
16 features and their scores depending on Matlab codes. The codes are available
for calculating the SQI for other regions, just by changing the dataset and updating
the scoring criteria. A MATLAB program was developed to calculate soil quality,
classify it, and compile the results into useful databases. This will contribute to big
data analysis in a systematic, reliable, accurate, and timely manner compared to
traditional methods.

2. To use the artificial neural network model for SQI prediction with 306 datasets
of soil samples based on one hidden layer with a number of neurons and one
output layer. To improve the performance and generalization ability of the model,
hyperparameter tuning and K-fold cross-validation were carried out in this paper.
Then, the optimal number of neurons was determined to obtain the most effective
and accurate predictive model in this study evaluating the metrics (MSE and R).

2. Materials and Methods

In this section, the sequence of work is demonstrated as shown in Figure 1 and will be
explained in detail in the following subsections.
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2.1. Experimental Zones and Soil Sampling

Three unmanaged areas were selected in many different governorates in Egypt
(Figure S1). The first zone is situated on the northwest coast of the western region of
Matrouh governorate [41]. The Wadi Al-Halaazin area is located at 26◦49′06′′ to 26◦58′00′′ E
longitudes and 31◦13′00′′ to 31◦26′03′′ N latitudes with a total area of 21,369.74 hectares.
Information on spectral satellite (sentinel 2 acquired in April 2020) was used in this zone.

The second zone is situated in the northern part of the Nile Delta, in Kafr El Sheikh
governorate [42]. The zone is located between longitudes 31◦00′′ and 31◦15′′ East, and
latitudes 31◦00′ and 31◦37′ North, covering a total area of 156 Kha. It is bordered to the
north by the Mediterranean Sea; to the south by Gharbia Governorate; to the east by
Dakahlia Governorate, and to the west by Sidi Salem and Kafr El-Sheikh district. Digital
image processing for Thematic Mapper TM image (1983) and Enhanced Thematic Mapper
ETM+ (2003) images was performed using ENVI 4.3 software in this zone.
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The third zone, in the middle of the first and the second zones, is located northwest of
the Nile Delta [43]. This zone is located between the coordinates 30◦15′0′′ and 30◦40′0′′ E
and 31◦7′15′′ and 31◦30′45′′ N, with a total area of 79.700 hectares. In this zone, a sentinel-2
image acquired in August 2020 under clear-sky conditions was utilized. These zones were
selected to assess soil quality for better and more accurate assessment on a large scale.

Three datasets for these zones were created having entirely different properties. The
first dataset consisted of 118 soil samples, called here as the first zone soil dataset. Also, the
second dataset consisted of 112 soil samples, called the second zone soil dataset, while the
third zone soil dataset consisted of 76 soil samples. Soil samples for these datasets were
collected in various locations having a very different texture and physio-chemical content
variation. The global positioning system (GPS) tagged the soil samples with their location,
and they were dug up and described according to [44,45]. In total, we collected 306 soil
samples that covered various recognized soil layers. After air-drying the soil samples
and sieving the fine earth (<2 mm) particles with a 2 mm sieve, we conducted a complete
chemical analysis on them. These soil sample analyses were carried out based on [46] by
an accredited soil, water, and plant laboratory in compliance with the requirements of [47]
at the Faculty of Agriculture, Tanta University.

The soil quality index (SQI) is comprised of three primary groups, each with its own
set of indicators. These groups are as follows:

(i) Chemical indicators: This group includes indicators such as cation exchange capacity
(CEC), the percentage of calcium carbonate (CaCO3), the percentage of exchangeable
sodium (ESP), gypsum (CaSO4), electrical conductivity (EC), and soil reaction (pH).

(ii) Physical indicators: This group includes soil depth (SD), soil slope (SS), bulk density
(BD), soil texture (ST), water holding capacity (WHC), and hydraulic conductivity (HC).

(iii) Fertility indicators: This group includes soil organic matter (SOM), available nitrogen
(AvN), available phosphorus (AvP), and available potassium (AvK).

Soil quality features are defined as soil processes and characteristics sensitive to
fluctuation caused by both natural and human-induced indicators. As a result, soil quality
metrics can be classified as dynamic or static [21]. Furthermore, soil quality studies are
primarily concerned with dynamic soil parameters, which may be significantly influenced
by soil management [48]. Therefore, native indicators such as soil texture, particle size
distribution, and mineral content type, are difficult to modify in a short period of time,
whereas dynamic indicators, such as plant nutrient element concentration, reveal soil
circumstances caused by current soil management or agrotechnology [21]. Thus, the rising
heavy metal concentration in Egypt’s soils influences negatively the quality of soil and
water, which is also linked to soil fertility and food security [49–53]. Soil salinity, soil
reaction (pH), and proportion of soil calcium carbonate are among the parameters that
influence soil physicochemical properties [31]. Thus, the most studied aspects to assess
soil quality are nutritional elements, soil organic matter, and hydraulic properties [54].
Soil quality can be measured using physical indicators such as bulk density, root depth,
and soil texture, as well as chemical indicators such as cation exchange capacity (CEC),
soil salinity, and pH. There are significant relationships among these parameters and
soil quality [55,56]. As a result, texture is a highly effective attribute in terms of water
and nutrient retention, aeration, and root growth, as it contributes significantly to soil
quality [22,57,58]. In addition, hydraulic conductivity (HC) is an indicator of the movement
of water and the pore structure in soil [59]. In general, soil organic matter (SOM) plays
a vital role in enhancing the physical and chemical properties of soil [60,61]; that is, the
soil’s water holding capacity and nitrogen cycle are directly affected by any increase in the
content of SOM in the soil [62]. On the contrary, depletion of SOM can cause a decline in
the cation exchange capacity, the aggregate stability, and the yield productivity. Hence, it
can negatively impact soil quality [63,64]. In order to improve the quality of soil and water,
it is important to use accurate measurements and effective procedures [65].
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2.2. Soil Quality Index Database Using MATLAB Codes

The process of soil quality assessment using the Matlab program can be summarized
in the flowchart shown in Figure 2 and is explained in detail in the following steps:

1. First, the experimental results of 16 soil indicators, that is, SOM, AvK, AvP, AvN, HC,
WHC, BD, ST, SS, SD, CEC, CaSO4, CaCO3, ESP, pH, and EC for the various samples
used in this study were added as inputs.

2. Next, each indicator score was ranked in MATLAB environment according to
Tables S1–S3.

3. A special database was built to collect each indicator score for various samples
under study.

4. The soil quality indices were calculated as described in detail in Section 2.3.
5. In this step, the final soil quality index (FSQI) was calculated as described in Section 2.3.
6. The values of FSQI were classified for all samples.
7. Finally, a new database, with the classes of FSQI results for each investigated sample

was created.
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2.3. Soil Quality Model

The following text discusses the mathematical model used to calculate the index of
soil quality (SQI) in detail. SQI is calculated using the geometric mean algorithm (GMA)
methodology, which involves finding the nth root of a sequence of values, as shown in
Equation (1). GMA has been widely used to assess soil quality and crop suitability, as
presented in most recent studies [3,51,66–70].
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Indexx = n
√

S1 × S2 × S3 × . . . . . . . . . × Sn (1)

where

x: the quality index
S: the parameter’s score
n: the parameter’s number

In this study, the researchers utilized a soil quality index that consists of three indices,
namely, chemical (CQI), physical (PQI), and fertility (FQI), to evaluate soil quality. The
chemical quality index can be calculated using Equation (2) as follows:

CQI = 6
√

EC × pH × ESP × CaCO3 × CaSO4 × CEC (2)

where

CQI: chemical quality index
EC: electric conductivity
pH: soil reaction
ESP: exchangeable sodium percentage in soil
CaCO3: soil calcium carbonate
CaSO4: percentage of gypsum
CEC: cation exchange capacity

To calculate the index of physical quality, Equation (3) is used as follows:

PQI = 6
√

HC × WHC × BD × ST × SS × SD (3)

where

PQI: physical quality index
HC: hydraulic conductivity
WHC: water holding capacity
BD: bulk density
ST: soil texture
SS: soil slope
SD: soil depth

Equation (4) is used to define the fertility quality index.

FQI = 4
√

SOM × AvK × AvP × AvN (4)

where

FQI: fertility quality index
SOM: soil organic matter
AvK: available potassium
AvP: available phosphorus
AvN: available nitrogen

Soil chemical, physical, and fertility quality indices are integrated together to classify
the final soil quality index (FSQI) using the mathematical equation shown in Equation (5):

FSQI = 3
√

CQI × PQI × FQI (5)

where

FSQI: the index of final soil quality
CQI: the index of chemical quality
PQI: the index of physical quality
FQI: the index of fertility quality
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The parameters are scored on a scale of 0.2 to 1, where 0.2 is the worst condition and 1
is the best condition. Based on several sources [44,71–76], the scores for each parameter
are presented in Tables S1–S3. Figure 3 shows part of the proposed program code using
MATLAB to calculate the EC score.
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The final soil quality index (FSQI) values are divided into five classes (Table S4). These
classes are very high quality (C1), high quality (C2), moderate quality (C3), low quality
(C4), and very low quality (C5). The width of each class is determined by dividing the
range of values for the index by the total number of classes (which is 5). The top limits of
each class are then determined by sequentially adding the obtained values to the index’s
lowest values. This approach was used in various studies by [51,67,68]. Figure 4 depicts
part of the proposed program code using MATLAB to calculate classes of FSQI.
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2.4. Soil Quality Index (SQI) Assessment in Big Data

The calculations were performed in three different scenarios, as follows:
Scenario 1: 150 different samples.
To hold soil features, 150 soil samples are used, and a matrix of size (m × n) is created

in this study. Similarly, a soil indices matrix of size (m × n) is created to classify the input
soils and facilitate calculations. The size of the soil indices matrix is 16 rows by 150 columns,
where m represents soil indices and n represents different soil samples. Soil quality using
16 soil indicators is evaluated, and a program to determine the class of final soil quality
index for each sample is also run.
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Scenario 2: 306 different samples.
Scenario 3: 700 different samples.
For the three scenarios mentioned above, the proposed program consists of four

major steps:

1. Data analytics: The best way to organize big data analysis is to put it in the form of
matrices so that we can keep track of the data.

2. Data classification: Structured rules are used in big data classification using MATLAB.
3. Comparison with traditional method calculations for quality (effectiveness and accuracy)

and time consumption.
4. Finally, validating the proposed program.

2.5. Soil Quality Prediction Using ANN

In order to enable the system to learn from high-quality data on its own, ANN
algorithms are created by combining a parameterized module. To ensure the system is
reliable, the primary task is to estimate the soil experimental analysis and define the soil
quality index for hundreds of soil samples. In this study, the total dataset of 306 samples is
divided as follows:

- A training dataset of 245 data points is required to build the model. The obtained data
is randomly divided into training sets of 70% and testing sets of 30%.

- A test dataset of 61 data points is required to estimate the model’s performance.

In order to determine the most suitable number of neurons for the hidden layers
in this application, the training process is repeated several times with different numbers
of neurons: 50, 100, 150, 200, 250, and 260. The results of training and testing are then
compared and analyzed.

Figure 5 illustrates the computational flow diagram of the established hybrid ANN
model, which involves cross-validation using k-fold and BOA.
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As shown in Figure 5, the ANN-based scheme can be used to forecast SQI. The first
ANN training structure, proposed in this study, is to determine the content of experimental
soil analysis. Sixteen soil parameters derived from 306 soil samples are used as input
signals. Feed-forward neural network takes these sampled values at each examined point
as input signals without any pre-processing. The neural networks used to assess soil
quality consist of three layers: input layer, one hidden layer, and output layer. The input
layer contains 16 neurons representing 16 experimental soil tests. The network’s capacity
to generalize the detection process dictates the number of neurons in the hidden layers.
Many trials are made to determine which hidden layer of neurons is the best fit for the
network’s soil quality. The sigmoid function is the most suitable activation function for
hidden layers.

Mean square error (MSE) and the coefficient of determination (R2) are used to
validate the performance measurement of the ANN model and are calculated, as shown
in Equations (6) and (7) [21,77]. These equations represent the network’s output value of
0.0001 and show how to adjust the network’s weight and bias based on the mean square
error (MSE). The value of the target weight is predicted by the ANN algorithm using the
smallest estimate of the MSE being close to zero, which measures its effectiveness [78].

MSE =
1
n∑n

i=1(Yi − ŷi)
2 (6)

R2 = 1 −
(

∑n
i=1(Yi − ŷi)

2

∑n
i=1(Yi − yi)

2

)
(7)

where

n: the number of experimental data sets
ŷi: the actual soil quality value
Yi: the predicted soil quality value
yi: the mean of the target output data

The activation function is crucial in a neural network as it enables the representation of
the actual relationship between input and output. Without it, the neural network produces
a simple linear function, limiting its complexity to that of a basic first-degree polynomial
function. A neural network without an activation function operates as a linear regression
model, which is usually limited in performance and power, making it unsuitable for
learning and identifying complex mappings from data. Therefore, an activation function
is critical for a neural network to model complex data types like images, videos, audio,
speech, text, etc. [79]. The relationship between the input, hidden, and output layers can be
expressed using Equation (8), which shows the correlation between these levels:

yi = f

(
N

∑
i=1

wixi + b

)
(8)

where

N: the number of input parameters
wi: the weighted average of input parameters
xi: the input parameters
b: the bias function

The bias function ‘b’ is used to optimize input data in an ANN model. During the
training process, the initial weight ‘w’ is gradually corrected, and the estimated results
are compared to the targets. Any errors are then back-propagated. The data are trained
using the back-propagation (BP) technique [80], specifically the scaled conjugate gradient
(trainscg) algorithm. These procedures are repeated until a specific value of root mean
square error (RMSE) is achieved, through updating the values of both ‘w’ and ‘b’.
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It is unclear what sample size is appropriate when using artificial neural networks
(ANN) in a particular context. However, it is commonly recommended that the sample
size be at least 10 to 100 times the number of features [81,82]. This study used 16 different
features (such as SOM, AvK, AvP, AvN, HC, WHC, BD, ST, SS, SD, CEC, CaSO4, CaCO3,
ESP, pH, EC) to create the model. Therefore, the minimum number of samples required
is 160. The total number of samples used in this study was 306, which is more than the
minimum required sample size of 160. The optimal structure of the ANN network is
influenced by various hyperparameters including the number of hidden layers, hidden
neurons, and learning rate. All hyperparameter tuning was conducted using the k-fold
cross-validation and Bayesian optimization algorithm (BOA) approaches [83–88].

The data set is split into k subsets. One subset is selected as the test data, while the
rest are used for training. This process is repeated k times to ensure each subset is tested
only once.

The Bayesian optimization algorithm (BOA) is designed to select the best hyperpara-
meters that can minimize validation errors. The Bayesian backpropagation algorithm is
used to train the system. In the training phase, the proposed MATLAB program is utilized
to train the ANN system using the soil quality index. BOA optimization can be expressed
in Equation (9), which helps in minimizing validation error, given a hyperparameter space
X and an objective function f:

x* = argmin
xϵX

f(x) (9)

where

x*: is the set of hyperparameters that produce the minimum target score
x: is any value in the space X

The term ‘optimization’ commonly refers to the process of finding the maximum or
minimum value of an objective function. In most cases, this function is unknown and lacks
an analytical expression. Optimization is the global optimization of a black-box function
with an unknown equation and derivatives [89,90]. This method performs better than
random, manual, or grid search algorithms [91]. It involves using a surrogate probability
model based on the Bayes theorem [92]. This model selects the values for the next iteration
based on the results of the previous iterations, which results in more effective optimization
than arbitrary selection. The experiment results can be summed up as follows:

p(w|D) =
p(w|D)p(w)

p(D)
(10)

where

p(w) : is the prior probability
p(D) : is the evidence, p(D|w) refers to the probability
p(w|D) : is the posterior probability

This method involves identifying the optimal point to evaluate by means of using the
acquisition function, which is based on the surrogate model. The Gaussian process (GP) is
capable of simulating p(w|D). The mean value function (µ) and the covariance function
(K) of the model are expressed as follows [83–88]:

f(x) ∼ GP(µ, K) (11)

Generally, BOA can be described as a process that consists of the following steps:

Step one: Create an objective function that minimizes validation errors.
Step two: Develop a surrogate probability model for the objective function.
Step three: Determine the optimal hyperparameters for the surrogate probability model.
Step four: Apply these hyperparameters to the actual objective function.
Step five: Combine the new findings to improve the surrogate model.
Step six: Repeat steps three to five until the maximum number of iterations is reached.
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3. Results and Discussion
3.1. Soil Physicochemical Features

Descriptive statistics of soil properties are presented in Table 1. EC values in soil
samples varied between 0.55 and 129.70 dSm−1, with an average value of 5.46 ± 10.91 dSm−1.
The results are consistent with the environmental conditions of drylands, which have high
rates of evaporation and low precipitation that results in most salinized soils [3,93]. High
soil salinity in certain areas can be attributed to the high salinity of the water table and
the effects of lake water and seawater [51,94,95]. Various soil management options have
been proposed to decrease soil salinity, such as using low-salinity water to enhance the
leaching of salts from the soil root zone [49,96]. The rate of plant growth under salt
stress varies significantly among different plant species [97,98]. The soil salinity relations
with ESP and CaCO3 reveal that soil salinity is primarily due to Na+, Ca2+, CO3

2−, and
HCO3

− [99]. The range of ESP values is 1.45% to 35.93%, with an average value of
9.29 ± 7.50%. A high sodium percentage can negatively impact soil properties such as soil
structure and hydrology, leading to reduced crop productivity [3]. The value of CaCO3
in soil samples varied from 0.21 to 34.42%. The highest values of CaCO3 are due to shell
fragments, which can lead to the formation of solid layers impermeable to crops and water,
as well as the fixation of P fertilizer [3,100]. CaCO3 has a positive effect on soil quality by
enhancing WHC and reducing HC [6]. Previous studies demonstrated that adding gypsum
can lower the high soil sodium saturation content [73,101], because of its ability to absorb
calcium instead of sodium in soil particles, which causes aggregation improvement and pH
decline [101,102]. CaSO4 ranged from 0.07% to 9.68% with an average of 1.21%. The soil
reaction (pH) was maximum 9.21, and minimum 7.46. High pH values may have resulted
from low macro-nutrients levels, which cause low vegetation [103].

Table 1. Descriptive statistics of soil physicochemical properties (n = 306).

Soil Property Unit Min Max Mean SD CV, % Skewness Kurtosis

EC dSm−1 0.55 129.70 5.46 10.91 199.8 6.73 61.33
pH - 7.46 9.21 8.34 0.31 3.7 0.11 −0.05
ESP

%

1.45 35.93 9.29 7.50 80.7 1.25 1.10
CaCO3 0.21 34.42 9.15 8.15 89.1 0.94 −0.08
CaSO4 0.07 9.68 1.21 1.32 108.5 2.89 12.16
CEC cmolcKg−1 0.95 58.40 22.09 19.89 90.0 0.27 −1.75
HC cmhr−1 0.29 33.42 9.71 8.57 88.2 0.54 −0.88

WHC % 3.01 53.04 23.32 19.30 82.8 0.21 −1.83
BD gcm−3 1.16 1.68 1.43 0.12 8.5 −0.46 −0.88
SS % 0.10 8.00 2.04 1.60 78.5 2.38 6.91
SD cm 30.00 150.00 110.52 36.39 32.9 −0.20 −1.37

SOM % 0.01 2.96 0.63 0.67 105.4 1.52 1.47
AvK

mgKg−1
7.70 719.10 263.77 144.25 54.7 0.01 −0.10

AvP 2.09 38.45 9.66 6.66 68.9 1.33 1.46
AvN 3.10 98.91 28.78 26.50 92.1 0.96 −0.43

n = number of soil samples; Min = minimum; Max = maximum; SD = standard deviation; CV = coefficient
of variation.

The available N ranged from 3.10 to 98.91 mgKg−1. Moreover, minimum, and
maximum values of available phosphorus ranged from 2.09 to 38.45 mgKg−1, while
available potassium varied between 7.70 and 719.10 mgKg−1. The content of soil organic
matter ranged from 0.01% to 2.96%, with an average of 0.63%. The results of CEC ranged
from 0.95 to 58.40 cmolcKg−1. The low values of CEC are primarily caused by inadequate
amounts of clay and organic matter since there is a substantial positive correlation between
CEC, clay content, and organic matter [104].
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Reduced levels of available macro-nutrient (N, P, K), SOM%, and CEC adversely
impact soil quality. Additionally, physical characteristics such as shallow depth and coarse
texture disrupt the arrangement of particles and pores in the soil, thereby impeding root
growth and plant emergence velocity. Moreover, these factors also affect water infiltration
during agricultural practices [59]. The soils were flat to sloping with a slope range of 0.10
to 8%. The depth of soils (SD) varied from 30 to 150 cm. There are differences in soil
texture between sand, loamy sand, sandy loam, sandy clay loam, clay, silty clay, silty clay
loam, silty loam, loam, and clay loam. Fine earth has a significant effect on soil quality
because soils originating from coarse sands are deep with poor physical properties such as
high density, rapid infiltration rate, and low water retention [105]. The bulk density (BD)
values of the soils varied between 1.16 gcm−3 and 1.68 gcm−3 depending on the organic
matter content and especially the amount of sand and clay. Soil water holding capacity
(WHC) and hydraulic conductivity (HC) ranged from 3.01 to 53.04% and from 0.29 to
33.42 cmhr−1, respectively. Increasing the medium (silt) and fine (clay) particles might
improve these conditions, as these fractions block soil macro-pores, by decreasing BD and
HC, and improving WHC [106].

According to the results obtained, the BD and SD values are left skewed (−) as
compared to the normal distribution. On the other hand, the values of other features exhibit
a right skewness (+) distribution. The feature with the highest skewness coefficient and the
farthest distribution from the normal was determined as EC. The data show that the curves
of most soil properties have low kurtosis and tend to have light tails or lack of outliers
relative to a normal distribution. The coefficient of variation (CV) defines the degree of
variability where CV values below 20, 20–50, and above 50% indicate low, moderate, and
large variability [107]. Hence, all the studied soil properties had large variabilities, meaning
that there is a high variability of soil parameters and soil quality (SQ) within soil samples
in the study zones, except for the pH and BD (low variability), and the soil depth (SD)
(moderate variability).

3.2. Soil Quality Index Using MATLAB Proposed Program
3.2.1. Scenario 1

Figure 6 shows a comparison between the soil quality index calculations using Matlab
and traditional methods. It can be observed that the traditional methods have significant
differences in some soil samples for the soil quality classes, which validate the accuracy of
the proposed program.
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3.2.2. Scenario 2

In this scenario, we considered a total of 306 soil samples. This study involved
assessing the quality of the soil using 16 different indicators. As a result, the soil features
matrix has 16 rows and 306 columns. The program was modified and executed to perform
the soil quality calculation. Figure 7 illustrates noticeable variations in soil quality classes
with traditional methods, which confirms the accuracy of the proposed program.
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3.2.3. Scenario 3

For this study, 700 soil samples were analyzed. The soil features matrix has 16 rows
and 700 columns, with each column representing a different soil sample. To determine the
class of final soil quality index, the program was modified and run accordingly. Figure 8
depicts a plot of the obtained results from traditional methods and the proposed program.
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3.2.4. Comparison between the Final Soil Quality Index Class Calculations Using Matlab
and Traditional Methods

This study is concerned with comparing the accuracy and efficiency of final soil quality
index class calculations using traditional methods and MATLAB. The results, presented in
Table 2, reveal that the MATLAB program proposed in the study is highly effective, precise,
and fast in processing large amounts of data required for machine learning training.

Table 2. Comparison of soil quality class calculations using Matlab and traditional methods.

Comparison Face Time-Consuming Effectiveness Accuracy

Scenario Traditional
Methods

MATLAB
Program

Traditional
Methods

MATLAB
Program

Traditional
Methods

MATLAB
Program

Scenario 1; 150 samples 18 h 5 m 90% 100% 99.2% 100%
Scenario 2; 306 samples 37 h 5 m 80% 100% 97.9% 100%
Scenario 3; 700 samples 84 h 5 m 70% 100% 97.8% 100%

Note: h = hours; and m = minutes.

3.3. ANN Training Phase

The performance of the soil quality prediction program is examined by processing
a predefined range of MATLAB output results.

Soil samples were collected at 306 separate points spaced along the length. These
values were fed into the feed-forward neural network without performing any preprocessing.
According to the literature, the ANN model is suitable for soil quality estimation using
multilayer sensory perception with 16 input neurons in one hidden layer and one output,
as shown in Figure 9.
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In applications involving ANN systems, a low MSE (mean square error) value is
typically sufficient. However, to prevent any misestimation of the soil quality index while
using ANN systems, a high degree of accuracy in the soil quality index is necessary. The
number of neurons in the hidden layer is chosen based on MSE observations, resulting in
five times the total number [83–88].

There were 306 vector sets in the database; 80% of them were simulated vectors that
obtain a low enough training error, and the remaining 20% was kept for the testing step.
The ANN training parameters are compiled in Table 3.

Table 3. ANN training parameters.

I/P No. 16 Outputs No. 1

No. of training samples 245 Max. training Epochs 1000

Hidden layers 1 Target Regression (R) 1

Target MSE 0 Target error 1 × 10−3
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Figure 10 presents a comparison of the six models, which allows determination of the
best number of neurons for the hidden layer. This provides the activation function with
the opportunity to characterize accurately the relationship between input and output. For
the training algorithms used in this study, the sigmoidal function is chosen for the hidden
layer. Additionally, Figure 10 displays the best training performance over 1000 epochs.
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Table 4 presents a comparison of the artificial neural network (ANN) performance
with various numbers of hidden layer neurons. The results from the analysis in Table 4 and
Figure 10 reveal that the lowest MSE (7.918 × 10−2) value during training is achieved using
200 neurons in the hidden layer. However, during the test phase, the MSE (1.856 × 10−1)
value is the greatest in the case of 200 neurons. While a low MSE (0.0001) value is sufficient
in many applications [78], it is essential to minimize the soil quality estimator’s error to
avoid misestimating the true final soil quality index value while using the ANN system.

Table 4. ANN training performance with different hidden layer neurons.

No. of Neurons for the Hidden Layers 50 100 150 200 250 260

MSE (Training) 8.507 × 10−2 8.033 × 10−2 1.066 × 10−1 7.918 × 10−2 9.0237 × 10−2 9.651 × 10−2

MSE (Test) 1.385 × 10−1 1.28 × 10−1 1.285 × 10−1 1.856 × 10−1 9.880 × 10−2 1.424 × 10−1

R (Training) 9.668 × 10−1 9.69 × 10−1 9.69 × 10−1 9.694 × 10−1 9.650 × 10−1 9.627 × 10−1

R (Test) 9.559 × 10−1 9.518 × 10−1 9.518 × 10−1 9.306 × 10−1 9.664 × 10−1 9.531 × 10−1

No. of total epochs for best performance 565 997 873 147 327 162

Based on Figure 10a, which shows the performance of ANN with 50 neurons in the
hidden layer, the MSE for training and testing is (0.00857) and (0.01385), respectively.
This indicates that the mean square error (MSE) for the training and testing performance
exceeded the validation performance (0.0001). This pattern is noticeable in Figure 10b–e,
which covers the performance of ANN with 50, 100, 150, 200, and 260 neurons. However,
the best performance was achieved with 250 neurons in the hidden layer, as demonstrated
in Figure 10e, that presents the actual performance structure for MSE and regression
prediction. The Bayesian back-propagation algorithm is used to advance the training states
while cross-checking the output and target of the analysis using the ANN. The performance
of the chosen epoch describes the best-fit value, while the MSE shows the deviation of the
estimated Figure 10e. The validation of 1000 epochs obtained the best results.

In the test phase, Table 4 displays the lowest mean squared error (MSE) of 9.880 × 10−2.
This is achieved by using 250 neurons in the hidden layer, with the best performance
occurring at 327 epochs. The reason for this optimal result is due to the large amount
of data in the training set, in addition to the high level of accuracy necessary for this
application. To achieve this level of accuracy, a large number of neurons is necessary.

Table 5 below shows the ANN training progress and various ANN parameters, number
of epochs, elapsed time, performance, gradient, mutation (Mu), and validation checks.

Table 5. ANN training progress.

Unit Epoch Elapsed Time Performance Gradient Mutation (Mu) Validation Checks

Initial Value 0 - 163 618 0.00500 0
Current Value 1000 1:13:35 0.0792 0.0151 0.500 0
Objective Value 1000 - 0.00 1 × 10−7 1.00 × 1010 0

Figure 11 demonstrates that gradient referring to the slope of a line, and in this context,
it is most likely referring to the slope of a curve that is plotted during the machine learning
model’s training. At epoch 327, the gradient’s value is ‘0.017214’, the numerical value of
the slope at that epoch. Epoch refers to a complete pass of all training data in a machine
learning model. Therefore, at epoch 327, the model has completed 327 full passes through
the training data.
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The ‘training state’ of ANN refers to its current stage in the process of training the
network to perform a specific task. ANN are trained using a dataset that consists of
input data and corresponding desired output data. The process of training ANN involves
adjusting the network’s weights and biases of the connections to minimize the difference
between the network’s output and the desired output, as shown in Figure 11.

Figure 12 displays a histogram indicating the error for the 20 bins used in performing
testing and normalizing data training. The hidden layer achieves the best fit at epoch
1000, resulting in an error value close to zero. This indicates that the predicted values are
approximately very close to the actual data. The error histogram confirms the results of
both the testing and training phases.
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Figure 13 shows the correlation between the estimated actual values plotted on the
x-axis and the recorded values on the y-axis for all data, both testing and training. The
coefficient of determination (R2) is a useful indicator for evaluating the performance of
the proposed artificial neural networks. As shown in Figure 13, the regression for training
and test is equal to 0.9651 and 0.9665, respectively, and the overall regression is equal to
0.96502. This means that we can obtain the best accuracy of predictable soil quality by
using physical, chemical, and soil fertility parameters.
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In this section, we evaluate the performance of the ANN algorithm for different soil
sample features in the test phase. We used a MATLAB-based expert ANN system that
takes input signals of soil quality features. Figure 14 shows the histogram in the test phase,
which indicates that there are no errors at any point.
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Figure 15 is a helpful indicator, as it shows the regression in the test phase. The
coefficient of determination (R2) is used to evaluate the performance of the artificial neural
networks in predicting soil quality accurately [21]. This proves that the proposed ANN
soil quality prediction algorithm is effective, based on the physical, chemical, and fertility
soil parameters.
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3.5. Assessment of Soil Quality

According to the findings, as shown in Table 6, the FSQI classes are grouped into five
quality levels: high (C1 and C2), moderate (C3), and low (C4 and C5). These levels indicate
the dominant limitations for ecosystem functions [108]. More than one-third of the overall
soil sample quality index, nearly 37%, are classified as very high quality class, whilst only
around 0.33% are classified as very low quality class. Additionally, 31.37% of the samples
belong to the moderate quality class, 20.92% belong to the low quality class, and the last
remaining samples (10.46%) belong to the high quality class. These classes can be associated
with limitation factors in certain areas, such as high contents of CaCO3, high pH, high
sodium saturation, high salinity, and soil texture (clay content). C5 has a high content of
CaCO3 and pH therefore, this soil cannot be cultivated consistently, due to the management
process of agriculture being difficult [109]. Moreover, soil reaction and calcium carbonate
content affect significant changeability on the degree of soil improvement, in the parent
material, gaining or leaching process, and land management applications such as tillage
and fertilization systems [110].

Table 6. Classification and evaluation limits of the FSQI in soil samples.

Classes Symbol Values No. of Samples %

Very high
quality C1 ≥0.61 113 36.93

high quality C2 0.53–0.60 32 10.46
Moderate
quality C3 0.45–0.52 96 31.37

Low quality C4 0.37–0.44 64 20.92
Very low quality C5 ≤0.36 1 0.33

Total 306 100
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4. Conclusions

The increasing demand for soil quality assessment is of great interest to the scientific
community for ensuring sustainable use of agricultural land and addressing food security
challenges. Machine learning can be used in soil quality assessment and prediction, but it
requires precise data from laboratory analyses conducted across diverse zones. A new code
has been developed using MATLAB programming language to quickly calculate SQI, and
to classify and compile soil sample data into databases. The proposed MATLAB program
is highly efficient, accurate, and speedy when handling large data for machine learning
training. This reduces the effort, cost, and time required for assessing soil quality.

The use of artificial neural networks (ANN) in machine learning algorithms was
investigated to improve learning processes for specific problem areas. The Bayesian
back-propagation algorithm was used in this case study to advance training states while
cross-checking output target analysis using ANN. In order to achieve the optimal architecture
for ANN, the number of neurons was gradually increased to minimize the mean squared
error (MSE) during both the training and testing phases. According to this study, the
most accurate number of neurons in the hidden layer was 250 neurons. As a result, ANN
achieved high coefficient of determination (R2) values for prediction with around 0.97 and
0.98 for training and testing, respectively. The study demonstrates that ANN algorithms
can effectively predict changes in spatial patterns over large areas, making them valuable
for sustainable agriculture practices. One of the main challenges encountered is overfitting
in ANN. As a result, future work will include discussions on methods to overcome this
overfitting in ANN.

Regular evaluation of soil quality plays a crucial role in maintaining high crop yields
and reducing the gap between production and consumption. Therefore, a proposed
methodology can be easily applied to other regions. This approach can aid decision-makers
and regional governments in identifying the best ways to enhance soil quality, implement
effective soil management practices, and overcome the food security challenge. This
challenge is considered one of the most important issues in the 2030 Agenda for Sustainable
Development. In future research, soil quality should be assessed with various activation
functions and algorithms, and the model should be tested for larger areas. In this case, in
addition to guiding future studies, this study could be further improved by adding various
biophysical indicators and socio-economic factors.
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