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Abstract: Maize residue cover (MRC) is an important parameter to quantify the degree of crop residue
cover in the field and its spatial distribution characteristics. It is also a key indicator of conservation
tillage. Rapid and accurate estimation of maize residue cover (MRC) and spatial mapping are of great
significance to increasing soil organic carbon, reducing wind and water erosion, and maintaining soil
and water. Currently, the estimation of maize residue cover in large areas suffers from low modeling
accuracy and poor working efficiency. Therefore, how to improve the accuracy and efficiency of
maize residue cover estimation has become a research hotspot. In this study, adaptive threshold
segmentation (Yen) and the CatBoost algorithm are integrated and fused to construct a residue
coverage estimation method based on multispectral remote sensing images. The maize planting
areas in and around Sihe Town in Jilin Province, China, were selected as typical experimental regions,
and the unmanned aerial vehicle (UAV) was employed to capture maize residue cover images of
sample plots within the area. The Yen algorithm was applied to calculate and analyze maize residue
cover. The successive projections algorithm (SPA) was used to extract spectral feature indices from
Sentinel-2A multispectral images. Subsequently, the CatBoost algorithm was used to construct a
maize residue cover estimation model based on spectral feature indices, thereby plotting the spatial
distribution map of maize residue cover in the experimental area. The results show that the image
segmentation based on the Yen algorithm outperforms traditional segmentation methods, with the
highest Dice coefficient reaching 81.71%, effectively improving the accuracy of maize residue cover
recognition in sample plots. By combining the spectral index calculation with the SPA algorithm, the
spectral features of the images are effectively extracted, and the spectral feature indices such as NDTI
and STI are determined. These indices are significantly correlated with maize residue cover. The
accuracy of the maize residue cover estimation model built using the CatBoost model surpasses that
of traditional machine learning models, with a maximum determination coefficient (R2) of 0.83 in the
validation set. The maize residue cover estimation model constructed based on the Yen and CatBoost
algorithms effectively enhances the accuracy and reliability of estimating maize residue cover in
large areas using multispectral imagery, providing accurate and reliable data support and services
for precision agriculture and conservation tillage.

Keywords: maize residue cover (MRC); conservation tillage; multispectral remote sensing images;
adaptive threshold segmentation; Yen algorithm; CatBoost algorithm; spectral feature indices;
spatial mapping

1. Introduction

Crop residue management is one of the most important conservation measures in
modern conservation tillage techniques [1]. As an end product of crop production, maize
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residue helps reduce water evaporation and retain moisture in the topsoil layer. In addition,
residue cover can slow the weathering and erosion of agricultural soils. Returning residues
to the field increases straw mineralization, enhances soil fertility, and provides natural
organic matter for crop growth [2–4]. Estimation of maize residue cover is an important
task in crop residue management, as rapid and accurate access to straw cover information
can not only master the spatial distribution of conservation tillage but also macroscopically
monitor the process and scope of conservation tillage implementation and improve the
efficiency of farmland quality supervision.

Currently, the estimation of maize residue cover is usually performed by traditional
methods such as random sampling and pull-string methods [5–7]. However, conducting
large-area MRC surveys using traditional methods is time-consuming and costly. With
the development of remote sensing spatial information technology, multispectral remote
sensing technology has been widely used to estimate maize residue cover in farmland on
a large spatial-regional scale because of its rapid and accurate characteristics [5,7]. Some
studies have shown that crop residues and soils have similar spectral characteristics. Since
certain characteristics of crop residues are related to cellulose and lignin, crop residues
have unique absorption features near 2100 nm [8,9]. These features serve as the basis for
distinguishing crop residues from soil based on optical remote sensing images, which
provides a research basis for developing a model to estimate maize residue cover. The
relationships between the vegetation index (PVI) and fractional vegetation cover (PV), and
between the nonphotosynthetic vegetation index (NPVI) and fractional nonphotosynthetic
vegetation cover (NPV) were analyzed by Guo et al. [10]. Their results showed a significant
linear correlation between the global environment monitoring index (GEMI) and PV as well
as a strong linear relationship between the Dead Fuel Index (DFI) and NPV. Daughtry et al.
measured the spectral reflectance of crops such as corn and soybeans as well as soil cover
in the wavelength range of 400–2400 nm, confirming the feasibility of using the cellulose
absorption index for residue cover identification [11,12].

Currently, the methods for extracting maize residue cover primarily involve human–
computer interaction for the visual recognition of maize cover and automatic recognition
using image segmentation algorithms [7]. With the integration of AI technologies, these
methods have been significantly enhanced [13,14]. AI-driven image segmentation algo-
rithms are noted for their time-saving, labor-efficient, and high-accuracy attributes, demon-
strating immense potential for large-scale agricultural monitoring and precise agricultural
management [13,15]. Common image segmentation methods include those based on spec-
tral indices and thresholding methods based on spatial grayscale value distributions [16,17].
Threshold segmentation methods, such as the maximum variance between two classes
(OSTU, named by Japanese Nobuyuki otsu) and MaxEntropy algorithms, are known for
their computational efficiency and simplicity and are widely used in various fields and for
crop image recognition [18–20].Unlike traditional threshold segmentation algorithms that
struggle with complex grayscale distributions, AI-driven approaches such as the Yen algo-
rithm significantly improve the ability to process images with complex distributions and
uneven backgrounds. The Yen algorithm, which applies principles of inter-class variance
and entropy, is particularly effective in handling multimodal distributions and challenging
segmentation tasks in scenarios with significant textural differences or uneven lighting
conditions. This algorithm not only enhances the accuracy and adaptability of image
segmentation in diverse areas, but AI integration facilitates more precise identification and
classification of agricultural features, thereby enhancing the process of monitoring and
managing farmland. Moreover, these AI-driven technologies contribute significantly to
sustainable farming initiatives by enabling more efficient use of land and resources [21,22].

With the rapid development of machine learning theory and technology, building
estimation models for remote sensing spectral features and maize residue cover based on
machine learning algorithms has become a popular research topic in precision agricultural
engineering [7,23]. However, traditional machine learning models often encounter issues
such as high sensitivity to sample data, increased computational complexity in the hy-
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pothesis space, model overfitting owing to limited training sample data, and a mismatch
between model capacity and training dataset size. Consequently, these models tend to have
poor estimation accuracy and efficiency. Ensemble learning is an efficient machine learning
method based on the synergy of multiple algorithms. It integrates multiple learning results
using different learners for training and adopts a certain combination strategy to achieve
multiple learning results rather than using a single learner [24–26]. This learning method
can effectively solve the problems of traditional machine learning, such as high sensitivity
to training samples, high computational complexity, and overfitting. Currently, various
ensemble learning algorithms have been widely used in biology, engineering, medicine,
computer vision, image processing, and other fields [27,28] and have become a research
hotspot in the field of machine learning [24]. In terms of learner combination rules, the
commonly used ensemble learning methods include bagging parallel and boosting serial
integration learning. Various ensemble learning model algorithms have appeared in re-
cent years, such as gradient boosting decision tree (GBDT) and extreme gradient boosting
(XGBoost) [29]. Among them, CatBoost, an improvement of GBDT, shows significant
potential for improving the accuracy and stability of model predictions compared with
other ensemble learning models because of its efficient gradient estimation and adaptability
to data distribution, as well as its ability to deal with complex patterns and nonlinear
relationships [30–33].

This study aimed to construct a remote sensing estimation method for residue cover
based on the Yen image segmentation algorithm and CatBoost model, addressing the
current issue of wide-range, rapid, and accurate estimation of agricultural residue cover.
Therefore, this study selects Sihe Town and the surrounding maize-growing areas in Jilin
Province, China, as the research area. Sentinel-2A multispectral remote sensing data were
used to construct the spectral index. Combined with the real-time images captured by
UAVs, the maize residue cover of a single image was calculated by applying the Yen
image segmentation algorithm. Subsequently, the CatBoost model was used to construct a
prediction model between maize residue cover and the spectral indices of the multispectral
images for estimation, and the spatial distribution map of maize residue cover in the
study area was plotted. The objectives of this research included (1) proposing an adaptive
threshold segmentation algorithm based on Yen, aimed at implementing a fast, convenient,
and high-precision method for calculating residue cover in images; (2) constructing a
residue cover estimation model by analyzing the correlation between residue cover and
spectral indices; and (3) using the optimized predictive CatBoost model to create a spatial
distribution map of residue cover over a large area.

2. Materials and Methods
2.1. Overview of the Study Area

The study area was located in Sihe Town and its surrounding maize-planting areas in
Jilin Province, China (Figure 1). This region, situated in the northeastern part of Yushu City,
lies between 126◦01′ to 127◦05′ east longitude and 44◦30′ to 45◦15′ north latitude. Yushu
City is at the heart of the agricultural region of Jilin Province and is characterized by a
temperate continental monsoon climate. The terrain is relatively flat, with slight undulating
waves and an average elevation of 157–220 m. The annual average temperature is 4.4 ◦C,
with an average annual precipitation of 680 mm and >2200 h of sunshine per year. The soil
is fertile and well suited for crop cultivation. The predominant agricultural products in
this area are corn, soybean, and rice. According to the 2022 national economic and social
development statistical data for Yushu City, Jilin Province, the total grain planting area of
the city is 3807.48 km2, of which maize accounts for 2935.46 km2, accounting for 77.1% of
the total planting area. This makes it an important maize planting base in Northeast China.
The geographical location of the study area is shown in Figure 1:
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Figure 1. (a) Research zone located in Sihe Town, Jilin Province, Northeastern China; (b) geographical
layout of 57 soil samples collected within the study area.

2.2. Collection and Preprocessing of Residue Cover Image Data

A DJI drone (Phantom 3) was used to collect residue mulch data in the study area, and
a field collection experiment was conducted in the first half of November 2022. To ensure
sufficient light conditions during the flight of the drone, sunny and windless weather
conditions were selected for the image acquisition of the residue cover area. Initially,
57 sampling points were established in the study area, which were set up as 8 m × 8 m
square plots, as illustrated in the schematic (Figure 2a). Five markers were selected for
each sampling point. The interval between sampling points was approximately 500 m.
The geographic coordinates of the central points of the sampling plots were recorded
using a global navigation satellite system (GNSS) to ensure precise georeferencing of each
image captured. The drone was flown at an altitude of approximately 10 m above ground
level to optimize the balance between area coverage and image resolution. The flight
parameters included an 80% front overlap and a 70% side overlap, with a flight speed
maintained at 5 m/s. The ground sampling distance (GSD) achieved was approximately
0.74 cm/pixel, which is suitable for detailed residue analysis. The UAV was equipped with
a 1/2.3-inch CMOS sensor capable of capturing high-resolution imagery with 12 million
effective pixels. The camera’s sensitivity was adaptive to accommodate varying light
conditions. Aerial photography followed a fixed flight path, capturing 10 visible-light
images in a single operation, with each image having a resolution of 3000 × 3000 pixels.
To ensure data quality, each image underwent quality screening to exclude any that were
blurry, overexposed, or underexposed. The most comprehensive and clear images from
each plot were selected for subsequent analyses. To avoid extensive shadows over the soil
cover, all the images were captured between 11:00 AM and 2:00 PM. Figure 2b depicts the
drone in the field during data collection. Finally, based on the preset ground calibration
points, the images were cropped to ensure that the areas within the images corresponded
exactly to the selected plots. This meticulous attention to flight and imaging parameters
ensured that the data collected were of the highest quality and accurately represented the
residue cover across the study area.
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Figure 2. Schematic of the UAV image acquisition sample. The sampling area was established as a
square, each side measuring 8 m, marked by four corner markers labeled A, B, C, and D. At the center
of this square, the UAV conducted its imaging operations using a predefined method, as shown in
schematic (a). Field photo (b) shows the drone ready to capture high-resolution ground images.

2.3. Remote Sensing Image Data Collection and Processing

The images selected for this study were Sentinel-2A multispectral remote sensing
images. The Sentinel-2A satellite is part of the European Copernicus environmental moni-
toring program and is designed to provide a wealth of data and images. The multispectral
camera covers 13 spectral bands, from visible to short-wave infrared, which is crucial for
agricultural monitoring, inland and coastal waters, land cover classification, and other
terrestrial monitoring applications. The satellite imager includes three spectral bands in
the “red-edge” region for the first time, providing detailed and sensitive information about
vegetation status, thus offering multidimensional, high-resolution, and high-precision data
for land monitoring. Considering the synchronicity between the generation of remote
sensing images and ground experiments, this study selected Sentinel-2A satellite images
from 7 November 2022, as the data source, with a cloud cover of <5% in the selected image
area. To eliminate geometric distortions and radiometric errors in the images, they were
preprocessed using the ENVI software for geometric correction, radiometric calibration,
and atmospheric correction, as shown in Figure 3. For an accurate estimation of farmland
residue cover, the study used the maximum likelihood estimation algorithm to analyze and
extract cultivated pixels from Sentinel-2A images. Figure 3 shows the extraction results for
the cultivated pixels, with approximately 72% of the study area being cultivated land. The
boundary between the cultivated and non-cultivated pixels (residential areas) was clear,
and the plots were relatively intact and suitable for subsequent studies on residue cover
assessment in farmlands.
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2.4. Methods
2.4.1. Yen Image Segmentation Algorithm

The Yen image segmentation algorithm is an adaptive threshold determination tech-
nique based on a grayscale histogram and the principle of entropy, which is widely used
in the field of image processing. The core of the algorithm uses the pixel distribution
information of the histogram to enhance entropy, reflecting the complexity or richness
of information in the image [34]. Its primary principle considers the foreground and
background of an image as independent sources of signals, each with an entropy value
representing the amount of information in that region. The algorithm calculates the entropy
for each potential threshold and selects the ideal threshold that best represents the overall
image information based on the entropy. In addition, the Yen algorithm can suppress
the interference of noise by maximizing entropy to ensure accurate segmentation when
dealing with noisy and varying light images. The specific formula for implementing the
Yen algorithm is as follows:

P(i) = h(i)
N

Hfore (t) = −
L−1
∑
i=t

P(i | T = t)log P(i | T = t)

Hback (t) = −
t−1
∑

i=0
P(i | T = t) log P(i | T = t)

(1)

t* = argmax
t

(Hfore (t) + Hback (t)) (2)

Suppose that the image has a gray-level range of [0, L − 1], where L is the total number
of gray levels. For each possible threshold t (where 0 ≤ t < L), the image is classified
into the foreground (gray value ≥ t) and background (gray value < t), assuming that
the gray level range of the image is [0, L − 1], where L is the total number of gray levels.
For each possible threshold t (where 0 ≤ t < L), the image is classified into foreground
(gray values ≥ t) and background (gray values < t), where the entropies of the foreground
and background are Hfore (t) and Hback (t), respectively. h(i) is the gray-level histogram
of the image, i is the gray level, N is the total number of pixels in the image, and t∗ is the
optimal segmentation threshold.

2.4.2. SPA Feature Selection Method

In data modeling, redundant variables are a key issue that affects the accuracy of
model estimation and reduces the efficiency of model computation. To reduce the model
construction workload and improve the accuracy of the prediction model, SPA was used
to screen the spectral indices in this study. The SPA operates as a progressive selection
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mechanism, beginning with a solitary spectral index and progressively integrating novel
vectors with the utmost spatial projection among the pre-selected vectors, continuing this
process until it attains a predetermined count of N spectral indices, thus effectively reducing
the collinearity among the spatial vectors [35,36]. Figure 4 delineates the fundamental
concept and detailed methodology of SPA, where N symbolizes the maximum quantity of
variables that can be chosen, and the frequency of projection maneuvers during the spectral
index selection sequence can be depicted as follows:

(N − 1)(J − N/2) (3)
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2.4.3. CatBoost Estimation Model

The CatBoost algorithm is a machine learning approach based on gradient-boosted de-
cision trees, central to which is the efficient and innovative handling of categorical features,
along with a reduction in gradient bias and prediction deviation, thereby enhancing the
algorithm’s accuracy and generalization capability [30,37]. Divergent from the conventional
GBDT algorithm, CatBoost employs methods of random permutation and mean label value
calculation for sample processing, in addition to incorporating a prior distribution term,
effectively mitigating the noise impact from low-frequency categorical data. Furthermore,
CatBoost utilizes a completely symmetric tree as the base model, optimizing the processing
capacity for high-dimensional sparse data. In the realm of decision tree algorithms, the
mean value of labels is used as the criterion for node splitting, a method referred to as
greedy target-based statistics, which is expressed formulaically as follows:

xi,k =
∑n

j=1

[
xj,k = xi,k

]
·Yj

∑n
j=1

[
xj,k = xi,k

] (4)
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Improving upon the aforementioned formula by adding a prior distribution term can
reduce the impact of low-frequency data and noise on the data distribution:

xi,k =
∑

p−1
j=1

[
xσj,k = xσp,k

]
·Yj + a·p

∑
p−1
j=1

[
xσj,k = xσp,k

]
+ a

(5)

where p is the added prior term, and a is typically a weight coefficient greater than 0.
Compared to other boosting algorithms, CatBoost’s main features include: the use of

combined categorical features; enriching feature dimensions through inter-feature associa-
tions; employing ordered boosting to combat noise in the training set, thereby reducing
gradient estimation bias and addressing prediction shift issues; and using completely
symmetric trees as the base model to enhance the model’s capability in processing high-
dimensional sparse data.

2.5. Evaluation Metrics

In this experiment, the Dice coefficient is used to evaluate the segmented maize
residue cover images. The Dice coefficient is used to calculate the similarity between two
samples [38,39]. The value of the Dice coefficient ranges from 0 to 1, indicating no similarity
to complete consistency. The formula for the Dice coefficient is as follows:

Dice =
2|A ∩ B|
|A|+ |B| (6)

where A denotes the number of pixels of the predicted image and B denotes the number of
pixels of the manually segmented image.

In the evaluation of the model, three indicators are used to assess the accuracy of
the model: coefficient of determination (R2), root mean square error (RMSE), and relative
prediction deviation (RPD). R2 reflects the fitting ability of the model, and RMSE and RPD
measure the dispersion and deviation between the predicted values and the actual values.
The closer R2 is to 1, the smaller the RMSE is, the better the model prediction is, and the
model has excellent prediction ability when the RPD is greater than 2 [40]. When RPD is
greater than 2, the model has excellent prediction ability, and the formulas of R2 and RMSE
are as follows:

R2 =
∑n

i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2 (7)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(8)

RPD =
∑(yi−y)2

n−1√
(yi−ŷi)

2

n

(9)

where yi is the predicted MRC (maize residue cover), ŷi is the measured MRC, y is the
average MRC, and n is the sample size.

3. Results
3.1. Extraction of Maize Residue Cover

To analyze the accuracy of Yen’s algorithm for extracting the coverage of agricultural
residues, four different segmentation algorithms and Yen’s algorithm were selected for
segmentation experiments on the images of the study area. Initially, the original images
were converted to RGB grayscale images. Then, through segmentation algorithm analysis,
the optimal threshold for each algorithm was determined. Subsequently, the RGB grayscale
images were binarized according to the optimal thresholds, and the pixel values of the
converted grayscale images were categorized into two groups: One representing the
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background (without residue) and the foreground (with residue). The specific process of
extracting the residue cover using the Yen segmentation algorithm is illustrated in Figure 5.
The asterisk (*) in Figure 5 represents the optimal threshold value that maximizes the
combined entropy of the foreground and background.
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Figure 5. Principle and process of residue cover extraction using the Yen algorithm.

To compare the segmentation effects of different algorithms, this study used the
results of human–computer interaction visual recognition of residue cover as the ground
truth. Using the first set of field residue cover images as an example, histograms were
used to compare and analyze the segmentation results of the Yen, OSTU, K-means, and
MaxEntropy algorithms against the visual recognition extraction results. The results are
shown in Figure 6, and the Dice coefficient values (Dice) for the classification results of the
different algorithms are shown in Figure 7.

The effects of different image segmentation algorithms on maize residue cover extrac-
tion are shown in Figure 6. A comparison of Figure 6 shows that the Yen algorithm has
a better segmentation effect, and the Yen segmentation algorithm has the highest clarity
when compared with the true value image. The OSTU segmentation algorithm showed
partial ambiguity in the separation of the residue and soil, and the boundary of the features
was not sufficiently clear. K-means segmentation is the least effective method because it
produces more dispersed image features and reduces the quality of the image segmentation.
Figure 7 shows the results of the quantitative analysis and calculation of the four segmenta-
tion algorithms, manual interactive visual recognition, and corresponding Dice coefficients.
It is evident from Figure 7 that the Yen segmentation algorithm achieved the highest Dice
coefficient of 81.71%. This indicates that the segmentation effect was closest to the ground
truth of human–computer interactive visual recognition. Following closely is the OSTU seg-
mentation algorithm, whose Dice coefficient was slightly lower, still demonstrated a good
segmentation performance. In contrast, the K-means segmentation algorithm performed
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poorly in distinguishing between residue and soil, as indicated by its lowest Dice coefficient,
which was significantly lower than the others at a minimum of 63.44%. Therefore, the Yen
segmentation algorithm not only provides the clearest visual image segmentation effect but
also exhibits the highest Dice coefficient in quantitative assessment, further illustrating the
practicality and effectiveness of the Yen image segmentation algorithm in image processing.
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3.2. Extraction of Spectral Feature Indices

Spectral features exhibit strong reflective or radiative characteristics in specific bands,
whereas they may be weaker in others. Band combinations can be used to fuse information
from different bands, resulting in a more comprehensive and detailed description of features
and surface characteristics. To effectively amalgamate the spectral information of Sentinel-
2A and enhance the estimation precision of the model, this study, after analyzing the
spectral characteristics of Sentinel-2A imagery, used interpolation, ratio, and normalization
techniques to create 45 spectral indices. These indices were used to develop a model
for estimating the maize residue cover in the research area. To minimize information
redundancy and autocorrelation among these spectral indices, the successive projections
algorithm (SPA) was used for feature extraction from the constructed indices, and the
extracted spectral feature indices were then used as training sample data for the ensemble
learning model. The ideal iteration counts for the SPA were established using RMSECV
associated with multivariate regression. As the number of iterations increased, the RMSECV
decreased until it reached its minimum. Afterward, new variables were added as the
iteration continued, and the multicollinearity between the variables started to increase,
resulting in the slow increase and fluctuation of RMSECV. Therefore, the variable when the
RMSECV reaches its minimum value is the optimal band combination containing the least
amount of redundant information. From Figure 8, it can be observed that as the RMSECV
reaches an average trend value of 0.3%, the number of spectral indices is reduced from
45 to 15. This effectively compresses the number of feature spectral indices, while retaining
most of the information in the original dataset. The spectral indices computed by SPA
feature extraction are listed in Table 1. The green dashed line in Figure 8 indicates the cutoff
point where RMSECV stabilizes, signifying the selection of the optimal number of spectral
indices for the model.
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Table 1. Combined bands and corresponding tillage indices.

Sentinel-2 MSI Formula Tillage Index Abbreviation Reference

(B11 − B12)/(B11 + B12) Normalized Difference Tillage Index NDTI [41]
(B8A − B12)/(B8A + B12) Normalized Difference Index 7 NDI7 [42]

(B12 − B4)/(B12 + B4) Shortwave Red Normalized Difference Index SRNDI [7]
B11/B12 Simple Tillage Index STI [41]

(B11 − B4)/(B11 + B4) Normalized Difference Senescent Vegetation Index NDSVI [43]
(B1 − B2)/(B1 + B2) Normalized Difference Chlorophyll Index NDCI [44]
(B6 − B5)/(B6 + B5) Normalized Red Edge Drought Index 2 NDRE1 [45]

(B11 − B3)/(B11 + B3) Modified Crop Residue Cover MCRC [46]
(B8A − B11)/(B8A + B11) Normalized Difference Index 5 NDI5 [42]

B8/B4 Ratio Vegetation Index RVI [47]
(B8 − B7)/(B8 + B7) Normalized Difference Vegetation Index Red Edge 3 NDVIRE3 [48]
(B8 − B4)/(B8 + B4) Normalized Difference Vegetation Index NDVI [49]
(B7 − B5)/(B7 + B5) Normalized Difference Red Edge 2 NDRE2 [45]
(B8 − B6)/(B8 + B6) Normalized Difference Vegetation Index Red Edge 2 NDVIRE2 [48]
(B3 − B8)/(B3 + B8) Normalized Difference Water Index NDWI [50]

3.3. Construction and Evaluation of the MRC Inversion Model

In this study, the spectral indices extracted using SPA were used as independent
variables Xi, with MRC as the dependent variable Yi. Random split sampling was used
to divide the sample size randomly into a 7:3 ratio for the training group (to establish
the model and optimize parameters) and the validation group (to assess model accuracy
and generalizability). This selection method ensured a consistent range and uniform
distribution of calibration and validation samples, involving a total of 57 samples, with
40 allocated to training and 17 to validation. To analyze the estimation accuracy of the
CatBoost model, the random forest (RF) model, and the multilayer perceptron (MLP)
machine learning model were used for comparative analysis.

Hyperparameters play a crucial role in defining the accuracy of a model during its
construction. For the CatBoost model, parameters such as the learning rate and quantity
of regression trees are pivotal. In this study, R2 was used as the primary measure to
evaluate the effectiveness of the optimization objective function. To refine these models,
cross-validation was used for optimization computations across the three distinct models.
Table 2 presents the fine-tuned parameters for each post-optimization model. Figure 9
graphically depicts the optimization outcomes for various models.

Table 2. Optimal hyperparameter using grid search with 10-fold CV and cross-validation for different
MRC models.

Method
CatBoost RF MLPR

Max Depth Estimators Learning Rate Max Depth Estimators Max Features Hidden Layer Size

SPA 3 12 0.03 4 150 0.3 23

Combining the hyperparameter calculation results obtained from the parameter op-
timization calculations, the CatBoost, RF, and MLP models were used to estimate maize
residue cover. Additionally, the evaluation metrics for the training and validation of the
different models were calculated separately, and the results are presented in Table 3.

As shown in Table 3, considering the accuracy metrics (R2, RMSE, and RPD) for both
training and validation datasets, as a whole, CatBoost significantly outperformed the other
three algorithms, exhibiting the best predictive performance (R2 = 0.83, RMSE = 1.31%,
RPD = 2.1). In addition, the prediction accuracy of the validation datasets for all three
models was lower than that of the training datasets. Among them, the RMSE values for
both the training and validation datasets of the CatBoost model were substantially lower
than those of the RF and MLP models.
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Table 3. Evaluation of estimation outcomes of diverse models.

Ensemble Learning Model
Training Data Set Test Data Set

R2 RMSE (%) RPD R2 RMSE (%) RPD

CBR 0.83 1.31 2.17 0.81 1.42 1.95
RF 0.62 2.54 1.64 0.58 2.43 1.52

MLP 0.55 2.27 1.32 0.51 2.98 1.11

To further examine and compare the fitting and predictive capabilities of the different
models, scatter diagrams depicting the relationship between the predicted and actual
values were generated (Figure 10). In these plots, the actual values of the soil samples are
plotted along the horizontal axis, whereas the values predicted by the models are plotted
on the vertical axis. Training samples are represented by pink dots, and validation samples
are represented by blue dots. The proximity of these data points to the diagonal 1:1 line
indicated the closeness of the measured values to the predicted values. As depicted in
Figure 10, the CatBoost model exhibits superior performance metrics compared with the
RF and MLP models, with data points from both the training and validation sets aligned
closer to the 1:1 line. Among the tested algorithms, CatBoost demonstrated the highest
level of accuracy, followed by the RF model; the MLP model ranked the lowest in accuracy.
This suggests that the ensemble learning approach of the CatBoost model surpasses the
other models in terms of fitting accuracy and stability, thereby revealing its effectiveness in
estimating maize residue cover based on ensemble learning methodologies.
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3.4. Spatial Distribution of Maize Residue Cover

According to the selection of the characteristic spectral index and the extraction of the
cultivated land image elements, the MRC distribution map of the multispectral images in
the study area obtained by the SPA_CatBoost model using the Sentinel-2A multispectral
image data as input is shown in Figure 11. According to the statistics of the inversion
results, the maximum and minimum values of the inversion results were 95.64% and 4.32%,
respectively. In the cultivated area, 24.56% of the MRC ranged from 20% to 40%, 40.37%
of the MRC ranged from 40% to 60%, and 17.54% of the MRC ranged from 60% to 80%,
which is consistent with the field observations. The results showed that the MRC estimates
obtained from the SPA_CatBoost model reflect a reliable MRC distribution. Further anal-
yses showed that areas close to populated areas exhibited relatively high MRC values,
which may be attributed to the concentration of residents in stacking and using residues,
particularly in agricultural production and application in daily life. This tendency may
reflect the dependence of residents on agricultural by-products, as well as the management
and maintenance strategies for this resource. In addition, the areas close to roads showed
different MRC distribution patterns, presenting moderate to low-ranked MRC values. This
phenomenon may be related to road maintenance, traffic safety needs, and residue-removal
activities along the roads. This variability suggests that land-use practices and human inter-
vention in the vicinity of roads have a significant effect on maize residue cover. The MRC
distribution results obtained through the SPA_CatBoost model not only align with field
observation data but also reveal the impact of human activities on the spatial distribution of
residue cover. This suggests that MRC distribution is influenced by a combination of land-
use patterns, geographic locations, and the activities of residents and road maintenance.
Therefore, future research should focus on comprehensively considering the interplay
between human activities and the natural environment to promote conservation tillage
practices and achieve the sustainable management of agricultural ecosystems.
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4. Discussion
4.1. Analysis of Spectral Index Characteristics for Maize Residue Cover Estimation

In this study, several Sentinel-2 MSI formulas were screened and analyzed for spectral
index selection using the SPA feature extraction method and three machine learning models.
Several sets of spectral indices were successfully screened, as listed in Table 2. The spectral
indices selected in this study were significantly correlated with MRC, especially NDTI,
NDI7, STI, and SRNDI (Table 1), which is consistent with previous research findings [1],
indicating that these four indices are well-suited for estimating residue cover in the study
area. Figure 12 shows the network interaction graph of the spectral indices used in this
study with Sentinel-2A bands. In Figure 12, the indices shown in red represent the four
significantly correlated spectral indices discussed in this section, and the orange bands
indicate the corresponding band combinations for these indices. These relationships reveal
that the four highly correlated indices (NDTI, NDI7, STI, and SRNDI) were all related to
band B12. NDTI was calculated from bands 11 and 12 of Sentinel-2 imagery, with center
wavelengths of B11 and B12 bands near 1610 nm and 2100 nm, respectively. Daughtry
et al. [51] noted two moisture absorption features near 1450 nm and 1960 nm, with signifi-
cant spectral reflectance differences between dry and moisture-saturated residue residues
in these bands. Moreover, the SWIR bands, particularly near 2100 nm, are indicative of
the presence of lignin and cellulose, essential components of crop residues that contribute
to their spectral signature. This spectral response in the SWIR range is highly relevant
for our analysis because it directly relates to the structural and moisture characteristics
of maize residues, making NDTI and STI particularly effective for their estimation [7,52].
Additionally, Hively et al. [8] indicated that all dry crop residues have a broadband ab-
sorption feature near 2100 nm, possibly related to the content of lignin and cellulose in
the residues. NDI7 is calculated based on bands 8A and 12. The results of the previous
analysis exhibit a significant correlation between 8A and MRC, which can be attributed
to the high sensitivity of the near-infrared band 8A to plant structure. It indicates that the
reflectance of crop residue is higher than that of the bare soil. On this basis, the significant
correlation between NDI7 and the MRC is validated. Ding et al. [52] developed the Soil
Residue Normalized Difference Index (SRNDI) utilizing bands 4 and 12, demonstrating its
significant correlation with crop residue cover (CRC) as part of comprehensive research on
estimating CRC using remote sensing technologies for enhanced agricultural management
and tillage intensity evaluation. Daughtry et al. [53,54] highlighted the effectiveness of
the Cellulose Absorption Index (CAI) over other spectral indices (VI) for estimating crop
residues. The efficacy of CAI is based on the absorption characteristics of cellulose and
lignin, particularly near 2100 nm. This finding explains why the SRNDI outperformed
the NDSVI in our study. Additionally, other indices, such as NDI5, SRNDR, and NDSVI,
which showed slightly weaker correlations with residue cover, still indicated a degree of
relevance, suggesting their potential application value in MRC estimation.

4.2. Error Analysis of Image Segmentation Algorithm Results

In this study, different segmentation algorithms were used to extract maize residue
cover from the images, and Yen’s algorithm was determined to yield the best results in
calculating the MRC using Dice coefficients. To further understand the performance of the
Yen algorithm and its behavior in specific situations, the segmentation results obtained
using the Yen algorithm were compared with those obtained from manual interactive visual
recognition, followed by detailed error analysis. Figure 13 shows the residue cover in three
specific situations (a–c) and plots each of the 57 images (along the x-axis) along with the
corresponding MRC obtained using manual interactive visual recognition and the Yen
algorithm (along the y-axis). It can be observed from Figure 13 that the Yen algorithm has a
small relative error, with most values within a 5% error range and only a few exceeding 10%.
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In this study, a systematic analysis and evaluation of the performance of the Yen image
segmentation algorithm under different residue cover conditions was conducted by com-
paring experimental data with field survey results. For areas with the highest residue cover
(a), the algorithm showed a significant increase in the error rate when segmenting dense
and similarly textured image elements, primarily because of high-density textures, making
it difficult to accurately distinguish edges and revealing limitations in processing highly
overlapping textures. In medium-coverage scenarios (b), the Yen algorithm demonstrated
moderate accuracy, effectively handling textures with little variation, although the segmen-
tation precision still requires improvement in situations where the contrast between the
background and texture is not prominent. This suggests that, in these moderately complex
contexts, the Yen algorithm is slightly inadequate for finer texture discrimination, although
it maintains some stability. Furthermore, when analyzing the region with low maize residue
coverage (c), the Yen algorithm performed relatively more accurately, with the lowest error
rate. This may be attributed to the high contrast between the residue and the background
in the low-coverage region, which provides the algorithm with visual features that are
easier to distinguish, thus reducing cases of mis-segmentation. This finding suggests that
the Yen algorithm is more robust when dealing with low-complexity scenes and is better
at extracting textures from simple backgrounds. In these cases, image features such as
texture consistency, background simplicity, and uniform illumination work together in the
algorithm to achieve a high accuracy in the segmentation task. These findings not only em-
phasize the applicability of Yen’s algorithm in dealing with different texture complexities
and illumination conditions but also reveal the limitations of the algorithm in dealing with
high-density textures and low-contrast scenes, providing directions for future research to
optimize the algorithm for more diverse application scenarios.
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4.3. Uncertainty Analysis

In this study, selecting appropriate training samples and ensuring their high quality
were key factors determining the accuracy of model training. However, some uncertainties
and potential influencing factors still exist. Through scatterplot analysis of the test samples
(Figure 10), maize residue cover tended to be overestimated at low values and underesti-
mated at high values, much like other studies that have used regression models for cover
mapping [55]. The overestimation of low-value areas is mainly a problem of sample data
collection methods. Especially after the corn harvest, the residual stover in the farmland
is usually unevenly distributed and mixed with a small amount of other vegetation on
the ground, which increases the complexity of cover estimation. The underestimation of
high-value areas was mainly due to the random sampling strategy. The proportion of high
cover in the training samples was small, and the cover was unevenly distributed. One
possible solution to this problem is to balance the distribution of sample coverage. This can
be achieved by adopting a stratified sampling strategy, wherein the number of samples is
evenly distributed among different coverage levels, ensuring that the model has sufficient
training data across all coverage ranges. Secondly, extracting maize residue cover from
sample plots using image segmentation technology is significantly affected by various envi-
ronmental factors, such as residue moisture content, type, soil moisture, and soil roughness.
The moisture content and type of residue directly affect the visual characteristics of images,
whereas changes in soil moisture and roughness can interfere with the ability of the image
segmentation algorithm to distinguish between the residue and soil boundaries. In this
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study, some MRC samples exhibited overestimation at low values, reflecting the limitations
of the segmentation algorithm in handling subtle differences between residues and soil.
Particularly in different regions, the shadow effect of maize residue and variations in soil
moisture further complicate the image segmentation process. Figure 14a shows an example
of a mixture of sunlit maize residue, shadowed residue, sunlit soil, and shadowed soil
in a field-captured image. In addition, Figure 14b shows an example of a maize residue
mixed with high-moisture background soil. To address these issues, future research could
consider increasing the monitoring and calibration mechanisms for environmental factors
to reduce their impact on image analysis, thereby enhancing the accuracy and reliability
of residue coverage estimation. Additionally, collecting more representative samples and
performing meticulous adjustments and optimizations to the model can further improve
its performance.
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5. Conclusions

This study explores the methodology and feasibility of large-scale corn stover coverage
estimation using multispectral images. A new stover coverage estimation model is con-
structed by integrating adaptive threshold segmentation and the CatBoost algorithm, which
effectively improves the accuracy and stability of the model estimation. The experimental
results of image segmentation show that the Yen algorithm has significant advantages in
maintaining segmentation stability and strengthening the ability to respond to differences
in image contrast. It outperforms traditional algorithms when dealing with low-complexity
scenes and high-contrast texture segmentation. The screening of spectral feature indices of
multispectral images using the continuous projection algorithm effectively decreases the
information redundancy and high correlation between some spectral indices, significantly
reducing the computational complexity. The four indices screened, namely, NDTI, STI,
NDI7, and SRNDI, facilitate the improvement of the overall accuracy and efficiency of the
model. Since the CatBoost model has significant advantages in processing category-type
features and reducing gradient bias, it can effectively overcome the problem of insufficient
model generalization ability with a small number of samples, exhibiting better accuracy
and generalization in the estimation of straw coverage. In this study, the practical utility
of the integrated approach is clearly demonstrated across various agricultural manage-
ment practices. Precise estimation of corn stover coverage can significantly aid sustainable
agricultural practices, including crop residue management, soil health monitoring, and
precision farming techniques. By providing accurate, reliable data, the model supports
informed decision-making for fertilizer application, irrigation planning, and crop rotation
strategies, thereby enhancing yield and reducing environmental impact. Additionally, this
approach greatly enhances smart and digital agriculture, providing a robust foundation for
more precise and informed agricultural practices. The adaptability of this model to various
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climatic and terrain conditions, although currently a limitation, underscores the potential
for future refinement and application in diverse agricultural settings globally. Continued
enhancements in the robustness and adaptability of the segmentation algorithm are essen-
tial to extend the practical applications of this research. Thus, ongoing investigation into
improving the segmentation algorithm will focus on enhancing its utility in real-world
agricultural scenarios.
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