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Abstract: Carbon dioxide (CO2) concentrations play an important role in plant production, as they
have a direct impact on both plant growth and yield. Therefore, the objectives of this study were
to predict CO2 concentrations in the greenhouse by applying time series models using five datasets.
To estimate the CO2 concentrations, this study was conducted over a four‑month period from 1 De‑
cember 2023 to 31March 2024, in a strawberry‑cultivating greenhouse. Fifteen sensors (MCH‑383SD,
Lutron, Taiwan) were installed inside the greenhouse to measure CO2 concentration at 1‑min inter‑
vals. Finally, the dataset was transformed into intervals of 1, 5, 10, 30, and 60 min. The time‑series
data were analyzed using the autoregressive integrated moving average (ARIMA) and the Prophet
ForecastingModel (PFM), with performance assessed through rootmean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2). The evaluation indicated that the best
model performance was achieved with data collected at 1‑min intervals, while model performance
declined with longer intervals, with the lowest performance observed at 60‑min intervals. Specifi‑
cally, the ARIMAmodel outperformed across all data collection intervals while comparing with the
PFM. The ARIMA model, with data collected at 1‑min intervals, achieved an R2 of 0.928, RMSE of
7.359, and MAE of 2.832. However, both ARIMA and PFM exhibited poorer performances as the
interval of data collection increased, with the lowest performance at 60‑min intervals where ARIMA
had an R2 of 0.762, RMSE of 19.469, and MAE of 11.48. This research underscores the importance of
frequent data collection for precise environmental control in greenhouse agriculture, emphasizing
the critical role of short‑interval data collection for accurate predictive modeling.

Keywords: ARIMA model; carbon dioxide; Prophet Forecasting Model; strawberry

1. Introduction
Strawberries are widely cultivated around the world for their rich vitamin content,

antioxidant properties, and health benefits [1]. They are also highly valued by consumers
for their attractive red color, distinct aroma, and sweet taste [2]. Strawberries contain high
levels of vitamin C, minerals, flavonoids, and phytochemicals, and are recognized as a
functional food with numerous health‑enhancing properties [3]. Additionally, the phyto‑
chemical profile of strawberries includes phenolic compounds and vitamins, contributing
to their antioxidant capacity and health benefits, which has led to a significant increase in
consumer demand over the past 20 years [4]. Research has shown that strawberries, rich
in antioxidants and bioactive compounds, can significantly lower fasting blood glucose
levels in individuals diagnosed with type 2 diabetes [5]. For these reasons, strawberries
are one of the most extensively studied fruits from agronomic, genetic, and nutritional
perspectives [6].
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Monitoring and managing CO2 concentration are therefore vital for ensuring opti‑
mal conditions for strawberry growth and productivity in greenhouse environments [7].
The intervals for collecting CO2 concentration data vary significantly from study to study,
ranging from weekly, hourly, to even minute intervals [8]. Sokolov, S.V. [9] have empha‑
sized the importance of long‑term measurement of CO2 concentrations in greenhouses,
highlighting the critical role of controlling these levels. This body of research underlines
the importance of accurately collecting and analyzing environmental data, such as CO2
concentration. The diversity of sampling intervals andmethodologies emphasizes the com‑
plexity and variability in atmospheric CO2 concentrationmonitoring. Accurate and timely
environmental data are essential for smart farm managers to make informed decisions re‑
garding crop management [10].

Despite extensive research on CO2, studies aimed at determining the optimal inter‑
vals for collecting CO2 concentration data remain scarce. Despite technological advance‑
ments, the data collection intervals in existing smart farm systems still require significant
improvement. If data are collected too infrequently, critical environmental changes may
not be detected in time, preventing timely responses. Conversely, collecting data too fre‑
quently can lead to an accumulation of unnecessary data, consuming substantial resources
in storage and processing and leading to inefficient use of resources. Therefore, setting
appropriate data collection intervals is crucial for efficient resource use and accurate de‑
tection of environmental changes. However, the current data collection cycles in existing
smart farm systems often have various issues. Existing smart farm systems face challenges
with data collection cycles ranging from infrequent to excessively frequent data collection,
leading to resource wastage or overlooking significant environmental changes. Small‑ to
medium‑sized farms often employ customized data collection methods, focusing on key
observations rather than adopting formal systems, which hinders the adoption of Farm
Management Information Systems (FMISs) [11]. The decision on data collection intervals
plays a crucial role in optimizing data collection strategies. For example, the time of day
when temperatures change the most typically occurs during the transition between day
and night [12,13]. Furthermore, elucidating the relationship between temperature and
CO2 levels is imperative for optimal farm management. Fluctuations in temperature can
markedly affect atmospheric CO2 concentrations, which, in turn, influence plant growth
and soil health [14]. Elevated temperatures during daylight hours can enhance the rate of
CO2 uptake by plants via photosynthesis. In contrast, reduced temperatures at night de‑
celerate this process [15]. By synchronizing data collection with these pivotal environmen‑
tal interactions, farmers can more precisely evaluate the effects of climatic conditions on
crop productivity and make more informed decisions regarding resource allocation. This
necessitates studies to decide the intervals at which to collect data efficiently. Therefore,
predicting CO2 concentrations at different collection intervals is crucial for guaranteeing
the optimal growth of plants.

Additionally, in this study, the ARIMA model and PFM were utilized to predict the
concentration ofCO2within the greenhouse, and the predictive performance of eachmodel
was derived to determine the optimal data collection interval. Time series model analyses
such as the ARIMA model and PFM were used to find the optimal data collection inter‑
vals [16]. Considering their excellent ability to analyze time series data, these models have
become increasingly indispensable in the agricultural sector over the past 20 years. They
are primarily used to meet the critical need for precise forecasting of crop yields, market
prices, and environmental conditions, which are essential for effective farm management
and planning [17]. The PFM was proposed by Desai and Shingala [18] as a forecasting
model for wheat yield predictions, achieving high accuracy through the use of the FB PFM
algorithm. These models predict CO2 concentration data to identify patterns, trends, and
seasonality. Previous studies [19] have evaluated the performance of ARIMA and PFM
in comparison with other time series forecasting models, demonstrating that ARIMA can
achieve higher accuracy in short‑term predictions for agricultural data when compared to
deep learning models such as LSTM. Similarly, M’barek et al. [20] compared PFM with
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LSTM‑based models and found that PFM performs better on shorter time series data. The
results of such predictions provide crucial criteria for determining when to schedule sub‑
sequent data collections. For instance, during periods with strong patterns or seasonality,
data collection can be increased to capture fluctuationsmore accurately. Conversely, when
trends are stable, the collection intervals can be extended to use resources more efficiently.
Furthermore, the ARIMA model or PFM can be applied to the data to accurately predict
future CO2 concentrations in the greenhouse, providing essential information for green‑
house management. Moreover, the results of time series analysis can play a significant
role in establishing such strategies. It is ideal to perform time series analysis on collected
data to continuously adjust and optimize the sampling strategy based on the analysis re‑
sults and engage in an iterative process.

According to the existing literature, there was a knowledge gap in utilizing ML mod‑
els to predict CO2 concentrations at various collection intervals [21–23]. Consequently, the
current study aims to construct an optimal model that is suitable for short‑term predic‑
tions and has low complexity. This research uses the ARIMA model and PFM to forecast
CO2 concentrations. Statistical time‑series forecasting models increase efficiency in data
processing and variable selection through the use of appropriate input parameters, which
is crucial for enhancing prediction accuracy. Moreover, selecting suitable parameters max‑
imizes the model performance and ensures an efficient learning process. The principal
aims of this research are as follows:
(1) By building time series forecasting models for CO2 concentration predictions, opti‑

mal hyperparameters with reduced complexity are selected to accommodate various
collection intervals (1‑min, 5‑min, 10‑min, 30‑min, and 60‑min intervals);

(2) Comparing the accuracy of all models using 5 different datasets: (1) dataset collected
at 1‑min intervals, (2) dataset collected at 5‑min intervals, (3) dataset collected at 10‑
min intervals, (4) dataset collected at 30‑min intervals, and (5) dataset collected at
60‑min intervals;

(3) Comparing the performance of two‑time series forecastingmodels for predictingCO2
concentrations.

2. Materials and Methods
The overall flowchart of the research studymethod is shown in Figure 1. This flowchart

illustrates the process of collecting CO2 in a greenhouse and predicting future concentra‑
tions using time series models. Initially, sensors are installed to measure and record CO2
concentrations, and the collected data undergo preprocessing to ensure suitability for anal‑
ysis. Subsequently, time series models are applied based on historical data to forecast fu‑
ture CO2 concentrations, involving steps like feature selection andmodel training. Finally,
the predicted data are analyzed to identify trends, and environmental management strate‑
gies are formulated based on these insights.

2.1. Experimental Greenhouse Features
The researchwas conducted in a greenhouse, located at the smart farm research center

of Gyeongsang National University, Gyeongsangnam‑do, Republic of Korea. A flat arch‑
shaped UV‑resistant greenhouse, featuring a 2‑layer polyethylene covering with thick‑
nesses of 0.1 mm and 0.075 mm, was used for this research [23]. The greenhouse dimen‑
sions are 7.7 m in width, 19.7 m in length, and 3.6 m in height. The Gyeongsangnam‑do
province’s climatic condition is more suitable for strawberry cultivation and production.
Specifically, the province encompasses 2280 hectares of cultivated land managed by 4739
farming households, producing a total of 67,762 tons of strawberries annually.
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2.2. Experimental Design and Data Collection
The experiment was conducted between 1 December 2023 to 31 March 2024 inside

an experimental greenhouse. A total of 15 sensors (MCH‑383SD, Taipei, Taiwan) were in‑
stalled for this study. For each bed, three sensors were placed—one at each end and one
in the middle to monitor the environmental data every day. According to the information
provided by the sensor company, the sensor has an accuracy of 95± 5%. The experimental
greenhouse and CO2 sensors are shown in Figure 2b. This sensor is capable of collecting
data on temperature, humidity, and CO2 concentration. However, in this study, only the
CO2 concentration data were utilized. The time‑series dataset was collected every minute,
comprising records of CO2. All data loggers and electronic deviceswere adjusted to reduce
any potential instrument errors prior to the experiment. The crops grown inside the green‑
house were the Seolhyang strawberries (Fragaria × annanassa Duch.), which are popular
and commonly cultivated in South Korea. Thirty‑day‑old Seolhyang strawberry seedlings,
uniform in size and vigor, were planted. A total of 500 plants were planted in rows, 100
per row, as shown in Figure 2a. The spacing between the plants was maintained at 0.2 m,
ensuring sufficient sunlight and air for the plants. Additionally, a mixture of BioPlus com‑
post (BIOPLUS CO., Ltd., Seoul, Republic of Korea) which includes coconut waste and
other biodegradable materials, along with Hoagland solution, was applied to each row.
Specifically, the electrical conductivity (EC) of the Hoagland solution was maintained at a
stable level of 1.5 mS/cm for all treatments. Moreover, the BioPlus compost soil comprised
cocopeat (68.86%), perlite (11.00%), peat moss (11.00%), and zeolite (9.00%) [24]. During
the initial stages of growth, 20–30 mL of irrigation water was applied daily to each plant,
and during the overall ripening stage, 30–50mLwas applied. In this study, we employed a
simple drip irrigation system that was positioned well away from the sensors and covered
with plastic, ensuring that irrigation did not affect the sensor readings.
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Figure 2. (a) The strawberry experiment in the vinyl greenhouse (VGH), (b) carbon dioxide sensor
(MCH‑383SD, Taipei, Taiwan) used in this study.

2.3. Preprocessing of the Dataset for Prediction Models
The time‑series dataset contained 2,613,600 records. The raw data could include out‑

liers, missing values, or inconsistent data [25]. Prior to applying the time‑series data to a
single model, data preprocessing was conducted. Initially, missing data were addressed
through linear interpolation [26]. Outliers were identified and removed using an Isolation
Forest [27]. After data preprocessing, the collection intervals of the originally collected
data, which were at 1‑min intervals, were transformed into 10‑, 30‑, and 60‑min intervals
for time‑series analysis of each interval (Table 1).

Table 1. Recorded CO2 data counts based on collection intervals.

Interval (min) Dataset Number of Records Number of Outliers

1 CO2_1 2,613,600 81,021

5 CO2_5 522,720 15,158

10 CO2_10 261,360 6534

30 CO2_30 87,120 2003

60 CO2_60 43,560 958

2.4. Model Implementation
2.4.1. Modeling of ARIMA

The ARIMAmodel was developed in 1970 by George Box and Gwilyn Jenkins, which
is commonly known as the Box–Jenkins method [28]. ARIMA is a forecasting technique
well‑suited for analyzing data that are interrelated over time, excluding the influence of
independent variables [29]. This model specifically leverages features of time series data,
such as autocorrelation, trends, and seasonality, to achieve high accuracy in short‑termpre‑
dictions. The flowchart of the ARIMA model is shown in Figure 3a. The ARIMA model
operates under the assumption that the time series data are in a stationary state, meaning
that the data’smean and variance are constant over time [30]. If the data are non‑stationary,
they must be converted into a stationary state through a differencing process. The Aug‑
mented Dickey Fuller (ADF) test is effective in identifying the presence of a unit root in
the series, assisting in determining whether the series is stationary [31].
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In the autoregressive integrated (AR) part of the model, the influence of previous
values on the present value is modeled. Here, the tilde ∅1, ∅2, . . ., ∅p represents the
coefficients indicating the influence of these past values, and the at symbol c denotes the
model’s constant term [32]. This section captures the autocorrelation in time series data,
playing a crucial role in predicting current values based on past data patterns. Themoving
average (MA) part of the model explains how the prediction errors from the time series af‑
fect the current value [33]. The theta coefficients θ1, θ2, . . . , θq represent the coefficients
that indicate the influence of these past prediction errors. This component models the im‑
pact of random shocks in time series data and is useful for capturing the ‘noise’ aspect of
the data. The backshift operator B is used in time series data to shift observations back in
time [34]. This operator integrates the autoregressive part, differencing, and moving aver‑
age components of the ARIMA model, allowing it to handle non‑stationarities in the time
series and model the effects of autocorrelation and random shocks simultaneously. The
variable d represents the number of differencing operations required to stabilize the data,
helping the time series achieve a constant mean and variance. The terms AR, MA, and the
backshift operator can be represented by the following equations (Equations (1)–(3)) [35],
as follows:

yt = c+ ∅1yt−1 + ∅2yt−2 + . . . + ∅pyt−p + ϵt (1)

yt = µ + θ1ϵt−1 + θ2ϵt−2 + . . . + θqϵt−q + ϵt (2)(
1 −∅1B −∅2B2 − . . . −∅pBp

)
(1 − B)dyt = C +

(
1 + θ1B + θ2B2 + . . . + θqBq

)
ϵt (3)

To build amodel, it is essential to accurately set parameters thatmatch the characteris‑
tics of the dataset. This defines the type of ARIMAmodel, and each parameter is adjusted
to reflect specific patterns in the time series. To implement an ARIMA model, specific
parameters of the dataset (p, d, q) are required.

These parameters were determined by analyzing the data’s Autocorrelation Func‑
tion (ACF) and Partial Autocorrelation Function (PACF). ACF measures the correlation
between different time points within the time series data, indicating the linear relation‑
ships between data points at specific lags. In contrast, PACF shows the pure correlation
between these time points, excluding the influence of earlier lags.

After determining the model’s parameters, two criteria, AIC and BIC, can be used to
select the most suitable model. AIC measures the balance between model complexity and
goodness of fit to the data, aiming to minimize overall information loss while including
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a penalty for model complexity. BIC uses a similar approach but tends to favor simpler
models by imposing a greater penalty based on sample size. The AIC and BIC values
for each ARIMA model can be plotted graphically, with model complexity (e.g., order of
AR and MA) on the x‑axis and AIC or BIC values on the y‑axis, to see how these values
change with model complexity. These two criteria are used competitively to enhance the
predictive performance of the model.

By utilizing these statistical tools and criteria, the most suitable ARIMA model for
the collected data was selected, enabling more accurate predictions. Accurate parameter
setting and appropriate model selection are crucial for effectively modeling complex time
series patterns and predicting future data points. To select the model, we first conducted
an analysis of the ACF and the PACF to understand the data’s autocorrelation. Based
on these results, we determined the order (p, d, q) of the ARIMA model. Among several
candidate models, we chose the one with the lowest Akaike Information Criterion (AIC)
value, thereby enhancing the accuracy of our predictions.

2.4.2. Modeling of the Prophet
PFM is a decomposable time series forecasting model created by Facebook, which re‑

lies on an additive approach that incorporates trend, seasonal, andholiday components [35].
The PFM is powerful yet user‑friendly, providing fast and accurate forecasts for data that
change over time [36,37]. In this study, the default settings of the model were employed,
which is obtained from the study of Toharudin et al. [38]. The flowchart of PFM is pre‑
sented in Figure 3b. The Prophet algorithm’s time series is broken down as illustrated in
the Formula (4) [39].

y(t) = g(t) + s(t) + h(t) + ϵt (4)

In this formula, g(t) is used to represent the long‑term trend of the time series. s(t)
indicates the periodic changes in the time series. h(t) models some of the irregular varia‑
tions in the time series. ϵt represents the residual volatility that the model fails to predict,
encompassing not only forecasting errors but also other types of noise and patterns not
captured by the model [40]. This includes unmodeled influences, measurement errors,
and any intrinsic data variations that are not accounted for within the model’s parameters.

In the PFM, g(t), s(t), and h(t) are implemented using the following principles:
• Principle of g(t): The Prophet implements trend components in two ways—using ei‑

ther the Saturating Growth Model or the Piecewise Linear Model;
• Principle of s(t): The Prophet applies Fourier series to capture periodicity, allowing

the model to flexibly account for recurring patterns;
• Principle of h(t): In the Prophet model, each holiday is treated as an independent

component, with separate dummy variables assigned for each holiday.

2.5. Model Performance Metrics
Various performance metrics were used to evaluate the performance of the model

based on the data collection intervals. The coefficient of determination (R2) measures the
closeness between actual data and predicted values. The Root Mean Square Error (RMSE)
is calculated as the square root of the average of the squared differences between predicted
values and actual values. The Mean Absolute Error (MAE) calculates the average of the
absolute differences between predicted values and actual values. Also, the MAE provides
an intuitive understanding of the average magnitude of errors and has the advantage of
being less affected by outliers. For a comprehensive evaluation, the model’s results were
analyzed with the coefficients of determination (R2), Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE) [23], which are defined by equations (Equations (5)–(7)) [41].

RMSE =

√
∑n
i=1

∣∣yi − pi
∣∣2

n
(5)
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R2 = 1 − ∑n
i=1

(
yi − pi

)
∑n
i=1

(
yi −

1
n

)
∑n
i=1 yi

(6)

MAE =
∑n
i=1

∣∣yi − pi
∣∣

n
(7)

2.6. Modeling Analysis Software
The data collected in this study were analyzed using the Jupyter Notebook environ‑

ment (Python version 3.8.0). Python is a versatile programming language that plays a
critical role in data analysis across numerous research disciplines due to its robust libraries
and frameworks [42]. Additionally, the data were visualized using the OriginPro software
package (version 9.5.5, OriginLab, Northampton, MA, USA).

3. Results
3.1. Microclimate of Experimental Greenhouse

The variations in temperature, relative humidity, and CO2 concentration inside the
greenhouse were analyzed during the experimental period. The ranges of temperature,
relative humidity, and CO2 were 4.29–35.50 ◦C, 7.6–98.1%, and 356.92–596 ppm, respec‑
tively, the in experimental period. It was observed that the relation between temperature,
CO2 concentration, and humidity displayed distinct patterns. Specifically, during the ex‑
periment period, a negative correlation was observed between temperature and humidity
(r = −0.550, p < 0.01), indicating that as temperature increased, humidity tended to de‑
crease. Additionally, a weak negative correlation was observed between temperature and
CO2 concentration (r =−0.169, p < 0.01), suggesting a slight decrease in CO2 concentration
with rising temperature. However, the humidity made a weak positive relation with CO2
concentration (r = 0.006, p = 0.049).

3.2. The Results of the ARIMA Model
In this study, the concentration of CO2 was predicted using the ARIMAmodel. While

analyzing time series data with an ARIMAmodel, it is essential to verify whether the data
exhibit stationarity [43]. The stationarity of the time series data was verified through the
Augmented Dickey‑Fuller (ADF) test. The ADF test statistic for the CO2 concentration
data was−9.225884, which is below the critical values at significance levels of 1%, 5%, and
10% (−3.958454, −3.410526, and −3.127071, respectively). Additionally, the p‑value was
extremely low at 1.126898× 10−13, providing strong evidence to reject the null hypothesis
of it being non‑stationary. Therefore, the data meet the conditions of being stationary,
indicating that no further differencing is necessary. This suggests that the data are suitable
for applying the ARIMA model in time series analysis. Figure 4 illustrates that the CO2
concentration dataset is stationary. To sum up, the data are in a stationary state and are
ready for processing with the ARIMA model.

To obtain reliable results, it is crucial to determine the appropriate parameters for the
ARIMA model. The parameters (p, d, q) are defined as follows:
• p: Order of the AR term;
• d: Number of differencing required to make the time series stationary;
• q: Order of the MV term.

In this study, the autocorrelation structure of five datasets with varying collection in‑
tervals was analyzed using Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) plots. These analyses were essential for identifying the autocorrelation
patterns of each dataset and developing suitable predictive models. The correlation coeffi‑
cient is displayed on the x‑axis, while the number of lags is plotted on the y‑axis [35]. The
ACF plot for the CO2_1 dataset shows a positive correlation beyond the first lag, suggest‑
ing the presence of a Moving Average (MA) component. The MA(1) model, which is the
first order of themoving averagemodel, explains how the error term from a previous point
in time predicts the current value in time series data. This model is represented by Equa‑
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tion (8) [44]. It is used to analyze the impact of random shocks on future values in time
series data. The slow decline in the correlation coefficients suggests that the MA model is
necessary, particularly an MA(1) model, since the coefficients remain relatively high after
the first lag. Additionally, the dataset exhibits a strong autoregressive effect in the first
two lags, which requires an AR(2) model. The AR(2) model, or the second order autore‑
gressive model, illustrates the relationship of the current value with the values of the two
preceding points in time series data. This model is represented by Equation (9) [44]. It is
useful for analyzing patterns and trends in time series data and for predicting future val‑
ues. Additionally, the PACF plot shows relatively high partial autocorrelation coefficients
at the first two lags, followed by a sharp decline to near‑zero values, suggesting that the
order of the AR model should be two. The sharp decrease after the first two lags indicates
that additional AR effects are not significant. Thus, the MA(1) model can effectively cap‑
ture the high correlation coefficient at the first lag. Therefore, an ARIMA (2,0,1) model was
selected for the CO2_1 dataset.
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Xt = µ+ ϵt + θ1ϵt−1 (8)

Xt = c+∅1Xt−1 +∅2Xt−2 + ϵt (9)

In the datasets with CO2_5, CO2_10, CO2_30, and CO2_60, the Autocorrelation Func‑
tion (ACF) plots exhibit a high positive correlation coefficients at the first lag, which grad‑
ually decrease. This trend suggests the possibility of presence Moving Average (MA) com‑
ponents, particularly indicated by the sustained positive correlations at the first two lags,
which makes the MA(2) model suitable for explaining the data’s correlation pattern. The
persistence of positive values beyond the first two lags provides a basis for setting the
moving average order at q = 2. Additionally, the PACF plots show a sharp truncation
of the correlation coefficients after the initial two lags, with subsequent lags converging
significantly toward zero. This indicates that an AR(2) model can adequately explain the
autoregressive structure of the data. The significant partial autocorrelation at the first two
lags strongly supports the necessity of two AR terms to model the autoregressive charac‑
teristics of the time series data, particularly as the high values at the first and second lags
justify selecting an autoregressive order p = 2. The PACF plots generally show a sharp
decline in correlation coefficients after the first two lags, approaching zero, indicating that
the order of the AR component is two, and further AR effects are not significant beyond
these lags. This means that two AR terms can sufficiently model the autoregressive char‑
acteristics of the time series data. Based on the common patterns observed in the ACF and
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PACF, an ARIMA (2,0,2) model was chosen for the datasets with CO2_5, CO2_10, CO2_30,
and CO2_60. This model captures both the autoregressive and moving average properties
of each dataset, effectively reflecting the effects up to the second lag. The AR order of two
terms explains the autoregressive dynamics found in the initial two lags, while the MA
order of two terms is necessary to model the moving average effects observed at the initial
lags. The ACF and PACF plots are depicted in Figure 5.

In this study, we considered both the model fit and complexity using the AIC and
Bayesian Information Criterion (BIC). Thus, these two indices were crucial in selecting the
optimal ARIMA models, particularly advantageous for interpretation and prediction.

For the CO2_1 dataset, the ARIMA (2,0,1) model displayed the lowest AIC and BIC
values, calculated at −123.45 and −118.90, respectively. Likewise, for the CO2_5, CO2_10,
CO2_30, and CO2_60 datasets, the ARIMA (2,0,2) model showed the lowest AIC and BIC
values, both recorded at−123.45 and−118.90, respectively. The minimum values indicate
that the model that provides the best balance, between fitting the data and maintaining
model simplicity compared to other parameter combinations. The (p, d, q) values of the
ARIMAmodel were determined following a thorough trial‑and‑error process, identifying
the model parameters that maximize efficiency and effectiveness (Figure 6).
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3.3. Dataset Performance
In this section, the results of the CO2_1, CO2_5, CO2_10, CO2_30, andCO2_60 datasets

are compared to conduct the performance analysis. The highest performing datasets test‑
ing data were obtained from the ARIMA model in CO2_1 prediction (MAE = 2.832,
RMSE = 7.359, R2 = 0.928). For CO2 concentration prediction, all the models performed
better when using the CO2_1 dataset compared to the other datasets. The lowest perform‑
ing datasets testing data were obtained from the PFM in CO2_60 prediction (MAE = 19.158,
RMSE = 25.04, R2 = 0.753). The performance outcomes of all models for predicting CO2 con‑
centrations are presented in Table 2. Overall, the results suggest that the ARIMA model
outperformed the PFM across the five datasets.

Table 2. Model performance under five datasets.

Dataset Models
Training Testing

RMSE MAE R2 RMSE MAE R2

CO2_1
ARIMA
PFM

7.160
21.417

2.556
17.601

0.965
0.981

7.359
22.388

2.832
18.645

0.928
0.951

CO2_5
ARIMA
PFM

8.691
22.424

3.798
17.944

0.945
0.966

9.21
22.483

4.119
18.914

0.844
0.921

CO2_10
ARIMA
PFM

9.799
22.607

4.568
18.085

0.931
0.857

10.369
23.493

7.327
18.96

0.817
0.883

CO2_30
ARIMA
PFM

12.735
23.145

6.957
18.114

0.877
0.846

16.614
24.848

7.375
19.05

0.815
0.879

CO2_60
ARIMA
PFM

16.034
23.198

9.766
18.451

0.804
0.743

19.469
25.04

11.48
19.158

0.762
0.753

RMSE and MAE are measured in ppm, while R2 is unitless.

In the CO2_1 dataset, the ARIMA model exhibits a 2.78% higher RMSE in the test
data compared to the training data, with a 10.80% increase in MAE and a 3.83% decrease
in R2. This indicates that the model demonstrates slightly higher errors while maintaining
consistent predictive capabilities in the test data, and generally, the ARIMA model has
shown high performance with this dataset, though a slight performance degradation is
observed in the test data. In the PFM, the RMSE in the test data is 4.54% higher than in the
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training data, the MAE has increased by 5.93%, and the R2 has decreased by 3.06%. This
shows a drop in prediction accuracy in the test data.

In the CO2_5 dataset, the ARIMA model shows a 5.98% higher RMSE in the test data
compared to the training data, an 8.45% increase inMAE, and a 10.69%decrease in R2. This
indicates a decline in model consistency, particularly evident in the significant drop in R2,
highlighting more pronounced performance degradation in the test data compared to the
trainingdata. In the PFM, theRMSE in the test data is 0.26%higher than in the trainingdata,
withMAE increasing by 5.40% andR2 decreasing by 4.66%. The prediction accuracy for the
test datawas not consistentlymaintained. In the CO2_10 dataset, theARIMAmodel shows
a 5.82% higher RMSE in the test data, a 60.25% increase in MAE, and a 12.24% decrease in
R2. This indicates a significant degradation inmodel performance. As the dataset intervals
increase, the decline in performance becomes more apparent, with the increase in MAE in
the test data being particularly noteworthy. The PFM exhibits a 3.92% higher RMSE in the
test data compared to the training data, a 4.84% increase in MAE, and a 3.03% decrease in
R2. This suggests that the model struggles to maintain consistent performance compared
to the training data.

In the CO2_30 dataset, the ARIMA model exhibits a 30.44% higher RMSE in the test
data compared to the training data, a 6.01% increase in MAE, and a 7.07% decrease in R2.
This highlights a pronounced performance degradation as the data intervals lengthen, indi‑
cating a decline in the model’s generalization ability, particularly evident in the significant
difference in RMSE. The PFM also shows deterioration in consistent predictive capabilities,
with a 7.35% higher RMSE in the test data, a 5.17% increase in MAE, and a 3.89% decrease
in R2, further confirming the challenges in maintaining model performance with longer
data intervals.

In the CO2_60 dataset, the ARIMA model shows a significant degradation in perfor‑
mance at the longest data interval, with RMSE in the test data being 21.41% higher than
in the training data, MAE increasing by 17.60%, and R2 decreasing by 5.22%. This indi‑
cates the largest decline in generalization ability at the longest data interval. The PFM
also demonstrates reduced generalization capability in this dataset, with a 7.93% higher
RMSE in the test data, a 3.84% increase in MAE, and a 1.34% decrease in R2, confirming
that the model struggles to maintain performance relative to the training data in the face
of extended data intervals.

3.4. Model Performance
Overall, the ARIMA model demonstrates satisfactory prediction results during both

training and testingperiods. The performance of the twomodels forCO2_1, CO2_5, CO2_10,
CO2_30, and CO2_60 is shown in Figures 7 and 8.

For the CO2_1 prediction training time, the ARIMA model results are comparatively
higher (MAE = 2.556, RMSE = 7.160, and R2 = 0.965) followed by the PFM (MAE = 17.601,
RMSE = 21.417, and R2 = 0.981). Since validation assessment is crucial, as previously men‑
tioned, this study considered the testing outcomes as an indicator of the model’s perfor‑
mance. Consequently, during the testing phase, the ARIMA model outperformed other
models (MAE = 2.832, RMSE = 7.359, and R2 = 0.928). The PFM struggled to produce a
more competitive outcome than the ARIMA model for the CO2_1 predictions as reflected
in the results (MAE = 558% high, RMSE = 204% high, and R2 = 2.477% low).

By CO2_1 prediction results, the CO2_5 exhibited a similar performance pattern. The
ARIMA model was outperformed during the training and testing time compared to PFM.
The top performance was achieved from the ARIMAmodel for the CO2_5 predictions dur‑
ing the training time (MAE = 3.798, RMSE = 8.691, and R2 = 0.945) and testing time as well
(MAE = 4.119, RMSE = 9.21, and R2 = 0.844). According to the testing results, PFM was
attained second (358.5% higher MAE, 144.5% higher RMSE, and 9.116% lesser R2) (refer to
Table 2). As noted earlier, the ARIMA model demonstrated better performance in the D3
predictions. The results of CO2_10 prediction training and testing time were comprehen‑
sively explained in Table 2. According to this, the ARIMA model performance surpassed
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the PFM performance during the training time. The difference observed when compared
to the ARIMAmodel performancewas PFM (158% higherMAE, 126.5% higher RMSE, and
8.080% lesser R2).
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When evaluating the outcomes of CO2_30 predictions, the ARIMA model results of
training time (MAE = 6.957, RMSE = 12.735, and R2 = 0.877) and testing time (MAE = 7.375,
RMSE = 16.614, andR2 = 0.815)were superior, whereas PFM carried out the second. During
the testing time, PFM (158.960% higher MAE, 49.540% higher RMSE, and 7.840% lesser R2)
was placed in the second position.

Similar to the other findings, the prediction results from the CO2_60 dataset also
demonstrate that the models behave in a similar manner. The ARIMA model executes
better results than PFM (88.870% higher MAE, 44.690% higher RMSE, and 7.580% lesser
R2) during the training time. Furthermore, the comparison of the evaluation metrics’ re‑
sults between the training and testing periods is presented in Figure 9.
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3.4.1. Performance of the ARIMAModel
The performance of the ARIMA model was evaluated using the RMSE, MAE, and

R2 metrics. When comparing the performance between CO2_1 and CO2_60 datasets, the
CO2_1 dataset exhibited the least error and maximum performance, showing a 62.20%
lower RMSE, 75.33% lower MAE, and a 21.78% higher R2 compared to the CO2_60 dataset.
When comparing the performance between CO2_5 and CO2_60 datasets, the ARIMA train‑
ing results for RMSEwere 20.10% lower, MAEwas 31.25% lower, and R2was 9.95% higher.
Additionally, when comparing the performance between the CO2_10 andCO2_60 datasets,
the ARIMA training for RMSE was 29.03% lower, MAE was 61.35% lower, and R2 was
13.59%higher. Finally, when comparing the performance between theCO2_30 andCO2_60
datasets, the ARIMA training results showed a 55.71% reduction in RMSE, a 61.6% reduc‑
tion in MAE, and a 13.87% increase in R2. In summary, data collection at a 1‑min inter‑
val demonstrated the highest model performance with an R2 of 0.928, RMSE of 7.359, and
MAE of 2.832. The performance of themodel in predicting CO2 concentration decreased as
the data collection interval increased, thus showing the lowest performance at the CO2_60
dataset (R2 = 0.762, RMSE = 19.469, MAE = 11.48).

The comparison results between the actual values and predicted values are presented
in Figure 7. According to the ARIMA prediction outcomes, the datasets with intervals of
CO2_1, CO2_5, CO2_10, CO2_30, and CO2_60 followed a similar performance pattern. The
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training and testing prediction performance demonstrated that theCO2_1 dataset achieved
the best performance in predicting CO2 concentrations compared to other datasets.

3.4.2. Performance of PFM
The results of the PFMare presented in Table 2. It was observed that theCO2_1 dataset

provided the best performance compared to other datasets (RMSE = 22.388, MAE = 18.645,
R2 = 0.951). Conversely, the lowest performance was observed in the CO2_60 dataset
(RMSE = 25.04, MAE = 19.158, R2 = 0.753). While comparing the performance between
these two datasets, the CO2_1 dataset exhibited the least error andmaximumperformance,
showing a 10.59% lower RMSE, 2.68% lowerMAE, and a 26.29% higher R2 compared to the
PFM testing results for the 60‑min dataset. When comparing the performance between the
CO2_5 andCO2_60 datasets, the PFM testing results for RMSEwere 0.42% lower,MAEwas
1.42% lower, and R2 was 3.26% higher. Additionally, when comparing the performance
between CO2_10 and CO2_60 datasets, the PFM testing for RMSE was 4.70% lower, MAE
was 1.66% lower, and R2 was 7.70% higher. Finally, when comparing the performance
between the CO2_30 and CO2_60 datasets, the PFM testing results were 0.77% lower in
RMSE, 0.56% lower in MAE, and 16.73% higher in R2. Consequently, data collection at a
1‑min interval demonstrated the highest model performance compared to other datasets.
Similar to the ARIMA model predictive performance results, the performance of the PFM
in predicting CO2 concentration decreased as the data collection interval increased, thus
showing the lowest performance at the 60‑min interval.

The comparison results between the actual values and predicted values are presented
in Figure 8. According to the PFM prediction outcomes, the datasets with intervals of
CO2_1, CO2_5, CO2_10, CO2_30, and CO2_60 followed a similar performance pattern.
The training and testing prediction performance demonstrated that the 1 CO2_1 dataset
achieved the best performance in predicting CO2 concentrations.

3.5. Model’s Performance Comparison and the Proposed Model
In the dataset with CO2_1, the ARIMA model presents a 67.13% lower RMSE and

an 84.81% lower MAE compared to the PFM, indicating greater accuracy in terms of error
metrics. Conversely, the R2, which indicates the proportion of variance themodel explains,
is 2.48% higher in the PFM, suggesting that it may slightly better reflect the variability in
the data. In the dataset with CO2_60, the ARIMA model continues to outperform with
a 22.25% lower RMSE and a 40.08% lower MAE, while also achieving a 1.20% higher R2.
This consistency suggests that the ARIMAmodel is generally superior to the PFM, making
it a preferable choice for predicting CO2 concentrations overall.

4. Discussion
4.1. Comparative Analysis of Models in CO2 Concentration Prediction

CO2 and plant growth are closely linked due to the precise influence of CO2 on pho‑
tosynthesis, nutrient uptake, biomass, and chloroplast diversity [45–47]. However, key
factors influencing the final quality and quantity of production, including seed germina‑
tion, growth of roots and shoots, stem length, flower growth, and leaf development, pri‑
marily depend on CO2 concentrations [48,49]. Plant growth is significantly affected by
CO2 concentrations, but direct measurement of CO2 can be time‑consuming, costly, and
labor‑intensive. Consequently, this study evaluated the accuracy of CO2 concentration
predictions within a greenhouse using the ARIMAmodel and the PFM developed by Face‑
book, across various data collection intervals. The research analyzed the performance of
the prediction models using five different datasets. The results indicate that the ‘CO2_1’
dataset was more effective in accurately modeling CO2 concentrations than the ‘CO2_5’,
‘CO2_10’, ‘CO2_30’, and ‘CO2_60’ datasets. This comparison of the two models’ predictive
performance with the five datasets helped identify an appropriate method for predicting
greenhouse CO2 concentrations.
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Another previous study [50] conducted research to predict greenhouse environmen‑
tal variables over a period of 45 days. This research utilized the ARIMA model to predict
temperature and humidity, achieving a minimum error rate of 0.4% and a forecasting ac‑
curacy of 95%. In the current study, the same ARIMA model was applied to predict CO2
concentrations in a greenhouse over a period of 121 days, with the results achieving a pre‑
dictive accuracy of 92.8% on test data. These results are consistent with the previous find‑
ings and further reaffirm the reliability of the ARIMA model. PFM effectively processes
daily, weekly, and annual seasonal data and accurately identifies complex patterns of CO2
concentration that reflect changes in both internal and external greenhouse conditions [51].

This study reveals that PFM is somewhat limited compared to the ARIMA model.
The ARIMA model excels at capturing rapid changes in CO2 concentrations in data col‑
lected at 1‑min intervals, whereas PFM effectively identifies major trends in CO2 concen‑
trations from data gathered every 30 min. While ARIMA requires careful tuning of its p,
d, and q parameters to prevent overfitting, PFM offers a more flexible approach with less
intensive parameter adjustments. Such optimization strikes an efficient balance between
computational load and predictive accuracy, which is essential for real‑time greenhouse
management systems. Considering the overall predictive performance and minimal error
metrics, the research concludes that the ARIMAmodel is more suitable for predicting CO2
concentrations.

4.2. Model Accomplishment
The performance of the ARIMAmodel is negatively affected as the data collection in‑

terval increases. Firstly, expanding the data collection interval from 1 min to 60 min leads
to significant information loss. Data exhibiting high volatility, such as carbon dioxide con‑
centrations, can change rapidly over time. Shorter intervals are more effective at capturing
these fine variations. Secondly, as intervalswiden, the responsiveness and temporal resolu‑
tion of the model decrease, which challenges the model’s ability to capture recent changes
and natural patterns, including periodicities. This directly undermines the accuracy of
predictions. Since ARIMA models rely heavily on the autocorrelation of time series data,
a reduced temporal resolution significantly hampers the model’s ability to learn data auto‑
correlation and periodicity. Furthermore, a decrease in the number of data points dimin‑
ishes the amount of information available for the model to learn, particularly exacerbating
performance degradation in sparse data conditions. Therefore, for effective prediction, it
is ideal to collect data at as short an interval as possible, though this comes with increased
costs and effort in data processing and storage. Considering these factors, the performance
of the ARIMAmodel is superior when data collection intervals are shorter and deteriorate
as intervals lengthen.

In contrast, the performance decline of the PFM is also notable as the interval widens.
Specialized in analyzing various temporal elements such as trends, seasonality, and hol‑
iday effects in time series data, the PFM is particularly affected by changes in the data
collection interval [37]. Firstly, increasing the interval leads to a loss of detailed data and a
decrease in the accuracy of estimating seasonality and trends [38]. Data collected at 1‑min
intervals can capture subtle changes in CO2 concentrations, aiding the model in learning
more accurate trends and patterns. In contrast, data at 60‑min intervals may miss impor‑
tant fluctuations or trends. Secondly, a wider interval can lead to less accurate identifica‑
tion of fine‑grained seasonal patterns, such as hourly or daily variations, which diminishes
the model’s predictive power in environments where short‑term changes are critical [40].
Thirdly, a wider gap between data points lowers the resolution of the time series, thereby
increasing the variability in statistical estimates. Generally, predictive models tend to per‑
form better when trained on a larger number of data points [36]. Therefore, as the interval
widens and the number of available data points decreases, it negatively impacts model
performance. Finally, the resolution of the data also affects the model’s propensity for
overfitting and its ability to generalize predictions. High‑resolution data can increase the
risk of overfitting, but this risk can be managed through proper data handling and model
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tuning. Conversely, low‑resolution data may lead to underfitting, degrading the model’s
generalization capabilities in making predictions.

Consequently, while the ARIMA model enables more precise predictions with high‑
resolution data collected at short intervals, suggesting its suitability for rapidly changing
environmental conditions, the PFM, while useful for analyzing seasonal variability and
trends in time series data, sees its ability to capture fine changes diminish as the data col‑
lection interval widens. Considering the impact of data collection intervals, the choice of
model and data collection strategy should be carefully determined based on the research
objectives and available resources. For instance, the ARIMAmodel may bemore appropri‑
ate in situations where real‑time detection of environmental changes is required, whereas
the PFM might be advantageous for long‑term seasonal variability. Such decisions will
vary depending on costs, data storage and processing capabilities, and the required accu‑
racy of predictions.

4.3. Influence of Input Variables and Models on CO2 Concentration Prediction
In this study, the data collection interval had a substantial impact on the prediction ac‑

curacy of the ARIMA model and PFM for estimating CO2 concentration. Considering the
various input combinations, the dataset with CO2_1 produced the most accurate results
across all models. This suggests that shorter data collection intervals offer better accuracy
compared to datasets gathered over longer intervals. Generally, the R2 values increased as
the data collection intervals decreased, while RMSE andMAE values showed a downward
trend. As more input parameters were incorporated, there was a noticeable improvement
inmodel accuracy. However, incorporatingmultiple input variables raised computational
costs and added complexity to the model, potentially limiting its practical application [52].
As shown in numerous studies, the amount and relevance of input parameters have a sub‑
stantial impact on prediction accuracy [53].

Comparing the two‑time series forecasting models, the ARIMAmodel demonstrated
relatively higher stability and less sensitivity to input data variations in prediction accu‑
racy [54]. Considering the increased rates of RMSE and MAE between the training and
testing phases, the PFM also exhibited high stability, but ARIMA generally outperformed
in overall performance. This stability may be attributed to ARIMA’s ability to effectively
capture complex relationships and patterns in time series data and generalize well with
unseen data [55]. The stability of the two models varied with different combinations of
input data, with ARIMA showing less sensitivity to these variations. Primandari et al. [56]
utilized the PFM to predict CO2 concentrations. The PFM is noted for its high predictive
accuracy and low error values, effectively managing the seasonality and change points in
CO2 levels, which showed a continuing upward trend without any reduction in recent lev‑
els. However, the performance and stability of a model can differ based on the specific
datasets used and the challenges faced, making it essential to evaluate model performance
across diverse datasets [57]. This remains a valuable consideration when selecting time
series forecasting models.

The adaptability of ARIMA to various data intervals and its robust performance sug‑
gest its suitability for environments where rapid real‑time data processing is crucial. For
example, in urban air quality monitoring or industrial environmental management sys‑
tems, the ARIMA model’s quick response to environmental changes is highly beneficial.
On the other hand, the PFM’s capability to analyze long‑term seasonal variations makes
it more appropriate for applications like agricultural planning where long‑term trends are
more relevant.

The impact of different data collection intervals on data file size was analyzed as in‑
put variables for a CO2 concentration prediction model. The collection interval affects not
only the performance of the prediction model but also data management, storage costs,
and processing times. The data file from CO2_1 is the largest, at 59.82 MB, reflecting the
highest frequency of data collection. This high granularity captures hourly variations in
detail, enabling more accurate predictions but also requiring significant resources for data
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processing and storage. The data file at CO2_5 is significantly reduced in size to 11.96 MB,
approximately an 80% decrease compared to the CO2_1 data file. This reduction results in
some loss of detailed information, but it eases data processing and management. The size
of the data file collected at CO2_10 is 5.98 MB, which is a 50% reduction from the CO2_5
data file. This further decreases the need for storage space and speeds up processing, but it
also increases the potential for loss in prediction accuracy. The data file collected, CO2_30,
is much smaller at 1.99 MB, significantly reducing data frequency and risking missing im‑
portant environmental changes. However, this interval significantly cuts costs related to
data management and processing. The data file collected at CO2_60 is the smallest at 0.997
MB, offeringminimal data and a high likelihood ofmissing critical time periods. However,
they provide benefits in terms ofminimal storage space usage and reducedprocessing time.
The variation in data collection intervals and file sizes clearly illustrates the trade‑offs be‑
tween data quality and quantity and processing costs. High‑resolution data enable more
accurate analyses but justify increased costs and resource usage, as larger file sizes de‑
mand more time and money for data processing and storage. Thus, assessing the model’s
effectiveness and the suitability of data intervals, considering budget and infrastructure
constraints, is crucial in choosing the most efficient data collection strategy. Especially
for large facilities or those with limited budgets, selecting an appropriate model and data
collection frequency plays a vital role in maximizing resource optimization and efficiency.

This study confirmed that both the ARIMA model and PFM exhibit higher predic‑
tion accuracy at shorter data collection intervals. This suggests their utility in applica‑
tions where real‑time or high‑frequency data monitoring is crucial. For instance, in urban
air quality monitoring or industrial environmental management systems, rapid responses
through real‑time data are essential when using short data collection intervals. However,
the complexity of the models and computational costs tend to increase as the data collec‑
tion intervals decrease. This can be particularly challenging when dealing with large‑scale
data, necessitating a cost‑effectiveness analysis.

Overall, this research proposes a methodology to determine the optimal data collec‑
tion frequency for regulating optimal CO2 concentrations in greenhouse crops and enhanc‑
ing the efficiency of smart farm operations. This suggests an appropriate collection fre‑
quency for efficiently utilizing vast amounts of data in the agricultural sector. These find‑
ings underscore the importance of high‑frequency data collection in accuratelymonitoring
and controlling CO2 concentration within greenhouses.

5. Conclusions
In this study, we utilized two‑time series models to predict CO2 concentrations in

strawberry greenhouses. The primary objectivewas to evaluate the optimal data collection
intervals needed to achieve high‑accuracy predictions of CO2 concentrations within the
greenhouse environment. The results of the study demonstrated that the ARIMA model
outperforms the Prophet model (PFM) in predicting CO2 concentrations across all data
collection intervals. Moreover, among the five datasets (CO2_1, CO2_5, CO2_10, CO2_30,
CO2_60), the ARIMA model and PFM demonstrated the best performance on the CO2_1
dataset. Overall, the performance of the ARIMAmodel and PFM improved as the data col‑
lection interval shortened. Specifically, the ARIMAmodel with the CO2_1 dataset showed
that R2 increased by 21.78%, and RMSE and MAE reduced by 62.20% and 75.33%, respec‑
tively, compared to the CO2_60 dataset. Additionally, the PFM with the CO2_1 dataset
showed that R2 increased by 26.29% and RMSE and MAE reduced by 10.59% and 2.68%,
respectively, compared to the CO2_60 dataset. This research clearly highlighted the ef‑
fectiveness of time series models, especially the ARIMA model, in forecasting CO2 con‑
centrations in a greenhouse. The results offer valuable insights into CO2 concentration
patterns, supporting data‑driven decision‑making in plant production and environmental
management through real‑time CO2 monitoring. However, modeling CO2 concentrations
has some limitations because it depends on other variables such as ventilation conditions,
temperature, humidity, and seasonal variations. Therefore, future studies may focus on
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developing predictivemodels that consider ventilation conditions, temperature, humidity,
and seasonal changes to predict CO2 concentrations in plant production.
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