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Abstract

This study proposes an integrated framework for sustainable tropical agriculture by com-
bining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’
pineapple production. Peel and eye residues from fresh-cut processing were enzymatically
converted into rare sugar, achieving average conversion efficiencies of 35.28% for peel and
37.51% for eyes, with a benefit–cost ratio of 1.56 and an estimated unit cost of USD 0.17
per gram. A complementary zero-waste pathway produced functional gummy products
using vinegar fermented from pineapple eye waste, with the preferred formulation scor-
ing a mean of 4.32 out of 5 on a sensory scale with 158 untrained panelists. For spatial
carbon modeling, the Bare Land Referenced Algorithm (BRAH) and Otsu thresholding
were applied to multi-temporal Sentinel-2 and THEOS imagery to estimate plantation age,
which strongly correlated with field-measured emissions (r = 0.996). This enabled scalable
mapping of plot-level greenhouse gas emissions, yielding an average footprint of 0.2304 kg
CO2 eq. per kilogram of fresh pineapple at the plantation gate. Together, these innovations
form a replicable model that aligns tropical fruit supply chains with circular economy
goals and carbon-related trade standards. The framework supports waste traceability,
resource efficiency, and climate accountability using accessible, data-driven tools suitable
for smallholder contexts. By demonstrating practical value addition and spatially explicit
carbon monitoring, this study shows how integrated circular and geospatial strategies can
advance sustainability and market competitiveness for the ‘Phulae’ pineapple industry and
similar perennial crop systems.

Keywords: ‘Phulae’ pineapple; rare sugar; carbon footprint; BRAH algorithm; zero-
waste agriculture

1. Introduction
Sustainable agriculture is increasingly recognized as a cornerstone for addressing

the intertwined challenges of global food security and climate change [1,2]. Agriculture
contributes a significant share of greenhouse gas (GHG) emissions while simultaneously
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depending on ecosystems that are highly sensitive to environmental degradation [3]. To
meet these challenges, current strategies emphasize climate-smart practices, resource-
efficient production, and integrated frameworks that combine waste minimization with
carbon accountability across the agricultural value chain.

One critical issue is that many tropical horticultural systems generate large volumes
of underutilized biomass and lack robust mechanisms for traceable emission estimation at
the farm level. This is particularly evident in the production of ‘Phulae’ pineapple, a geo-
graphically protected and economically significant fruit from northern Thailand. Despite
its premium status, the fresh-cut processing of ‘Phulae’ pineapple results in considerable
peel, crown, and eye residues, which are typically discarded or used inefficiently [4]. Addi-
tionally, the absence of accessible field-level emission tracking tools creates uncertainty for
carbon labeling and compliance with emerging climate-related trade measures.

In response, this study proposes an integrated dual-component framework that com-
bines biochemical waste valorization with remote-sensing-based carbon footprint modeling.
By demonstrating how fruit processing residues can be converted into high-value products
and how plantation age mapping can serve as a proxy for spatially explicit GHG estimation,
this framework aligns with Thailand’s Bio-Circular-Green (BCG) economy model and
contributes to the global transition toward zero-waste, low-emission agriculture.

1.1. Sustainable Agriculture in the Context of Climate Accountability

The transition toward sustainable food systems is now central to addressing escalating
environmental challenges and climate change. The agriculture sector accounts for approxi-
mately one-quarter of global anthropogenic greenhouse gas (GHG) emissions [1], making
it a key contributor to global warming. At the same time, agriculture is particularly vulner-
able to climate impacts, including yield reductions and increased variability in production.
This dual role, as both a source and a victim of climate change, underscores the imperative
for climate-resilient and low-emission agricultural systems [2].

To address these challenges, emphasis is increasingly placed on climate accountability,
particularly through the development of farm-level carbon accounting frameworks. Accu-
rate monitoring and quantification of emissions from inputs such as fertilizers, irrigation,
and machinery are fundamental to improving management practices [5]. Tools such as life
cycle assessment (LCA), farm-based carbon calculators, and standardized emission factor
models are now widely used to estimate agricultural footprints and inform mitigation
strategies [6]. The emergence of environmental labeling schemes and sustainability certi-
fications further reflects global market trends that increasingly favor transparent supply
chains. As agrifood exports face carbon-related regulations and voluntary sustainability
standards, reliable tools for emission traceability and monitoring have become essential [3].

1.2. The Significance of ‘Phulae’ Pineapple in Thailand’s Bio-Circular-Green Economy

‘Phulae’ pineapple (Ananas comosus var. ‘Phulae’), a unique cultivar endemic to
Chiang Rai province in northern Thailand, plays a significant role in the regional economy.
In 2021, cultivation covered over 28,288 rai and produced more than 59,380 tons of fruit.
Its distinctive sweetness and firm texture have supported its recognition as a high-value
product with geographical uniqueness. The majority of ‘Phulae’ pineapples are processed
as fresh-cut fruit, a practice that generates a substantial proportion, often reported at
30–45 percent, of inedible residues, such as peels, crowns, and cores [4,7].

Within Thailand’s Bio-Circular-Green (BCG) economic strategy, the ‘Phulae’ pineapple
sector is well positioned to contribute to sustainability transitions. The BCG model pro-
motes resource efficiency and circularity through the valorization of agricultural residues.
Pineapple waste, which is particularly rich in fermentable sugars and bioactive compounds,
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has been demonstrated to hold substantial potential for bioconversion into value-added
products, such as rare sugar, organic acids, and biofuels [4,8]. Recent studies have con-
firmed that pineapple peel and other tropical fruit residues are effective substrates for
enzymatic conversion to rare sugars, with yields comparable to sugar-rich feedstocks, such
as fructose syrups [9,10]. Developing such pathways not only reduces the environmen-
tal burden from waste disposal but also provides opportunities for income diversifica-
tion among smallholder producers. This positions ‘Phulae’ pineapple production as a
practical model for zero-waste, high-value agriculture aligned with Thailand’s national
sustainability priorities.

1.3. Research Gaps in Waste Valorization and Spatial Carbon Footprint Estimation

Despite increasing interest in low-carbon agriculture and waste valorization, two
interrelated challenges remain insufficiently addressed. First, there is a disconnect be-
tween advancements in biochemical waste conversion and the spatial modeling of carbon
emissions. While recent studies have demonstrated the feasibility of converting pineapple
residues into value-added products through enzymatic and microbial processes [4,8,9],
most investigations remain limited to laboratory scale and do not explicitly quantify how
these valorization pathways affect farm- or landscape-level GHG balances. Life cycle
assessments (LCAs) of waste conversion often exclude spatial heterogeneity and rely on
static assumptions for field emissions [3]. This methodological gap limits the ability to link
circular resource use to verifiable climate outcomes.

Second, a key limitation in carbon footprint estimation lies in the availability of
geospatial agronomic data, particularly plantation age. Age-related variations strongly
influence biomass accumulation, soil respiration, and the intensity of fertilizer or fuel
applications, yet these variables are frequently missing from standard carbon accounting
frameworks [5]. Traditional footprint models typically apply uniform coefficients that over-
look within-region differences in planting dates and field management. Remote sensing
technologies provide a practical solution by enabling time-series analyses of vegetation
cover and phenology. Recent developments in the Bare Land Referenced Algorithm (BRAH)
have shown promise for identifying field establishment dates using hyper-temporal satel-
lite imagery [11–13]. This approach supports scalable, cost-effective, and reproducible
plantation age mapping, offering a critical input for more precise carbon modeling across
heterogeneous agricultural landscapes.

To date, however, waste valorization and spatial carbon modeling have largely evolved
in parallel rather than in an integrated manner. Combining these domains could close an
important gap by connecting biochemical circularity with spatially explicit environmental
performance. This integration creates a holistic framework that links on-site residue conver-
sion with landscape-scale climate accountability, an approach not yet widely implemented
for tropical horticultural systems.

1.4. Aim of the Study in Developing an Integrated Sustainability Framework

This study proposes and tests a dual-purpose sustainability framework for ‘Phulae’
pineapple production, illustrated in Figure 1. The first component develops an industri-
ally relevant pathway for biochemical waste valorization, focusing on the conversion of
fresh-cut processing residues into commercially viable rare sugars and functional vinegar
products. By demonstrating feasible extraction yields, economic viability, and consumer ac-
ceptance, this element provides evidence for upgrading low-value residues into high-value
biochemicals under real supply chain conditions.



Agriculture 2025, 15, 1623 4 of 26

 

Figure 1. Overview of the dual-component sustainability framework for ‘Phulae’ pineapple
production.

The second component advances a spatial carbon modeling approach based on multi-
temporal remote sensing. Specifically, it applies the BRAH algorithm to detect bare land
states, estimate plantation age, and link this temporal variable with farm-level greenhouse
gas emissions. This improves the resolution and accuracy of carbon footprint estimation in
perennial crop systems, addressing data gaps in field emission reporting.

By combining biochemical process innovation with geospatial intelligence, the inte-
grated framework aims to deliver measurable progress toward zero-waste implementation
and verifiable spatial carbon accounting. The approach emphasizes low-cost, scalable tech-
nologies, making it practical for smallholder production contexts. The resulting methodol-
ogy directly supports Thailand’s Bio-Circular-Green (BCG) economy objectives and offers
a replicable model for other perennial or semi-perennial fruit systems. Ultimately, this
research provides a concrete example of how combined circular economic strategies and
precision monitoring tools can contribute to the transformation of agri-food systems under
global climate-smart and low-emission goals.

2. Materials and Methods
2.1. Study Area and Research Framework

This study was conducted in Chiang Rai province, northern Thailand, which is a
major production area of ‘Phulae’ pineapple recognized under the national Geographical
Indication (GI) scheme. The province’s favorable tropical climate, distinct terrain, and con-
solidated production zones provide an appropriate context for implementing sustainable
agricultural frameworks within the tropical fruit supply chain. The dominant processing
approach for ‘Phulae’ pineapple is the fresh-cut ready-to-eat product line, which generates
substantial volumes of by-products, such as peel, crown, and eye fractions.

To ensure consistency and traceability throughout the valorization pathways, pineap-
ple residues were systematically prepared following standard industrial fresh-cut pro-
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cessing. The process included washing with clean water and chlorinated water, manual
peeling, crown and eye removal, a secondary water wash, and coarse chopping or grinding.
Residues were then dried using a tray dryer to reduce moisture content prior to biochemical
conversion. AOAC Official Methods [14] and established industrial practices for pineapple
waste valorization [4].

The research framework integrates three methodological components to demonstrate
a replicable zero-waste and low-carbon production model. First, processing residues were
transformed into value-added products, including rare sugars and functional vinegar-
based gummies. Second, the spatial carbon footprint was quantified for the full cultivation
and processing chain, combining field data with satellite-derived spatial modeling. Third,
plantation age detection was performed using the Bare Land Referenced Algorithm (BRAH)
combined with Otsu thresholding, applied to multi-temporal satellite imagery to enable
scalable age estimation while minimizing reliance on UAV-based surveys.

Key independent variables include the plantation age categories, spectral reflectance
values from satellite bands, and field management practices under Good Agricultural Prac-
tice (GAP). The primary response variables comprise the carbon footprint per functional
unit and the validated plantation age. Specific input ranges and technical details for carbon
footprint modeling and age estimation are described in subsequent sections.

This integrated framework supports Thailand’s Bio-Circular-Green (BCG) economic
model and aligns with international environmental mechanisms, such as the Carbon
Border Adjustment Mechanism (CBAM). The spatial distribution of the selected study
plots, covering diverse cultivation practices and field conditions, is presented in Figure 2.

Figure 2. Example location of sample ‘Phulae’ pineapple plantations in Chiang Rai province. The
selected plots were used for carbon footprint analysis.

2.2. Waste Valorization Process

In alignment with the zero-waste objective of this study, pineapple processing residues
were valorized through two complementary pathways, each demonstrating distinct ap-
proaches to agricultural by-product utilization.

The first pathway explored the feasibility of producing rare sugars from peel and eye
fractions through enzymatic transformation. This conceptual stage involved preliminary
conversion trials to assess the technical viability of obtaining rare sugar, a low-calorie sugar
of emerging commercial interest in food and pharmaceutical applications. Due to ongoing
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intellectual property protection, the specific enzymatic conditions and process parameters
are not disclosed herein; however, key indicators, such as overall conversion yield, were
used to validate the potential of this pathway as part of the integrated framework [4,14].

The second pathway focused on a practical and scalable valorization route: the pro-
duction of functional vinegar-based gummies using pineapple eye waste. The selected
residues were washed thoroughly prior to juice extraction, which was then used for vine-
gar fermentation through a controlled two-step process. This vinegar was subsequently
developed into gummy prototypes enriched with bioactive components, including inulin
and collagen. The gummy formulation process involved systematic variations in vinegar
content to establish treatment comparisons and baseline controls for sensory evaluation
and acceptability analysis.

This dual-pathway approach illustrates how the ‘Phulae’ pineapple supply chain can
transition from conventional waste disposal to high-value product development under
the Bio-Circular-Green (BCG) economic model. Detailed protocols, treatment conditions,
and control measures for the gummy production and evaluation are provided in the
following sections.

2.2.1. Rare Sugar Feasibility

In this study, the feasibility of producing rare sugar from fresh-cut ‘Phulae’ pineapple
residues was assessed as part of an integrated zero-waste valorization framework. Residues
comprising peel and eye fractions were collected from the main fresh-cut processing line
and subjected to standardized pretreatment, including washing with chlorinated water, air
drying, and mechanical grinding to reduce the particle size for subsequent extraction steps.

Preliminary sugar extraction was carried out by soaking the powdered biomass in
distilled water under controlled conditions to release fermentable sugars. The resulting
extract was analyzed using high-performance liquid chromatography (HPLC) following
standard sugar profiling methods, as specified by AOAC [14] and comparable to Mu et al.
(2012) [15]. The HPLC system was operated under typical settings for sugar detection, using
a refractive index detector and an appropriate column, maintained at an industry-standard
temperature range, with HPLC-grade water as the mobile phase. Certified glucose, fructose,
and sucrose standards were used to confirm the presence of target sugars by retention
time comparison.

Fructose served as the main substrate for enzymatic transformation into rare sugar. The
conversion process was conducted under laboratory conditions using proprietary enzyme
preparation. To protect intellectual property, detailed enzyme concentrations, reaction
volumes, and specific chromatographic parameters are not disclosed here. However, the
average conversion efficiency was determined to be within an expected practical range of
about 30–40%, aligning with previous efficiencies [9,10,15].

Following conversion, the rare sugar solution was processed into powder form using
a bench-scale two-fluid nozzle spray dryer operated at a typical inlet temperature range
(approximately 140–160 ◦C) with a feed rate within standard laboratory capacity. The dried
residues were milled and sieved to a uniform fine powder for product quality evaluation.
The resulting product quality was assessed in reference to ICUMSA specifications for very-
high-polarization sugar [16]. A preliminary benefit–cost analysis, which considered raw
material input, energy use, and enzyme cost, indicated the economic viability of integrating
rare sugar production into the ‘Phulae’ pineapple supply chain. Additional process details
and specific equipment settings remain confidential to safeguard the proprietary process
design (Table 1).
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Table 1. Protocol 1. Conceptual Procedure for Rare Sugar Production from Pineapple Peel
and Eyes.

Step 1: Collection and Pretreatment
1. Collect peel and eye waste generated from ‘Phulae’ pineapple fresh-cut processing.
2. Wash residues thoroughly with chlorinated water and remove unwanted material.
3. Dry the residues at moderate temperatures until an appropriate moisture level is

reached.
4. Coarsely grind or mill the dried material to reduce particle size for extraction.

Step 2: Sugar Extraction
1. Soak the powdered biomass in distilled water under standard laboratory

conditions.
2. Filter the extract using conventional separation techniques (e.g., vacuum filtration

and centrifugation).
3. Perform qualitative sugar profiling by HPLC based on AOAC standard methods to

confirm the presence of target sugars.

Step 3: Enzymatic Conversion to Rare sugar
1. Conduct the enzymatic conversion of fructose to rare sugar using a proprietary

enzyme preparation under optimized conditions.
2. Specific details regarding enzyme strains, reaction conditions, and co-factors are

not disclosed due to pending intellectual property protection.
3. Typical conversion efficiencies achieved in laboratory trials indicate a feasible yield

for pilot-scale valorization.

Step 4: Powder Production
1. Apply standard thermal treatment to terminate enzymatic activity.
2. Process the solution to obtain powdered rare sugar using a laboratory-scale drying

technique.
3. Assess product quality with reference to ICUMSA standards for sugar purity.

Step 5: Economic Feasibility Assessment
1. Evaluate the overall benefit–cost ratio by incorporating raw material, processing

inputs, and energy costs.
2. Statistical and sensitivity analyses are reserved for proprietary reporting.

2.2.2. Gummy Product from Pineapple Vinegar

To complement the rare sugar valorization pathway, a functional gummy product
was developed using pineapple eye residues converted into pineapple vinegar. Pineapple
juice was first extracted from the cleaned eye fractions and adjusted to an initial sugar
concentration of approximately 18 ◦Brix. The alcoholic fermentation was initiated with
Saccharomyces cerevisiae TISTR 5019 (TISTR, Pathum Thani, Thailand) at an inoculum level
of 5% v/v for 5–7 days to produce ethanol. The fermented broth was then subjected to
acetic acid fermentation using Acetobacter pasteurianus TISTR 102 (TISTR, Pathum Thani,
Thailand) at an inoculum level of 10% v/v, maintained at pH 4–5 and 30 ◦C for 10–14 days
until the desired acetic acid concentration was reached (not less than 4%, following the
Notification of the Ministry of Public Health (No. 204) B.E. 2543 (2000) Re: Vinegar).

The resulting vinegar was monitored for acidity (4–5% w/v) and pH to ensure compli-
ance with food safety standards [14,17–19]. Three prototype gummy formulations were
developed, each incorporating varying proportions of pineapple vinegar (10–20% v/v),
gelatin (5–7% w/w), sugar, and water. The mixtures were heated to 70–80 ◦C to ensure
complete dissolution and homogeneity before being poured into silicone molds and cooled
under refrigeration at 4 ◦C until fully gelled. Final products were vacuum-packed to
maintain texture and prevent microbial spoilage.
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A consumer sensory evaluation was conducted using a 5-point hedonic scale. The
attributes evaluated included color, texture, taste, and overall liking, which were selected
based on standard sensory practice for gelatin-based confections [20]. The panel consisted
of 158 untrained consumers aged 18–50 years recruited from the local community. No
formal training was provided, but a short briefing was conducted to explain the scale and
attribute definitions to ensure consistency. Reproducibility was addressed by randomizing
the sample presentation order and by conducting duplicate testing with a subsample of
the panelists.

Optimization of the gummy recipe was based on the mean overall liking score, with a
threshold acceptance criterion of a mean score ≥ 4.0 indicating good consumer acceptance
for further product development. This approach illustrates the practical potential for
converting pineapple processing residues into functional value-added products, thus
reinforcing the zero-waste concept within the ‘Phulae’ pineapple supply chain. Table 2
outlines the procedure used to develop a functional gummy product from pineapple
eye residues.

Table 2. Protocol 2. Gummy Product Development from Pineapple Vinegar.

Step 1: Raw Material Preparation

1. Collect pineapple eye waste from the fresh-cut processing line.
2. Wash thoroughly with chlorinated water and extract juice by mechanical pressing.
3. Adjust the extracted juice to an initial sugar concentration of approximately

18 ◦Brix using a refractometer.

Step 2: Fermentation to Produce Vinegar

1. Inoculate the juice with Saccharomyces cerevisiae TISTR 5019 (TISTR, Pathum Thani, Thailand)
at an inoculum level of 5% v/v and ferment at pH 4–5 and 28–30 ◦C for 5–7 days to convert
sugars into ethanol.

2. After alcoholic fermentation, inoculate the broth with Acetobacter pasteurianus TISTR 102
(TISTR, Pathum Thani, Thailand) at 10% v/v and maintain at pH 4–5 and 30 ◦C for
10–14 days to oxidize ethanol into acetic acid.

3. Monitor acidity (target 4–5% w/v) and pH to ensure vinegar quality suitable for food
applications.

Step 3: Formulation of Gummy Mixtures

1. Prepare three gummy prototypes with varying vinegar content (10–20% v/v) combined with
gelatin (5–7% w/w), sugar, and distilled water.

2. Heat the mixture to 70–80 ◦C while stirring continuously to fully dissolve all ingredients
and ensure uniform blending.

Step 4: Molding and Setting

1. Pour the hot gummy mixture into silicone molds of uniform size.
2. Cool at 4 ◦C under refrigeration for 2–4 h to allow complete gelling.

Step 5: Packaging and Storage

1. Carefully remove fully set gummies from the molds.
2. Vacuum-pack the gummies in food-grade packaging to maintain texture and hygiene

during storage.

Step 6: Sensory Evaluation

1. Conduct a 5-point hedonic test with 158 untrained consumer panelists aged 18–50 years.
2. Evaluate color, texture, taste, and overall liking. Attributes were selected based on standard

practice for confectionery sensory analysis.
3. Brief panelists on scoring criteria before testing to ensure consistency. Randomize sample

presentation to minimize bias.
4. Determine the preferred formulation using the mean overall liking score, with a target

acceptance criterion of ≥4.0 to guide further product development.
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2.3. Carbon Footprint Evaluation

A carbon footprint evaluation was conducted to estimate greenhouse gas (GHG) emis-
sions associated with ‘Phulae’ pineapple cultivation in Chiang Rai province. The analysis
followed an emission-factor-based methodology, as outlined by the Intergovernmental
Panel on Climate Change (IPCC), and used activity data combined with standardized
emission coefficients to calculate carbon dioxide equivalent (CO2 eq.) values.

The system boundary encompassed all processes from land preparation to harvest.
The functional unit (FU) was defined as 1 kg of fresh ‘Phulae’ pineapple at the plantation
gate. Primary data were collected from a 7 rai (1 rai = 1600 m2) pineapple field operating
under a 5-year crop cycle. Data were gathered through structured interviews with farm
operators and direct field observation. Recorded inputs included diesel fuel, synthetic
and organic fertilizers, irrigation water, and agrochemical applications. Where necessary,
shared inputs were allocated proportionally to the functional unit.

Emissions were calculated using Equation (1):

Carbon Emission (kgCO2 eq.) = Activity Data × Emission Factor (1)

All calculations were performed using a custom spreadsheet model constructed in Mi-
crosoft Excel for Microsoft 365 (Version 2506 Build 16.0.18925.20076), which systematically
integrated field input data with the corresponding emission factors to derive total CO2

equivalent emissions per FU. This practical approach aligns with standard agricultural
carbon accounting practice under the IPCC framework [21].

Emission factors (EFs) were sourced from the Thailand Greenhouse Gas Management
Organization (TGO) [22] and validated literature. Emission sources were categorized into
four major activities: (1) land preparation, (2) fertilization, (3) weed and pest control, and
(4) harvesting operations.

2.4. Plantation Age Estimation and Carbon Modeling

Temporal information on perennial crop systems is essential for understanding carbon
dynamics over cultivation cycles. In this study, the plantation age was used as a central
variable for estimating carbon emissions associated with ‘Phulae’ pineapple cultivation.
Due to the uniformity of agricultural practices within each cycle, the plantation age was
hypothesized to be strongly associated with biomass accumulation and emission-relevant
inputs. A combination of statistical analysis and remote sensing classification was employed
to develop a spatially scalable model for carbon footprint estimation.

2.4.1. Correlation Analysis Between Plantation Age and Carbon Emissions

To assess the utility of plantation age as a proxy for carbon emission estimation,
a correlation analysis was performed using data from pineapple fields with recorded
planting dates and corresponding emission inventories. Emission values were calculated
using activity-based field data collected across multiple plots within Chiang Rai province.
Agronomic practices were verified to be consistent across sites to minimize variability in
cultivation intensity. Pearson correlation analysis was applied to examine the statistical
association between plantation age and cumulative GHG emissions. Additionally, several
agronomic and remote-sensing-derived parameters, such as vegetation indices and spectral
reflectance values, were tested for their correlation with emissions. Plantation age was
selected for further modeling based on the methodological relevance and consistency of
observed relationships during exploration analysis.
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2.4.2. Satellite Data Acquisition and Preprocessing

To support spatial estimation of plantation age, multi-sensor satellite imagery was
sourced from the Thai Earth Observation Satellite (THEOS) and the European Space
Agency’s Sentinel-2 platform. THEOS imagery provided higher spatial detail for local
perennial crop monitoring, while Sentinel-2 ensured frequent revisit intervals and standard-
ized spectral bands for vegetation index computation. Imagery acquisition involved both
on-demand THEOS orders and archival retrieval of Sentinel-2 Level-2A products through
the Copernicus Open-Access Hub. Scenes were selected for minimal cloud cover, with a
preference for dry season captures to reduce atmospheric interference. Validated plantation
boundary shapefiles were used to clip all imagery for area consistency.

Preprocessing included atmospheric correction of Sentinel-2 scenes using the Sen2Cor
processor, orthorectification of THEOS imagery, and radiometric adjustments as needed.
THEOS data were resampled to 10 m using bilinear interpolation to harmonize with
Sentinel-2 resolution. Visual inspection of common tie points and control features was used
to verify co-registration accuracy between sensors, ensuring consistency for pixel-level
analysis. Cloud and shadow masking was conducted using QA bands, and NDVI and
NDRE indices were calculated for each scene. These indices were then contrast-enhanced
through histogram equalization to strengthen classification performance. The processed
imagery stack formed the input for plantation age classification using the Bare Land
Referenced Algorithm (BRAH), as described in Section 2.4.3.

2.4.3. Plantation Age Classification for Landscape-Scale Carbon Footprint Estimation

To enable spatially explicit estimation of plantation age for large-scale carbon model-
ing, a workflow integrating the Bare Land Referenced Algorithm from Hyper-Temporal
Data (BRAH) [11–13] and Otsu’s automatic thresholding method were applied to satellite
imagery. The objective was to detect the last known bare land state of each pixel and infer
the plantation age based on subsequent vegetation growth. Initially, NDVI was calculated
from atmospherically corrected and cloud-masked satellite images, including those from
THEOS and Sentinel-2. Histogram equalization was applied to enhance image contrast.
The Otsu method was then used to derive an adaptive threshold for classifying bare land
from each NDVI image. Each classified image retained the acquisition date only at pixels
identified as bare land, while non-bare land areas were set to zero. These temporally tagged
binary layers served as input for the BRAH algorithm.

The BRAH logic was adapted to process large temporal datasets by chronologically
assessing each bare land layer and updating a base raster with the latest bare land date for
each pixel. If a pixel’s value in a new image was bare land and had a later acquisition date
than the current record, the pixel’s value in the base raster was updated accordingly. This
cumulative operation across all scenes generated a bare-land-referenced layer encoding
the most recent bare land appearance for each pixel in the study area. The core processing
logic was implemented using a custom Python script (in Python 3.11), and key pseudocode
steps are provided in Table 3 to support reproducibility.

To estimate plantation age, the acquisition date of the reference plantation map was
compared to the bare land date stored in the BRAH layer. Positive differences represented
the number of days since the last bare land state and were used as proxies for the plantation
age. Pixels with invalid or negative differences, indicating no valid bare land occurrence
prior to the reference date, were excluded from analysis. This workflow enables consistent,
automated age estimation across extensive cultivation areas with high spatial resolution,
supporting regional carbon footprint modeling at scale.
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Table 3. Protocol 3. BRAH-Based Algorithm for Plantation Age Classification.

Part 1: NDVI Calculation and Preprocessing
1. Acquire THEOS and Sentinel-2 images.
2. Apply atmospheric correction.
3. Resample THEOS imagery to 10 m resolution to match Sentinel-2 data.
4. Clip all images to the plantation boundary using shapefiles.
5. Calculate NDVI from each image.
6. Apply histogram equalization to improve image contrast and prepare for

thresholding.

Part 2: Bare Land Classification Using Otsu’s Method1.
1. Compute the histogram of each NDVI image after equalization.
2. Normalize the histogram and compute cumulative sums and means.
3. Determine the optimal NDVI threshold using Otsu’s method (maximize

between-class variance).
4. Classify pixels as bare land if NDVI ≤ threshold, otherwise as vegetated.
5. Tag bare land pixels with the acquisition date; set all others to zero.
6. Repeat for all NDVI images, generating a stack of temporally tagged binary layers.

Part 3: Temporal Compositing via BRAH Algorithm1.
1. Initialize a base raster to store the most recent bare land date per pixel.
2. Loop through all binary layers chronologically:

a. If a pixel is bare land and has a more recent date than the base raster, update
the base raster.

b. Retain only the most recent bare land date for each pixel.
3. Output the Bare Land Referenced Layer (BRAH Layer), storing the last known

bare land state for every pixel.

Part 4: Plantation Age Calculation1.
1. Overlay the BRAH layer with the date of the plantation reference map.
2. Subtract the BRAH date from the reference map date to compute plantation age (in

days).
3. Mask invalid or negative values (indicating no prior bare land evidence).
4. Use the resulting plantation age map to estimate carbon emissions at pixel or plot

levels.

3. Results
3.1. Waste Valorization Outcomes from ‘Phulae’ Pineapple Processing
3.1.1. Rare Sugar Production from Peel and Eye Residues

‘Phulae’ pineapple processing generates significant volumes of peel and eye residues,
typically accounting for around 50–60% of the total biomass from fresh-cut operations.
These residues were valorized as feedstock for rare sugar production through an enzy-
matic bioconversion route (Figure 3). Pretreatment involved hot-air drying at a moderate
temperature range (approximately 60–70 ◦C) until the moisture content was sufficiently
reduced (around 10%). The dried material was then ground and sieved through a fine
mesh (approximately 250 µm) to produce a uniform substrate powder. Soluble sugars were
extracted using a simple aqueous soaking method, followed by sequential centrifugation
and vacuum filtration to clarify the extract. HPLC analysis confirmed that fructose was the
dominant sugar component, which was, therefore, selected as the primary substrate for
enzymatic conversion. The enzymatic process was carried out under controlled laboratory
conditions using a specific epimerase enzyme, achieving typical conversion efficiencies
in the range of 30–40%, yielding rare sugar at concentrations around 2.5–2.6 g/L. Both
peel- and eye-derived fractions showed comparable outcomes under identical conditions,
indicating no significant practical difference for production applications (Table 4). The
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resulting extract was then spray-dried at an inlet temperature of approximately 150 ◦C,
with a feed rate around 500 mL/h, to produce a pale brown, highly soluble crystalline
powder without bleaching or additives (Figure 4). The product quality was consistent with
specifications for very-high-polarization sugar, with color and pH levels meeting standard
industry ranges.

  
(a) (b) 

Figure 3. Preparation of pineapple peel and eyes for rare sugar production: (a) dried samples after
hot-air drying and (b) fine powder obtained after grinding and sieving.

Table 4. Rare sugar yield range and indicative economic assessment for pilot-scale pineapple
processing waste valorization.

Substrate
Rare Sugar

Yield
(g/L)

Conversion
Efficiency

(%)

Production
Cost

(USD/Batch)

Yield
(g/Batch)

Product Value
(USD/Batch)

Benefit–Cost
Ratio

Pineapple peel 2.61 35.28 11.85 70 18.57 1.56
Pineapple eyes 2.55 37.51 11.85 70 18.57 1.56

Figure 4. Rare sugar powder obtained from spray drying of enzymatically converted extract from
‘Phulae’ pineapple waste: (A) syrup form, (B) powder form, and (C) prototype packaging.

A preliminary economic assessment was performed for a pilot-scale batch using about
1 kg of dried pineapple eye powder as input, producing an estimated 60–80 g of rare
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sugar powder. The unit production cost and benefit–cost ratio fell within an economically
promising range for future scale-up (approximate unit cost 0.17 USD per gram, benefit–cost
ratio above 1.5). A basic sensitivity analysis indicated that minor reductions in conversion
efficiency could slightly lower profitability, highlighting the importance of process control.
Please note that the specific detailed process parameters and exact performance data are
withheld to protect proprietary intellectual property pending patent application.

3.1.2. Gummy Product Development from Pineapple Vinegar

In addition to rare sugar production, a complementary waste valorization pathway
was implemented through the development of functional gummy products derived from
fermented pineapple eye residues. These residues, which remain after trimming for fresh-
cut packaging, retain sufficient fermentable sugars and were processed through a two-stage
fermentation technique. The first stage involved alcoholic fermentation using Saccharomyces
cerevisiae TISTR 5019 (TISTR, Pathum Thani, Thailand) with an inoculum concentration of
approximately 0.015% w/v to convert sugars to ethanol, followed by acetic acid fermenta-
tion using Acetobacter pasteurianus TISTR 102 (TISTR, Pathum Thani, Thailand) at 10% v/v
of the fermented medium. The initial pineapple core juice was adjusted to 18 ◦Brix, and pH
was monitored daily, ranging from 4.05 to 4.12 during alcoholic fermentation (5 days, final
ethanol content 8.30%) and from 4.05 to 4.20 during acetic acid fermentation (6 days, final
acetic acid content 5.53%).

The resulting pineapple vinegar demonstrated consistent acidity, stable pH, and
acceptable aroma profiles for food-grade formulation. Three gummy prototypes were
prepared using the produced vinegar, fresh pineapple juice, sugar, gelatin, citric acid,
pineapple flavor, and pectin (where applicable). The blending ratios were as follows:
Formulation 1 (40% pineapple juice, 15% vinegar, 28.5% sugar, 12% gelatin, 2% pineapple
flavor, 2% pectin, 0.5% citric acid), Formulation 2 (40% pineapple juice, 16% vinegar, 28.5%
sugar, 12% gelatin, 2% pineapple flavor, 1% pectin, 0.5% citric acid), and Formulation 3
(40% pineapple juice, 17% vinegar, 28.5% sugar, 12% gelatin, 2% pineapple flavor, 0% pectin,
0.5% citric acid) (Table 5).

Table 5. Blending ratios (% w/w) for pineapple vinegar gummy formulations.

Ingredient Formulation 1 or
F1 (%)

Formulation 2 or
F2 (%)

Formulation 3 or
F3 (%)

Pineapple Juice 40 40 40
Pineapple Vinegar 15 16 17

Sugar 28.5 28.5 28.5
Gelatin 12 12 12

Pineapple Flavor 2 2 2
Pectin 2 1 0

Citric Acid 0.5 0.5 0.5

All formulations followed the same procedure: ingredients were combined and gently
heated until fully dissolved, then poured into silicone molds and cooled under refrigeration
until fully gelled. Finished gummies were vacuum-packed to maintain texture and hygiene
for storage and testing (Figure 5).

A sensory evaluation was conducted using a 5-point hedonic scale, with 158 untrained
consumer panelists (74.1% female, 25.9% male; age range predominantly 18–25 years)
evaluating 4 key attributes: color, aroma, texture, and overall liking. The selection of
these attributes was based on their critical role in consumer acceptance of gummy prod-
ucts. Among the three prototypes, Formulation 3 (F3) achieved the highest mean scores
for all tested attributes, reflecting the optimal balance between sweetness, acidity, and
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texture (Table 6). The main optimization criterion was the mean score of overall liking,
which exceeded 4.0 for F3. This confirms that high-moisture pineapple residues can be
successfully valorized into shelf-stable, consumer-accepted products within a zero-waste
processing framework.

 

Figure 5. Gummy products formulated from pineapple vinegar using three different recipes: (Left):
F1, (Center): F2, and (Right): F3. The third formulation (F3) received the highest consumer
preference scores.

Table 6. Sensory evaluation scores of gummy formulations using a 5-point hedonic scale (n = 158).

Attribute Formulation 1 Formulation 2 Formulation 3

Color 3.97 ± 0.78 c 4.32 ± 0.72 b 4.58 ± 0.63 a
Aroma 4.15 ± 0.85 b 4.21 ± 0.77 b 4.42 ± 0.75 a
Texture 3.79 ± 0.97 b 4.08 ± 0.86 a 4.24 ± 0.81 a

Overall Liking 3.86 ± 0.87 b 4.15 ± 0.81 a 4.32 ± 0.73 a
Values are mean scores ± standard deviation. Scores with different superscripts within a row differ significantly
(p < 0.05). Scale: 5 = like extremely; 1 = dislike extremely.

3.2. Carbon Footprint Estimation and Spatial Plantation Age Modeling
3.2.1. Activity-Based Carbon Emissions from Cultivation Practices

Emission sources were categorized into three major activities: (1) land preparation,
(2) fertilization and weed control, and (3) harvesting operations (Figure 6). As is typical
for perennial systems, certain inputs and field operations are not repeated annually but
are conducted once per cropping cycle to establish suitable soil and agronomic conditions.
Practices such as initial land preparation, primary tillage, and soil amendment application
are undertaken prior to planting and their benefits extend throughout the cycle. Therefore,
material inputs were normalized to an annual basis by dividing total inputs over a five-year
crop cycle.

The results showed that the post-harvest phase, specifically the management of leaf
and crown residues, contributed the largest share of emissions, accounting for an average
of 0.1330 kg CO2 eq. per kilogram of fresh product (approximately 58% of total emissions).
Fertilization activities contributed about 26% of emissions, while fuel use and pesticide
applications accounted for the remaining share (Figure 7). The total carbon footprint
at the plantation gate was estimated at approximately 0.2304 kg CO2 eq. per kilogram
of fresh ‘Phulae’ pineapple. Variation in this estimate primarily reflects differences in
fertilizer application rates and field residue management, as documented in comparable
systems [1,5].
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Figure 6. Activities and emission sources in pineapple cultivation.

Figure 7. Contribution of greenhouse gas emissions (numbers in the pie chart refer to the emission
per 1 kg of fresh ‘Phulae’ pineapple).

This result is consistent with published benchmarks for tropical perennial fruit systems
with high-input management and significant biomass waste. A mass balance diagram
illustrating the distribution of inputs and emission flows throughout the crop cycle is
provided in Figure 8.

The total carbon footprint figure reported in this study was derived from a single pilot-
scale demonstration plot covering seven rai of ‘Phulae’ pineapple, calculated according
to the standard carbon footprint of product (CFP) guidelines of the Thailand Greenhouse
Gas Management Organization (TGO) [22]. As no inter-annual or multi-site replication
was available, a statistical standard deviation for the plot-level activity data could not
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be determined. The principal source of uncertainty stems from the use of secondary
emission factors, which inherently carry documented variability in the CFP methodology.
To strengthen the robustness of future estimates, additional annual data collection will be
conducted at multiple farms to capture inter-plot variation and reduce uncertainty.

Figure 8. Mass balance of carbon emissions associated with ‘Phulae’ pineapple cultivation.

3.2.2. Carbon Footprint Estimation Using BRAH-Based Plantation Age Mapping

The plantation age layer, generated using the BRAH algorithm in combination with
Otsu’s NDVI-based thresholding, served as the primary spatial input for landscape-scale
carbon emission modeling. To ensure classification reliability, a bare land referenced map
was constructed by detecting the last bare land state for each pixel across multi-temporal
satellite imagery (Figures 9–11). To confirm the accuracy of the bare land classification
step that underpins the BRAH workflow, a random sample comprising ten percent of all
bare land layers was selected for validation. Fifty random points per layer were visually
checked against high-resolution base imagery by domain experts to verify whether each
pixel was correctly classified as bare land or vegetation. This procedure yielded an average
classification accuracy of 82.90 percent with a standard deviation of 7.12 percent. The
validation result demonstrates that the derived bare land masks are sufficiently reliable
for generating the plantation age input required for subsequent spatial carbon footprint
modeling (Figure 9).

The derived plantation age profile was cross-validated with ground-based plant-
ing records collected from 104 pineapple plots distributed throughout the study region
(Figure 10). The age estimates demonstrated an average deviation of 4.03 months with
a standard deviation of 14.90 months when compared to farmer-reported planting dates.
This empirical range shows that the model’s practical temporal deviation mostly clusters
within approximately fifteen months, which aligns with the expected uncertainty when
relying on historical satellite data and local record limitations.
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To assess the potential impact of this temporal deviation on carbon footprint estimates,
a sensitivity check was performed. The results confirmed that minor variations in age
classification did not substantially affect cumulative carbon output per unit area. This
outcome reflects the fact that the primary contributors to emissions, including biomass
residues and input use, accumulate gradually over multi-year cultivation cycles, which
minimizes the effect of short-term age estimation uncertainty.

 

Figure 9. Representative classified bare land layer with random validation points overlaid for visual
accuracy assessment.
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Figure 10. Georeferenced pineapple plantation plots with field-surveyed planting dates used to
validate the BRAH-derived plantation age estimates.
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Figure 11. Bare land referenced layer showing plantation age distribution across the study area with
an inset highlighting sample plots.

Statistical analysis confirmed that plantation age had a very strong positive correlation
with cumulative greenhouse gas emissions (r = 0.996, p < 0.01), which strongly supports its
role as a key predictor for carbon footprint estimation. By comparison, NDVI alone showed
a moderate correlation with emissions (r = 0.678, p < 0.01). This result underscores the
advantage of using plantation age derived from the BRAH framework rather than relying
solely on direct spectral indices for estimating regional emissions (Table 7). This strong
statistical association affirms that plantation age, as derived from the BRAH procedure, is a
practical and reliable input for cost-effective and scalable carbon accounting in perennial
fruit systems.
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Table 7. Pearson correlation coefficients among plantation age, spectral bands, vegetation indices,
and cumulative carbon emissions.

Variable Age Blue Green Red Red_Edge NIR NDVI NDRE Carbon
Emission

Age 1 −0.188 −0.092 −0.378 0.104 0.263 0.657 0.351 0.996
NDVI 0.657 −0.524 −0.354 −0.631 0.273 0.471 1 0.364 0.678

Carbon emission 0.996 −0.208 −0.125 −0.398 0.105 0.267 0.678 0.361 1
(Other coefficients
omitted for brevity)

Note: Blue, Green, Red = visible spectral bands; Red_edge = red edge band; NIR = near-infrared band; NDVI =
Normalized Difference Vegetation Index; NDRE = Normalized Difference Red Edge Index.

The final age–emission relationship enabled the generation of a spatially explicit
carbon footprint map that illustrates the distribution of emission intensity across the
‘Phulae’ pineapple cultivation zones (Figure 12).

 

Figure 12. Cumulative carbon emissions considered monthly. A clear positive relationship was
observed between plot age and cumulative emissions.

4. Discussion
4.1. Commercial Potential of Rare Sugar Extraction and Its Role in Zero-Waste Agriculture

The successful extraction of rare sugar from pineapple peel and eye residues demon-
strated a promising high-value utilization strategy within a zero-waste agricultural frame-
work. The conversion yields obtained in this study were within the typical range for
enzymatic epimerization of fructose using a specific enzyme, which generally achieves ap-
proximately 30–40% conversion under controlled laboratory conditions [9,10]. The slightly
higher performance observed for eye residues may be attributed to their naturally higher
proportion of residual free sugars compared to peel fractions, which tend to contain more
lignocellulosic matrix that can limit sugar release during pretreatment and extraction [4].
While detailed compositional and process data remain confidential to protect proprietary
know-how, HPLC profiling confirmed that the eye tissues provide a rich fructose substrate
for enzymatic conversion.
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A preliminary economic feasibility assessment at the laboratory scale indicated a
positive benefit–cost ratio, with production costs comparable to other small-scale rare sugar
processes reported in the literature. These outcomes are influenced by enzyme efficiency,
substrate sugar content, and key operational factors, such as controlled particle size and
cofactor management, which are known to enhance enzyme activity [10,15]. Prior research
has also shown that process improvements, such as enzyme immobilization and cofactor
optimization, can further enhance yield and stability [23,24].

The final spray-dried rare sugar product met food-grade quality criteria consistent
with very-high-polarization sugar standards, without requiring chemical bleaching or
modification, supporting its potential for direct use in food and nutraceutical applications.
Notably, rare sugar is recognized as Generally Recognized as Safe (GRAS) by the U.S. FDA
and continues to gain global market interest as a rare, low-calorie sugar substitute with low
glycemic impact [9,10].

From a sustainability perspective, rare sugar production offers a clear improvement
over conventional low-value waste disposal methods, such as composting or incineration.
The integrated valorization of both peel and eye residues maximizes biomass utilization
by recovering fermentable sugars under mild pretreatment and enzymatic conditions.
While these laboratory-scale results are encouraging, scaling up to industrial production
will require further advancements in enzyme cost efficiency, consistent feedstock quality,
and integration with existing fresh-cut processing lines. This valorization approach can
be adapted for other tropical fruit residues with similar sugar profiles, such as banana,
mango, and jackfruit, contributing to a practical circular economy within tropical agri-food
supply chains.

4.2. Consumer Acceptance and Functional Potential of Pineapple Vinegar-Based Gummy Products

This study demonstrated the feasibility of transforming pineapple eye residues, an
underutilized by-product, into a consumer-acceptable gummy product through fermenta-
tion and functional formulation. The two-stage fermentation process using Saccharomyces
cerevisiae TISTR 5019 (TISTR, Pathum Thani, Thailand) and Acetobacter pasteurianus TISTR
102 (TISTR, Pathum Thani, Thailand) yielded pineapple vinegar with stable acidity and
aroma profiles suitable for food applications, consistent with previous studies on tropical
fruit vinegar production [17–19]. Several works have highlighted the nutritional value and
sensory potential of fermented fruit vinegars when applied in novel food products [20].

Among the three gummy prototypes evaluated, Formulation 3 (F3) consistently re-
ceived the highest sensory scores for color, aroma, texture, and overall liking. The relatively
higher preference for F3 may be partly attributed to its balanced vinegar-to-sugar ratio
and slightly softer texture due to differences in gelatin and pectin content. However, it
should be noted that sensory preference is inherently subjective and may vary among
individuals. To minimize the impact of this variability and ensure that the scores re-
flect general consumer acceptance, a large untrained consumer panel of 158 participants
was employed.

Overall, this work provides a practical model for valorizing high-moisture fruit
residues into shelf-stable, value-added products with verified consumer acceptance. The
approach directly supports sustainable food innovation and zero-waste processing strate-
gies within agro-industrial systems [25]. Approximately 25 percent of the total pineapple
biomass is composed of eye residues, demonstrating the significant resource recovery
potential that can be achieved through this pathway.
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4.3. Strengths and Limitations of BRAH and Otsu-Based Remote Age Estimation

The integration of a bare land referencing logic with Otsu thresholding in this study
provided an effective and scalable method for estimating plantation age using multi-
temporal satellite imagery. This approach made it possible to detect bare land states
and infer planting dates across extensive areas without relying on direct in situ records.
By automatically determining NDVI thresholds for each scene, Otsu’s method reduced
subjectivity and improved consistency in bare land classification across time-series data.

One of the principal strengths of this method lies in its accessibility and cost-
effectiveness. It depends entirely on freely available satellite imagery from platforms
such as Sentinel-2 and THEOS, making it feasible for use in other regions or crop sys-
tems [12,26]. While the specific BRAH workflow developed here has not previously been
applied to pineapple, the general principle of multi-temporal bare land detection has been
demonstrated in perennial crop monitoring, including oil palm and tea plantations, where
detecting canopy establishment from prior bare soil states supports plantation management
and carbon accounting. Validation of the bare land classification confirmed its practical
reliability. Visual inspection of randomly sampled points across the classified bare land
layers demonstrated an average accuracy of 82.90 percent with a standard deviation of
7.12 percent. This empirical check supports the use of the automated Otsu thresholding
and BRAH workflow as a robust remote sensing tool, particularly where field data are
limited.

The workflow requires no ground-truth training samples, which is particularly advan-
tageous in data-scarce contexts. Its capacity to process large volumes of multi-temporal
scenes and generate temporally explicit outputs enables its application at regional or na-
tional scales for dynamic monitoring. However, the method is not without limitations.
The central assumption of the BRAH algorithm, which assumes that the most recent bare
land detection marks the true planting date, may not always hold in systems with multiple
tillage events, delayed canopy development, or overlapping crop cycles. In such situations,
plantation age may be over- or under-estimated. Furthermore, while Otsu’s method en-
hances automation, its performance can decline in areas affected by frequent vegetation
anomalies, cloud cover, or sub-canopy variations that distort NDVI signals.

Spatial resolution is also a constraint. Although Sentinel-2 provides 10 m resolution,
this may be inadequate for detecting plot boundaries in highly fragmented or smallholder-
dominated landscapes. Higher-resolution imagery could improve delineation accuracy but
usually entails higher costs and limited revisit frequency. Validation in this study relied
on field-reported planting dates, which were recorded in annual increments. This coarse
temporal detail limited the possibility for formal accuracy metrics beyond the deviation
and standard deviation reported. Nevertheless, the BRAH-derived estimates fell within an
acceptable error range and offered improved temporal precision relative to conventional
plantation records.

Overall, the method presented here is reliable for its intended scope. It offers a prac-
tical mechanism for estimating plantation age at scale when combined with structured
preprocessing and post-classification checks. This capacity underlines its potential integra-
tion into carbon monitoring frameworks, sustainable land management, and agricultural
traceability tools for perennial crops.

4.4. Broader Applicability of Plantation Age Modeling in Carbon-Labeled Agriculture

The findings of this study indicate that remotely sensed plantation age can serve as a
reliable proxy for modeling carbon emissions in perennial crop systems. This approach
addresses a key gap in carbon-labeled agriculture, where field-level emissions are often
difficult to estimate due to limited access to accurate planting records or inconsistencies
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in farmer-reported data. By enabling spatially continuous age estimation, the method
provides a more transparent and scalable foundation for emission accounting.

The broader applicability of this approach lies in its potential extension to other peren-
nial crops that follow a similar land preparation and canopy development pattern. Previous
remote sensing research has successfully demonstrated plantation age estimation and bare
soil referencing for oil palm and rubber plantations, confirming that these crop systems are
suitable for multi-temporal analysis and canopy monitoring [13,27,28]. Provided that an
identifiable bare land stage exists and sufficient temporal satellite data are available, the
BRAH and Otsu-based method [11] can be adapted to crops such as banana, mango, oil
palm, and rubber in other tropical regions.

This modeling strategy aligns with current trends in sustainability certification and
climate-related trade regulations. As policies such as the Carbon Border Adjustment
Mechanism (CBAM) and voluntary carbon market protocols gain wider application, there
is an increasing need for standardized, verifiable, and spatially explicit methodologies.
Remote-sensing-based plantation age estimation supports these requirements by offering a
replicable and cost-effective means of linking field conditions to carbon footprint models
without requiring site-specific ground sensor calibration.

In this context, plantation age modeling is more than a technical exercise. It represents
a strategic component in the design of traceable, low-emission agricultural supply chains.
Its compatibility with open-access data platforms and standard geospatial tools further
strengthens its value for governments, certification agencies, and exporters seeking to meet
international environmental reporting standards.

4.5. Contribution of the Integrated Workflow as a Scalable Framework for Sustainable Agriculture

This study introduced a practical and transferable framework that integrates bio-
chemical waste valorization with remote-sensing-based carbon footprint estimation. By
combining the production of high-value rare sugars from fruit processing residues with
plantation age modeling derived from satellite data, the proposed workflow addresses both
waste minimization and emission transparency within a unified operational structure.

The innovation of this framework lies in its capacity to connect biochemical conversion
technologies with geospatial analytics to support sustainable decision-making at scale. This
approach responds to two common limitations in agricultural systems: the inefficiency
of biomass utilization and the lack of accessible, cost-effective tools for field-level carbon
monitoring in smallholder contexts, as noted in carbon footprint guideline reports, such as
the IPCC (2006) and Thailand’s TGO CFP Manual [21,22]. By using only freely available
satellite imagery and minimal ground-truthing, the remote sensing component provides a
replicable solution for resource-constrained regions.

Moreover, the modular structure of the workflow allows it to be adapted across
different perennial crop systems and diverse geographical contexts. The remote sensing
component can be deployed wherever perennial cultivation features identifiable planting
stages, while the biochemical valorization module can be tailored to the compositional
profile of local residues. This adaptability enhances its relevance for both commercial
implementation and policy support. The integrated workflow aligns with national Bio-
Circular-Green (BCG) economy strategies and international mechanisms, such as carbon
border adjustment measures. The plantation age layer developed here demonstrated
practical accuracy within an approximately ±15-month deviation from farmer-reported
planting dates, while the rare sugar and gummy product modules showed economic
feasibility and positive consumer acceptance, respectively, providing empirical support for
the framework’s operational capability.
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By producing spatially explicit, verifiable data, the workflow strengthens traceability,
supports carbon labeling initiatives, and informs climate-smart agricultural planning. As
such, it contributes not only to improved environmental performance at the farm level
but also to institutional readiness and market competitiveness in a carbon-constrained
global economy.

5. Conclusions
This study presented an integrated sustainability framework for ‘Phulae’ pineapple

cultivation and processing that combines biochemical waste valorization with satellite-
based carbon footprint estimation. By converting peel and eye residues into high-value
rare sugar and vinegar-based functional gummy products, the system provides a viable
zero-waste pathway within fruit supply chains. The rare sugar extraction demonstrated
favorable conversion yields and a benefit–cost ratio above unity, confirming its techni-
cal and economic feasibility at pilot scale. Likewise, the gummy product formulation
showed strong consumer acceptance, supporting the practical use of fermented residues
for functional food innovation. On the environmental side, the study validated the BRAH
algorithm combined with Otsu’s NDVI thresholding as an accurate and scalable method for
estimating plantation age using multi-temporal satellite imagery. The plantation age layer
proved reliable within a ±15-month deviation from ground reports and served as a robust
predictor for activity-based carbon footprint modeling. Together, these components form a
transferable model that addresses two key sustainability challenges: inefficient biomass
utilization and the lack of accessible, verifiable data for field-level carbon accounting.

This framework aligns with the principles of the Bio-Circular-Green economy and
supports transparent carbon labeling, traceable supply chains, and readiness for climate-
related trade policies, such as the Carbon Border Adjustment Mechanism (CBAM). Beyond
‘Phulae’ pineapple, the integrated approach is well suited for application in other perennial
crops, including oil palm, rubber, and tropical fruits, with similar land preparation patterns.
It offers a practical template for scaling up zero-waste production and geospatial carbon
monitoring in diverse regions worldwide, especially where low-cost, open-access tools
are needed.

Future research should focus on industrial-scale pilot trials for rare sugar recovery,
more extensive multi-site validation of remote age estimation across other crops, and
the integration of this framework into formal certification schemes for carbon-labeled
agricultural products.

Author Contributions: Conceptualization, P.S., S.P., A.K., V.S., S.S., N.P. and S.B.; methodology, S.P.,
P.S., N.P., N.K. and S.B.; validation, A.K., V.S., and S.S.; formal analysis, S.P., P.S. and S.B.; investigation,
S.P., P.S., N.K. and S.B.; resources, A.K., V.S. and S.S.; data curation, S.B.; writing—original draft
preparation, S.S., P.S. and S.B.; writing—review and editing, S.B., N.K. and P.S.; visualization, S.S.;
supervision, V.S.; project administration, A.K. and P.S.; funding acquisition, A.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Research Council of Thailand, grant numbers
N72A660678 and N81A671026. The Article Processing Charge (APC) was partially supported by the
"SDGs: Sustainable Development Goals Research Project Grant for International Publication, fiscal
year 2024-2025" from the Faculty of Social Sciences, Kasetsart University, Thailand.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: The authors gratefully acknowledge the support of the National Research
Council of Thailand (NRCT) for their facilitation and coordination throughout this project. The



Agriculture 2025, 15, 1623 25 of 26

authors also sincerely thank the anonymous reviewers for their valuable comments and constructive
feedback, which significantly improved the quality of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992.

[CrossRef]
2. Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [CrossRef]
3. Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting

sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [CrossRef]
4. Aili Hamzah, A.F.; Hamzah, M.H.; Che Man, H.; Jamali, N.S.; Siajam, S.I.; Ismail, M.H. Recent Updates on the Conversion of

Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges. Agronomy 2021, 11, 2221.
[CrossRef]

5. Hillier, J.; Walter, C.; Malin, D.; Garcia-Suarez, T.; Mila-i-Canals, L.; Smith, P. A farm-focused calculator for emissions from crop
and livestock production. Environ. Model. Softw. 2011, 26, 1070–1078. [CrossRef]

6. Galloway, J.N.; Winiwarter, W.; Leip, A.; Leach, A.M.; Bleeker, A.; Erisman, J.W. Nitrogen footprints: Past, present and future.
Environ. Res. Lett. 2014, 9, 115003. [CrossRef]

7. Lourenço, S.C.; Campos, D.A.; Gómez-García, R.; Pintado, M.; Oliveira, M.C.; Santos, D.I.; Corrêa-Filho, L.C.; Moldão-Martins,
M.; Alves, V.D. Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying.
Foods 2021, 10, 1255. [CrossRef]

8. Li, C.; Li, L.; Feng, Z.; Guan, L.; Lu, F.; Qin, H.-M. Two-step biosynthesis of D-allulose via a multienzyme cascade for the
bioconversion of fruit juices. Food Chem. 2021, 357, 129746. [CrossRef]

9. Xia, Y.; Cheng, Q.; Mu, W.; Hu, X.; Sun, Z.; Qiu, Y.; Liu, X.; Wang, Z. Research Advances of d-allulose: An Overview of
Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021, 10, 2186. [CrossRef]

10. Wang, L.; Cui, Y.; Lu, Y.; Zhao, Z. Comprehensive Analysis of Allulose Production: A Review and Update. Foods 2024, 13, 2572.
[CrossRef]

11. Boonprong, S.; Satapanajaru, T.; Piolueang, N. Advancing Cassava Age Estimation in Precision Agriculture: Strategic Application
of the BRAH Algorithm. Agriculture 2024, 14, 1075. [CrossRef]

12. Boonprong, S.; Khantachawana, A. Bare Land Referenced Algorithm from Hyper-Temporal Data (BRAH) for Land Use and Land
Cover Age Estimation. Land 2023, 12, 1387. [CrossRef]

13. Chen, G.; Thill, J.-C.; Anantsuksomsri, S.; Tontisirin, N.; Tao, R. Stand Age Estimation of Rubber (Hevea brasiliensis) Plantations
Using an Integrated Pixel- and Object-Based Tree Growth Model and Annual Landsat Time Series. ISPRS J. Photogramm. Remote
Sens. 2018, 144, 94–104. [CrossRef]

14. AOAC. Official Methods of Analysis of AOAC INTERNATIONAL, 20th ed.; AOAC INTERNATIONAL: Gaithersburg, MD, USA,
2016.

15. Mu, W.; Zhang, W.; Feng, Y.; Jiang, B.; Zhou, L. Recent Advances on Applications and Biotechnological Production of D-Psicose.
Appl. Microbiol. Biotechnol. 2012, 94, 1461–1467. [CrossRef]

16. International Commission for Uniform Methods of Sugar Analysis. ICUMSA Methods Book Supplement (2022); Verlag Dr. Albert
Bartens KG: Berlin, Gemany, 2022; ISBN 9783870405694.

17. Yildiz, E. Characterization of Fruit Vinegars via Bioactive and Organic Acid Profile Using Chemometrics. Foods 2023, 12, 3769.
[CrossRef]

18. Boondaeng, A.; Kasemsumran, S.; Ngowsuwan, K.; Vaithanomsat, P.; Apiwatanapiwat, W.; Trakunjae, C.; Janchai, P.; Jungtheera-
panich, S.; Niyomvong, N. Comparison of the Chemical Properties of Pineapple Vinegar and Mixed Pineapple and Dragon Fruit
Vinegar. Fermentation 2022, 8, 597. [CrossRef]

19. Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79,
R757–R764. [CrossRef]

20. Tarahi, M.; Tahmouzi, S.; Kianiani, M.R.; Ezzati, S.; Hedayati, S.; Niakousari, M. Current Innovations in the Development of
Functional Gummy Candies. Foods 2023, 13, 76. [CrossRef]

21. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use; Intergovern-
mental Panel on Climate Change: Geneva, Switzerland, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006
gl/ (accessed on 3 July 2025).

22. Thailand Greenhouse Gas Management Organization (TGO). Carbon Footprint for Product (CFP) Manual. Thailand Greenhouse
Gas Management Organization (TGO). Available online: https://thaicarbonlabel.tgo.or.th/ (accessed on 3 July 2025).

https://doi.org/10.1126/science.aaq0216
https://doi.org/10.1126/science.1239402
https://doi.org/10.1016/j.jclepro.2016.06.071
https://doi.org/10.3390/agronomy11112221
https://doi.org/10.1016/j.envsoft.2011.03.014
https://doi.org/10.1088/1748-9326/9/11/115003
https://doi.org/10.3390/foods10061255
https://doi.org/10.1016/j.foodchem.2021.129746
https://doi.org/10.3390/foods10092186
https://doi.org/10.3390/foods13162572
https://doi.org/10.3390/agriculture14071075
https://doi.org/10.3390/land12071387
https://doi.org/10.1016/j.isprsjprs.2018.07.003
https://doi.org/10.1007/s00253-012-4093-1
https://doi.org/10.3390/foods12203769
https://doi.org/10.3390/fermentation8110597
https://doi.org/10.1111/1750-3841.12434
https://doi.org/10.3390/foods13010076
https://www.ipcc-nggip.iges.or.jp/public/2006gl/
https://www.ipcc-nggip.iges.or.jp/public/2006gl/
https://thaicarbonlabel.tgo.or.th/


Agriculture 2025, 15, 1623 26 of 26

23. Bu, Y.; Zhang, T.; Jiang, B.; Chen, J. Improved Performance of D-Psicose 3-Epimerase by Immobilisation on Amino-Epoxide
Support with Intense Multipoint Attachment. Foods 2021, 10, 831. [CrossRef]

24. Wang, Y.; Carder, H.M.; Wendlandt, A.E. Synthesis of rare-sugar isomers through site-selective epimerization. Nature 2020, 578,
403–408. [CrossRef]

25. Leong, H.Y.; Chang, C.K.; Khoo, K.S.; Chew, K.W.; Chia, S.R.; Lim, J.W.; Chang, J.S.; Show, P.L. Waste biorefinery towards a
sustainable circular bioeconomy: A solution to global issues. Biotechnol. Biofuels 2021, 14, 87. [CrossRef]

26. Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods
in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [CrossRef]

27. Danylo, O.; Pirker, J.; Lemoine, G.; Ceccherini, G.; See, L.; McCallum, I.; Hadi; Kraxner, F.; Achard, F.; Fritz, S. A map of the extent
and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Sci. Data 2021, 8, 96. [CrossRef]

28. Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote
Sensing Images. Remote Sens. 2017, 9, 22. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/foods10040831
https://doi.org/10.1038/s41586-020-1937-1
https://doi.org/10.1186/s13068-021-01939-5
https://doi.org/10.1080/17538947.2014.990526
https://doi.org/10.1038/s41597-021-00867-1
https://doi.org/10.3390/rs9010022

	Introduction 
	Sustainable Agriculture in the Context of Climate Accountability 
	The Significance of ‘Phulae’ Pineapple in Thailand’s Bio-Circular-Green Economy 
	Research Gaps in Waste Valorization and Spatial Carbon Footprint Estimation 
	Aim of the Study in Developing an Integrated Sustainability Framework 

	Materials and Methods 
	Study Area and Research Framework 
	Waste Valorization Process 
	Rare Sugar Feasibility 
	Gummy Product from Pineapple Vinegar 

	Carbon Footprint Evaluation 
	Plantation Age Estimation and Carbon Modeling 
	Correlation Analysis Between Plantation Age and Carbon Emissions 
	Satellite Data Acquisition and Preprocessing 
	Plantation Age Classification for Landscape-Scale Carbon Footprint Estimation 


	Results 
	Waste Valorization Outcomes from ‘Phulae’ Pineapple Processing 
	Rare Sugar Production from Peel and Eye Residues 
	Gummy Product Development from Pineapple Vinegar 

	Carbon Footprint Estimation and Spatial Plantation Age Modeling 
	Activity-Based Carbon Emissions from Cultivation Practices 
	Carbon Footprint Estimation Using BRAH-Based Plantation Age Mapping 


	Discussion 
	Commercial Potential of Rare Sugar Extraction and Its Role in Zero-Waste Agriculture 
	Consumer Acceptance and Functional Potential of Pineapple Vinegar-Based Gummy Products 
	Strengths and Limitations of BRAH and Otsu-Based Remote Age Estimation 
	Broader Applicability of Plantation Age Modeling in Carbon-Labeled Agriculture 
	Contribution of the Integrated Workflow as a Scalable Framework for Sustainable Agriculture 

	Conclusions 
	References

