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Abstract: Genome selection (GS) technology is an important means to improve the genetic improve-
ment of dairy cows, and the mining and application of functional genes and loci for important traits
is one of the important bases for accelerating genetic improvement. Our previous study found that
the apolipoprotein A5 (APOAS5) and AKT serine/threonine kinase 3 (AKT3) genes were differentially
expressed in the liver tissue of Chinese Holstein cows at different lactation stages and influenced
milk component synthesis and metabolism, so we considered these two genes as the candidates
affecting milk production traits. In this study, we found in total six single nucleotide polymorphisms
(SNPs), three in APOA5 and three in AKT3. Subsequent association analysis showed that the six
SNPs were significantly associated with milk yield, fat yield, protein yield, or fat percentage (p <
0.05). Three SNPs in APOA5 formed a haplotype block, which was found to be significantly associ-
ated with milk yield, fat yield, and protein yield (p < 0.05). In addition, four SNPs were proposed to
be functional mutations affecting the milk production phenotype, of which three, 15:g.27446527C>T
and 15:2.27447741A>G in APOAS5 and 16:g.33367767T>C in AKT3, might change the transcription
factor binding sites (TFBSs), and one is a missense mutation, 15:g.27445825T>C in APOA5, which
could alter the secondary structure and stability of mRNA and protein. In summary, we demon-
strated the genetic effects of APOA5 and AKT3 on milk production traits, and the valuable SNPs
could be used as available genetic markers for dairy cattle’s GS.

Keywords: APOA5; AKT3; milk production traits; association analysis; SNP

1. Introduction

Milk is a naturally nutritious food that can provide a plethora of essential nutrients
including high-quality proteins, fats, carbohydrates (lactose), minerals, trace elements,
and vitamins for the human diet [1,2]. Beyond its nutritional value, mounting evidence
suggests that milk may confer numerous health-related benefits; these include its poten-
tial roles in preventing cardiovascular diseases, cancers, obesity, and diabetes, among oth-
ers [3-6]. With the improvement of economic levels and awareness of nutrition and health,
milk consumption will undoubtedly continue to increase, so it is crucial to enhance milk
production and its nutritional content.

In recent years, researchers have implemented multiple strategies to improve the
production performance of dairy cattle. Among them, genomic selection (GS) using dense
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markers covering the whole genome is a strategy for the genetic improvement of livestock
and has revolutionized the breeding system in dairy cattle [7-9]. Since 2009, GS technol-
ogy has been widely used in early selective breeding of dairy cattle, which significantly
shortens generation intervals and reduces breeding costs, accelerating genetic progress
within the population [10,11]. Studies have shown that incorporating single nucleotide
polymorphism (SNP) information from functional genes with significant genetic effects
on the target traits into chip marker data can enhance the accuracy of genomic estimated
breeding values [12,13]. Therefore, more and more studies are dedicated to identifying
functional genes and SNP loci that have a significant impact on milk production traits [14-
19], with the aim of applying them to dairy cattle’s GS to improve the accuracy of milk
production trait selection.

Previously, we analyzed the proteomes of liver tissue samples from three Holstein
cows during the dry period and early and peak lactations and found that the apolipopro-
tein A5 (APOAS5) and AKT serine/threonine kinase 3 (AKT3) genes exhibited differential
expression across various lactation stages, and they were also involved in the pathways
related to the synthesis and metabolism of milk components, so these two genes were
considered to be promising candidate genes that affect milk production traits [20]. The
APOAS gene is an integral part of the regulation of plasma triglyceride levels [21-23] and
is highly expressed in the liver of periparturient cows, regulating the synthesis and me-
tabolism of fatty acids and lipoproteins in preparation for lactation [24,25]. AKT3 is a ma-
jor nodal gene in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which regulates
cell proliferation, differentiation, apoptosis, and other biological processes by responding
to extracellular signals [26,27]. It also participates in mammalian target of rapamycin
(mTOR), AMP-activated protein kinase (AMPK), and insulin receptor signaling networks,
which are the pathways related to the lactation of dairy cows [28]. In addition, the APOA5
gene was found to be located 0.22-2.13 Mb away from the quantitative trait loci (QTL)
associated with fat yield and percentage, protein yield and percentage, and fatty acid con-
tent [29-32]. AKT3 was located near 2.03-3.33 Mb of known QTLs for milk yield and fat
yield [30,33]. Therefore, we considered that the APOA5 and AKT3 genes might play im-
portant roles for milk production traits in dairy cattle.

In this study, we identified the single nucleotide polymorphisms (SNPs) of the
APOA5 and AKT3 genes in a Chinese Holstein population and analyzed their genetic as-
sociations with 305-day milk yield, fat yield, fat percentage, protein yield, and protein
percentage. Further, we conducted functional predictions of key mutation sites to specu-
late on the reasons why they affect milk production traits. The purpose of this study is to
provide valuable SNP loci information for dairy cattle’s GS and gene information for the
in-depth study of the mechanism related to milk production traits in dairy cattle.

2. Materials and Methods
2.1. Animals and Phenotypic Data

In this study, a total of 944 Chinese Holstein cows in the first lactation and 637 in the
second lactation (307 cows had just finished the milking of first lactation) were used for
association analyses. The cows were from 45 sire families and fed under the same condi-
tions in 22 dairy farms of Beijing Sunlon Livestock Development Co., Ltd. (Beijing, China),
where each sire family had 1-68 daughters, with an average of 21. Each cow had pedigree
information and dairy herd improvement (DHI) records, which were provided by the Bei-
jing Dairy Cattle Center (Beijing, China). The descriptive statistics of phenotypic values
for milk production traits of the first and second lactations are presented in Table S1.

2.2. DNA Extraction and Quality Control

DNA was extracted from semen samples of the 45 sires using the salt-out procedure
and from blood samples of the 944 cows with a TTANamp Blood DNA Kit (Tiangen, Bei-
jing, China). These frozen semen and blood samples were provided by Beijing Dairy Cattle
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Center. Then, a NanoDrop 2000 Spectrophotometer (Thermo Scientific, Hudson, NH,
USA) and gel electrophoresis were used to determine the quantity and quality of the ex-
tracted DNA, respectively.

2.3. SNP Identification and Genotyping

According to the sequences of bovine APOA5 (Gene ID: 538914) and AKT3 (Gene ID:
100137872) downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/, ac-
cessed on 12 January 2024), primers were designed by Primer3 (https://primer3.ut.ee/, ac-
cessed on 12 January 2024) to amplify these genes’ coding regions and 2000 bp of upstream
and downstream flanking regions (Table S2). The primers were synthesized by BGI Ge-
nomics Co., Ltd. (Beijing, China). The DNA samples of the 45 bulls were used as the tem-
plate for PCR amplification (Table S2), and then its products were sequenced by Sanger
sequencing. After that, the potential SNPs were identified by comparing the sequences
with  the  reference  sequence  (ARS-UCD1.2)  through  NCBI-BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 12 January 2024). Subsequently, the
identified SNPs were genotyped in the 944 cows using Genotyping by Target Sequencing
(GBTS) technology by Boruidi Biotechnology Co., Ltd. (Shijiazhuang, China).

2.4. Association Analyses

Haploview4.2 (Broad Institute of MIT and Harvard, Cambridge, MA, USA) was uti-
lized to estimate the extent of linkage disequilibrium (LD) between the identified SNPs,
and pairwise SNP correlations were represented by R when R2=1 indicated that the SNPs
were in complete linkage disequilibrium. Then, SAS 9.4 (SAS Institute Inc., Cary, NC,
USA) was used to assess the association between the SNPs/haplotype blocks and milk
yield and composition traits on the first and second lactations with the following animal
model:

Yijkl = u+ HYS] +bx Mk + Gi +a + €ijk1

where yiju is the phenotypic value of each trait for each cow; p is the overall mean; HYS; is
the fixed effect of the farm (1-22 for 22 farms), year (1-4 for the years 2012-2015, respec-
tively), and season (1 for April-May; 2 for June-August; 3 for September—-November; and
4 for December-March); Mk is the age of calving as a covariant; b is the regression coeffi-
cient of covariant M; Gi is the genotype or haplotype combination effect; a, is the individ-
ual random additive genetic effect, distributed as N (0, A82), with the additive genetic var-
iance 82; and eiu is the random residual, distributed as N (0,182), with identity matrix I
and residual error variance §2. Multiple tests were implemented by Bonferroni correction,
with the significance level equal to the original p value multiplied by the number of gen-
otype or haplotype combinations.

In addition, the additive effect (a), dominant effect (d), and substitution effect (o)
AA;BB, d=AB-2228 o —atd(q-
p), where AA, BB, and AB are the least squares means of the milk production traits in the
corresponding genotypes, p is the frequency of allele A, and q is the frequency of allele B.

were calculated using the following formulas: a =

2.5. Functional Prediction of Mutation Sites

The Jaspar online website (http://jaspar.genereg.net/, accessed on 20 March 2024) was
employed to predict whether SNPs in the 5’ flanking region of the APOA5 and AKT3 genes
changed the transcription factor binding sites (TFBSs; relative score (RS) > 0.85). To predict
changes in mRNA secondary structures for missense mutation, RNAfold web server
(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi, accessed on 20 March
2024) was used, with the minimum free energy (MFE) of the optimal secondary structure
reflecting the stability of the mRNA structure. A lower MFE value indicates greater stabil-
ity in the mRNA structure. Additionally, the impact of missense mutation on protein sec-
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ondary structure, including a-helix, 3-turn, extended strand, and random coil, was deter-
mined using SOPMA (https://npsa-pbil.ibcp.fr/cgi-bin/npsa_auto-
mat.pl?page=/NPSA/npsa_sopma.html, accessed on 20 March 2024). Changes in protein
stability caused by mutation were predicted through SAAFEC-SEQ Web (http://comp-
bio.clemson.edu/SAAFEC-SEQ/, accessed on 20 March 2024). The changes in AAG value
before and after mutation represent alterations in protein stability, where a value greater
than zero indicates an increase in  stability. = Finally, = PROVEAN
(http://provean.jcvi.org/seq_submit.php, accessed on 20 March 2024) was applied to pre-
dict whether the protein function was altered before and after the mutation, and when the
score was lower than —2.5, it was considered to be a harmful mutation.

3. Results
3.1. SNP Identification

We found three SNPs in the APOA5 gene and three in AKT3. In APOA5, two SNPs,
15:g.27447741A>G (rs41755770) and 15:g.27446527C>T (rs1755767), were located in the 5’
regulatory region and one SNP, 15:g.27445825T>C (rs41755766), in exon 1, a missense mu-
tation in which, when the allele mutates from T to C, the amino acid changes from lysine
(AAG) to arginine (AGG). In AKT3, 16:g.33367767T>C (rs208316642) was located in the 5’
regulatory region, 16:g.33417238C>T (rs41798799) in intron 1, and 16:g.33551706T>C
(rs209739552) in intron 6 (Table 1). The genotypic and allelic frequencies of all the identi-
fied SNPs are summarized in Table 1.

Table 1. Details of SNPs identified in APOA5 and AKT3 genes.

Gene SNP Name GenBank No.  Location = Genotype Genotypic Allele Allelic Fre-
Frequency quency
5' regulatory AA 0.0975 A 0.3173
15:2.27447741A>G rs41755770 region AG 0.4396 G 0.6827
GG 0.4629
5' regulatory CcC 0.1070 C 0.3332
APOA5 15:2.27446527C>T rs41755767 region CT 0.4523 T 0.6668
TT 0.4407
. CcC 0.4523 C 0.6748
15'gs'iiii5$5t;§rf)mls' rs41755766  exon 1 CT 04449 T 03252
1T 0.1028
5' regulatory CC 0.1631 C 0.4115
16:.33367767T>C rs208316642 region CT 0.4968 T 0.5885
TT 0.3400
CcC 0.3612 C 0.5990
AKT3 16:¢.33417238C>T rs41798799 intron 1 CT 0.4756 T 0.4010
TT 0.1631
CcC 0.0191 C 0.1563
16:g.33551706T>C rs209739552 intron 6 CT 0.2744 T 0.8438
TT 0.7066

3.2. Association Analyses between SNPs and Five Milk Production Traits

We analyzed the genetic associations between the six SNPs in the APOA5 and AKT3
genes and five milk production traits, including 305-day milk yield, fat yield, fat percent-
age, protein yield, and protein percentage (Table S3). In APOAS5, 15:g.27447741A>G had
significant associations with milk yield (p = 0.0025) and protein yield (p = 0.0146) in the
first lactation and milk yield (p = 0.0003), fat yield (p=0.0019), and protein yield (p =0.0041)
in the second lactation. 15:g.27446527C>T was found to be significantly associated with
milk yield (p = 0.0012) and protein yield (p = 0.0108) in the first lactation and milk yield (p
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< 0.0001), fat yield (p < 0.0001), and protein yield (p < 0.0001) in the second lactation.
15:g.27445825T>C was significantly associated with milk yield in the first lactation (p =
0.0116) and milk yield (p < 0.0001), fat yield (p < 0.0001), and protein yield (p = 0.0030) in
the second lactation.

In AKT3, 16:g.33367767T>C was significantly associated with fat yield (p = 0.0035) in
the first lactation and fat yield (p <0.0001), fat percentage (p = 0.0141), and protein yield (p
=0.0017) in the second lactation. 16:g.33417238C>T had significant associations with milk
yield (p = 0.0141), fat yield (p = 0.0030), and protein yield (p = 0.0003) in the second lacta-
tion. 16:g.33551706T>C was found to be significantly associated with milk yield (p =
0.0005) and protein yield (p < 0.0001) in the second lactation. Additionally, the additive,
dominant, and substitution effects of the six SNPs are shown in Table S4.

In APOADS, for 15:g.27447741A>G (Figure 1A), 15:g.27446527C>T (Figure 1B,C), and
15:¢.27445825T>C (Figure 1D), we observed that the GG, TT, and CC genotypes were the
dominant genotypes for milk yield or protein yield. As for the AKT3 gene, the CC geno-
type in 16:g.33367767T>C was the dominant genotype for fat yield (Figure 1E).

15:2.27447741A>G
A . Lactation 1 B 15:2.27446527C>T . C 15:2.27446527C>T .
M Lactation 1 Lactation 1
- b b a ABbBabAab actation . :
12,000 - 12,000 BbABaAab Bb Ba Aab Lactation 2 3504 b b a B B A Lactation 2
10,0004 - — 7 o _ e ——— = i B
=) 10,0004 — = ~ 300
< 8,000 C £ 2350
= =< 8,000 = 250
2 6,000 = S 200
_:‘ “;‘. 6,000 =
= 4,000 ; = 150
= £ 4,000 g |
2,000 = 2
2,000 50
0 L T 1 T Genotype N N
AA AG GG AA AGGG Y v T TT T T v LI L L
ccCT TT cc cT TT  Genotype cccr Tt cc cr tr Genotype
D 15:2.27445825T>C E 16:2.33367767T>C
Lactation 1 Lactation 1
12,0004 a b b A B B Lactation 2 4004 A2BabABb A B A Lactation 2
10,0004 = — - N i s - o -
Cl 300
< 8,000 g
= = 250
.E 6,000 S 200
) -
Z 4,000 5 1507
= = 100
2,000 504
0 T T T T T T 0 T T T T T T
cccr T cc cr 1T Genotype cccr Tt cccr Tt Genotype

Figure 1. Phenotypes of milk production traits for genotypes in different SNPs. (A) Milk yield of
different genotypes in 15:8.27447741A>G; (B) milk yield of different genotypes in 15:g.27446527C>T;
(C) protein yield of different genotypes in 15:g.27446527C>T; (D) milk yield of different genotypes
in 15:g.27445825T>C; (E) fat yield of different genotypes in 16:g.33367767T>C. a or b indicate signif-
icant differences between the phenotypes of milk production traits of different genotypes ( p <0.05);
A or B indicate extremely significant differences between the phenotypes of milk production traits
of different genotypes ( p <0.01).

3.3. Association between Haplotype Block and Five Milk Production Traits

We estimated the degree of LD among the identified SNPs in APOA5 and AKT3 using
Haploview4.2 and found that one haplotype block including three SNPs,
15:2.27447741A>G, 15:g.27446527C>T, and 15:g.27445825T>C, in the APOA5 gene was in-
ferred (R? = 0.99; Figure 2). In the block, the frequencies of the H1 (CTG) and H2 (TCA)
haplotypes were 66.7% and 31.7%, respectively. The block was significantly associated
with milk yield, fat yield, and protein yield in both lactations (p < 0.05; Table 2). H1H1 was
the best haplotype for milk yield, and H2H2 was the worst. However, we found no LD for
the three SNPs in the AKT3 gene.
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0.27445825T>C
0.27446527C5T —
027447741856

Block 1 (1 kh}
1 2

Figure 2. Linkage disequilibrium estimated between SNPs in APOA5 gene. The values in the black
boxes are pairwise SNP correlations (R?). The numbers 1, 2 and 3 represent 15:g.27445825T>C,
15:g.27446527C>T and 15:g.27447741A>G respectively.

Table 2. Associations of haplotype block in APOA5 gene with milk production traits in two lacta-
tions of Chinese Holstein cows (LSM + SE).

Lactation Hap:)(i)ltl}::ieogom- Milk Yield (kg) Fat Yield (kg) Fat Pe(l;;;e)ntage Prote(ll?g;{leld Protein (lj)gcentage

HI1H1 (415) 10,439 42+ 64.96  345.89 2 +2.87 3.34 +0.027 308.56 2 £ 2.09 2.97 £0.02
1 HI1H2 (405) 10,295 4Bt + 63.30 341.90 20 +2.80 3.33 £0.026 304.47 > +2.04 2.97 £0.02
H2H2 (91) 10,163 B +94.21 337.46 b+ 3.97 3.33 £0.038 301.73>+2.89 2.99 £0.03

p 0.0011 0.0259 0.9935 0.0044 0.7444
H1H1 (268) 10,893 42+ 71.27 392.864+3.12  3.63+0.029  321.60 A +2.27 2.96 +0.02
9 H1H2 (279) 10,649 B +67.19 382.758B+297  3.61+0.028 313.798+2.16 2.96 +0.02
H2H2 (64) 10,591 48> +110.92 385.54 4B +4.63  3.65+0.045  315.26 4B+ 3.38 2.99 +0.03

p 0.0005 0.0012 0.6972 0.0005 0.5671

LSM =+ SE is Least Squares Mean + Standard Error; the number in the bracket represents the number
of cows for the corresponding haplotype; genotypes of H1 and H2 are CTG and TCA, respectively;
p shows the significance for the genetic effects of SNPs; a or b within the same column with different
superscripts means p < 0.05; A or B within the same column with different superscripts means p <
0.01.

3.4. Changes in Transcription Factor Binding Sites Caused by SNPs in 5" Region

We predicted the changes in TFBSs caused by the three SNPs, 15:2.27447741A>G,
15:.27446527C>T, and 16:g.33367767T>C, in the 5' regulatory region of the APOA5 and
AKT3 genes. For 15:g.27447741A>G in APOAS, allele A invented binding sites (BSs) for
transcription factor (TF) NK2 homeobox 8 (NKX2.8), and allele G invented BSs for EBF
Transcription Factor 1 (EBF1), E74-like ETS transcription factor 5 (ELF5), and HIC ZBTB
Transcriptional Repressor 2 (HIC2). Allele C of 15:g.27446527C>T in APOAS5 provided BSs
for Twist Family BHLH Transcription Factor 2 (TWIST2) and Rhox Homeobox Family
Member 1 (RHOXF1), and when the allele was T there was no BS for any TF. Allele C of
16:.33367767T>C in AKT3 created BSs for Nuclear Factor Of Activated T Cells 5 (NFAT5)
(Table 3).

Table 3. Changes in transcription factor binding sites (TFBSs) caused by the SNPs in 5’ regulatory
region of APOA5 and AKTS3.
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Gene

SNP Name Allele  Transcription Factor

Relative Score Predicted Core Binding

(20.85) Site Sequence
A NKX2.8 0.86 GCACCICAG
EBF1 0.87 ACCCCAGGAA
15:g. 27447741 A>G G ELF5 0.86 CCCAGGAAGAGA
APOA5 HIC2 0.88 GTGCACCCC
C TWIST2 0.86 CAGAGCTGGG
15:.27446527C>T RHOXF1 0.88 CAGAGCTG
T - - -
AKT3 16:2.33367767T>C T ) i .
C NFAT5 0.87 ATTTTCTTTT

Underlined nucleic acids are the SNPs.

3.5. Changes in mRNA and Protein Structure and Function by Missense Mutation

We utilized the RNAfold web server to predict the changes in mRNA secondary
structure caused by a missense mutation, 15:g.27445825T>C, in the APOA5 gene and
found that when the allele T mutated to C, the MFE changed from -522.90 kcal/mol to
-522.80 kcal/mol, indicating that the mRNA secondary structure of this gene is more un-
stable after mutation. SOPMA analysis revealed that this missense mutation changed the
protein secondary structure, with the a-helix changing from 83.70% to 86.96% and ran-
dom coil from 16.03% to 12.77%, when the allele T mutated into C. By SAAFEC-SEQ pre-
diction, the AAG was reduced to 0.04 kcal/mol after mutation to decrease protein stability.
However, this missense mutation was a neutral mutation and did not alter protein func-
tion because the predicted PROVEAN score was —0.364. In summary, this missense muta-
tion could reduce the stability of the mRNA secondary structure of the APOA5 gene and
decrease its protein secondary structure and stability.

4. Discussion

In GS, SNPs are given different weights based on their importance in the genome
relationship matrix, making the prediction of traits more accurate and less biased. For
instance, by increasing the weight of SNPs affecting the production performance of Nor-
dic Holstein, Danish Jersey, and Nordic Red cattle, the prediction reliability was increased
by up to 3~5% [34]. Sara et al. integrated previously significant SNP information related
to the carcass traits of Hanwoo cattle into the GS method, resulting in an improved pre-
diction accuracy of 2~6% [13]. Currently, the six SNPs identified in this study are not pre-
sent in any of the four gene chips (GeneSeek Genomic Profiler (GGP) Bovine 150K and
100K arrays, illumina Bovine SNP50K BeadChip, illumina BovineHD Genotyping Bead-
Chip). That these SNPs have significant genetic effects on milk production traits suggests
that their significant SNPs can be added to the SNP chip, and their weight should be in-
creased during GS to accelerate the selection of cows for milk production traits.

Many phenotypic differences among individuals may be elicited by alterations in
gene expression and the underlying transcriptional regulation, and the expression of
genes can be regulated by TF binding to TFBSs [35,36]. The SNP located in the TFBS may
affect the binding of TF, resulting in differences in gene expression among individuals
with different genotypes [37,38]. Here, we found that the SNPs located in the 5’ regulatory
regions of the APOA5 and AKT3 genes led to changes in gene-binding TFs (Table 3). Stud-
ies reported that transcription factors EBF1, ELF5, HIC2, and NFAT5 can promote the ex-
pression of target genes to which they bind [39-42], and NKX2.8, TWIST2, and RHOXF1
may inhibit the expression of their target genes [43—46]. The upregulation of APOA5 can
improve the transport of triglycerides from the liver, overall lipid metabolism, and deliv-
ery of preformed fatty acids to the mammary gland, thereby promoting the synthesis of
milk components [47]. AKT3 can stimulate $-casein synthesis and mammary epithelial cell
proliferation through its involvement in signaling pathways such as mTOR and PI3K/AKT,
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thereby promoting milk production traits [48,49]. For instance, we observed that the cows
with the GG genotype had significantly higher milk yield, fat yield, and protein yield than
those with the AA genotype, suggesting that the GG genotype might activate the expres-
sion of the APOAS5 gene by binding the TFs EBF1, ELF5, and HIC2, leading to an increase
in milk production traits. Therefore, we inferred that the three SNPs, 15:g.27447741A>G,
15:.27447741A>G, and 16:g.33367767T>C, alter the TFBS, leading to changes in TF bind-
ing, which in turn regulate APOA5 or AKT3 gene expression, ultimately affecting milk
production traits.

Genetic polymorphisms of alleles can significantly affect the secondary structure of
mRNA, and the stability of mRNA largely depends on its secondary structural elements,
which will influence the speed and fidelity of its translation into proteins [50]. The altera-
tion in the amino acid sequence leads to changes in the conformation of polypeptide
chains, resulting in variations in the protein’s secondary structure and influencing protein
translation [51,52]. In this study, the milk yield, fat yield, and protein yield of the CC-
genotype individuals were significantly higher than those of the TT-genotype individuals,
probably because the stability of APOA5 mRNA and protein decreased when the allele T
was mutated to C at 15:g.27445825T>C, suggesting that SNP sites may lead to changes in
gene structure and function, and then affect the phenotype.

In this study, we observed that 15:g.27447741A>G, 15:g.27447741A>G, and
15:g.27445825T>C in the APOAS5 gene are in linkage disequilibrium, and haplotype block
association analysis revealed that these SNPs have a higher significance in affecting milk
yield, fat yield, and protein yield across two lactations compared to single-marker analy-
sis. This may be due to the coordinated effect of these three causal mutations influencing
the function or expression of the APOA5 gene, leading to milk production trait variation.
The effects of these SNPs on gene function or expression can be verified by dual luciferase
assay, Chromatin Immunoprecipitation (ChIP), Electrophoretic Mobility Shift Assay
(EMSA), etc., with which their effects on milk traits can be explored in greater depth.

5. Conclusions

This study confirmed the significant genetic effects of three SNPs in the APOA5 gene
and three SNPs in the AKT3 gene on milk production traits in dairy cattle. Four SNPs were
proposed to be the causal mutations affecting milk production traits: three SNPs,
15:g.27447741A>G and 15:g.27446527C>T in APOAS5 and 16:g.33367767T>C in AKT3, reg-
ulated the expression of genes by alteration of the TFBSs, and one missense mutation in
APOAS, 15:g.27445825T>C, changed the secondary structure and stability of its mRNA
and protein. This project lays a foundation for further functional verification of APOA5
and AKT3, whose valuable SNPs can be used as candidate markers for molecular breeding
of dairy cattle.
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tions of six SNPs in APOA5 and AKT3 genes with milk production traits in two lactations of Chinese
Holstein cows; Table S4: Additive, dominant, and allele substitution effects of six SNPs on milk pro-
duction traits of APOA5 and AKT3 genes in Chinese Holstein cows.
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