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Abstract: Automation continues to play a greater role in agricultural production with commercial
systems now available for machine vision identification of weeds and other pests, autonomous weed
control, and robotic harvesters for fruits and vegetables. The growing availability of autonomous
machines in agriculture indicates that there are opportunities to increase automation in cotton
production. This article considers how current and future advances in automation has, could, or will
impact cotton production practices. The results are organized to follow the cotton production process
from land preparation to planting to within season management through harvesting and ginning.
For each step, current and potential opportunities to automate processes are discussed. Specific
examples include advances in automated weed control and progress made in the use of robotic
systems for cotton harvesting.

Keywords: cotton; automation; robotics; UGV; machine vision

1. Introduction

The concept of robotic applications for agricultural operations has been discussed for
over three decades [1], and recent advances in machine vision, computer processing, and
controllers have led to an increase in agricultural robotic systems, including applications
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for weed control, row crop planting, and fruit and vegetable harvest [2]. Some agricul-
tural sectors have already embraced automation, such as the dairy industry’s estimated
35,000 automated milking systems currently in use globally [3]. For row crops, much of the
commercial focus is on weed control with the rise of herbicide-resistant weeds and the lack
of new herbicide modes of action [4]. Major agricultural machinery companies have an-
nounced intentions to develop autonomous machinery, have prototype machines, and/or
have filed patents on autonomous robotic systems for agriculture [5]. The concept of an
autonomous platform with several interchangeable implements is emerging as a preferred
concept for agricultural robots [6,7]. Additional evidence of the proliferation of robotics
systems for agriculture is the number of robotic operating system (ROS) open-source tools
that are available [8]. A recent review that highlights challenges and opportunities for
agricultural robotics in general is provided by [9], and the authors note that automation
could be a disruptive technology as “farming-as-a-service” could become a possibility
in the future. Cotton is a unique crop as it has an indeterminate flowering period, is a
perennial plant that is managed as an annual, and requires specialized equipment for
mechanical harvest and post-harvest processing [10]. For those not familiar with cotton
production, additional background information is provided in Appendix A. Thus, there
are many within season and post season opportunities for automation that will differ from
other crops. The overall objective of this paper is to inform both the research community
and those providing automated services for agriculture of the opportunities for current
and future application of machine vision, automation, and robotic systems in the cotton
production process.

2. Materials and Methods

Based on the authors range of agricultural disciplines and discussion with primarily
U.S. cotton producers, possible scenarios where automation and/or machine vision tech-
nologies could increase the efficiency of cotton production were theorized. The results of
these discussions and theory follow the cotton production process from pre-planting to
harvest and ginning discussion areas where there is potential for automation; automation
applications in other crops that could be adapted to cotton production; or where automated
systems are in use in the cotton production process. Citations and examples of where
automation has taken place in cotton or other crops that could be directly applied to cotton
are included. Additionally, in the areas of advanced technologies for weed control and
automated harvest, Cotton Incorporated has initiated studies with several U.S. universities,
and updates from those projects are included in this paper.

Leveraging Open-Source Libraries

The recent explosion of open-source libraries has been a boon to research in that
it allows for rapid development in highly specialized and technologically advanced subjects
that would otherwise take years or even decades of extensive research to bring a team up
to speed on the subject matter. For robotics, there are several open-source packages that
provide a middleware communication tool designed to help developers streamline their
development by off-loading some of the time-consuming development centered around
the problem of communication between remotely distributed sensors and systems; Elkady
and Sobh provide an extensive literature review of these various open-source software
libraries [11]. One of the most popular of these middleware communication libraries is the
Robotic Operating System (ROS) middleware library. ROS is a key example of an open-
source library enabling developers to leverage a software package for rapid deployment
through the use of an extensive library of routines and test programs that are all targeted
at the communication layer between discrete systems and sensors. ROS also provides an
extensive set of library packages, provided by a highly active open-source community,
which one can readily pull into their development. One of the most useful ROS auxiliary
packages provides for incorporating advanced simultaneous localization and mapping
algorithms (SLAM). With all the ROS advantages, there is one notable disadvantage that
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ROS 1.0 does not address, which is in the region of hard real-time control where latency
between communications has to occur or damage will occur. This is a difficult subject
and it is unsurprising that ROS 1.0 did not address it. However, in omitting it, there is
a major hole in the application layer whereby the developers must turn to other lower
software layers for hard real-time coordinated control and can only leverage ROS for
non-time-critical sensor inputs. ROS 2.0 is starting to look at solving this; however, it is
far from complete and it is uncertain how well or if it will be able to fill this void, given
the complexity of hard real-time control. One alternative source of control libraries that
can be used to fill in this gap is used in the computer numerical-control (CNC) industry.
There are some notable open-source CNC firmware libraries in this area, which provide
the ability to control up to five axes of simultaneous control, and leveraging these libraries
is fairly straight forward. They are typically target-hardware optimized in order to achieve
the hard real-time control targets required by CNC operations. There are versions available
for several micro-controller architectures, including Arduino platforms and, for more
demanding systems, there are a few that several ARM based 32-bit micro-controllers. The
most notable of which is heavily leveraged by the open-source 3D printing developments,
which, at the heart, are leveraging the open-source project Grbl [12]. Another library for
hard real-time control that is more demanding from an integration perspective, yet provides
up to nine-axis control, is Linux-CNC, which is targeted at the x86 series [13]. However,
it is quite dated and is not regularly updated. At the time of this writing, the known set of
x86 motherboards that are proven to work with LinuxCNC are no longer available, and
many modern motherboards have been shown not to work. Furthermore, there is little
support for embedded target platforms, so LinuxCNC is not well suited for embedded
robots because of a lack support for embedded processors, including x86 single-board
computers. There is potential with an off-shoot project called Machine-Kit, which is a
subset of LinuxCNC and which was ported to the BeagleBone embedded 720 MHz ARM
Cortex-A8 micro-controller. There are several open-source CNC and robotic projects that
leverage this open-source library.

Given the advantages for rapid development that open-source systems provide, many
of the projects discussed herein have designed their software by leveraging open-source
libraries where possible. The main primary libraries utilized were the ROS library originally
written by Intel Corp. Research and OpenCV (machine-vision library; originally written by
Intel Corp. Research) [14].

3. Results
3.1. Preplant and Planting Operations
3.1.1. Soil Sampling

Based on a survey of over 900 U.S. cotton producers, it was determined that 80% of
the producers perform soil sampling to determine fertilizer rates [15]. The company, Robo
Ag, has adapted a Bobcat T450 platform to collect soil samples autonomously [16]. The
system is able to cover 32 ha an hour when sampling a 1 ha grid. A high-speed auger
is used to collect samples and automatically bags the soil and stores up to 250 samples
on board. Currently, the company is using the automated system as part of their soil
sample service, and they are not selling individual units to producers or consultants.
Valjaots et al. [17] report on a similar platform developed for research use and also discuss
the possibility of conducting real-time soil measurements in addition to sampling. Given
the current progress in this area, autonomous soil sample collection is likely to become
more widespread in the next five years. As robotics become more common on farms,
soil sampling will be an ideal off-season task for multi-use robots.

3.1.2. Planting a Cover Crop

The American Cotton Producers of the National Cotton Council have set 2025 goals
to increase soil carbon and decrease soil erosion. A key tactic to meet those goals is the
increased use of winter cover crops [18]. One challenge to the use of cover crops in cotton
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is planting the cover crop early enough so that it produces enough biomass to suppress
weeds, reduce soil erosion, and build soil carbon. There have been attempts in corn to use
a small robot to seed the cover crop between the corn rows before it is harvested, allowing
for a much earlier planting date for the cover crop [19]. Another barrier to the increased
use of cover crops by U.S. cotton producers is the added management and labor needed
near and during harvest, one of the busiest times of the season. If the process could be
completely automated, including refilling seed, it would make cover crops more feasible
for a greater number of producers.

If frequent autonomous harvest becomes possible in the future, during peak boll
opening the robot will be tasked with cotton harvest, but the robot would have time to plant
the cover crop either late or early in the boll opening process. Other precision application
uses of robots in cover crop management could include: selective N fertilization where
cover crop growth is slow, early or late chemical termination of cover crops depending on
soil moisture levels, mowing of cover crops to reduce herbicide use, gap filling of cover
crops, selective planting dates for cover crops to avoid excess biomass in some parts of the
field, a variable seeding rate, and species blend planting of cover crops.

3.1.3. Preplant Weed Control

The ability to automatically segregate green vegetation from bare soil and crop residue
is well established using red (~680 nm) and near infrared (~800 nm) spectral regions,
as actively growing plants strongly absorb red light and have very high reflectance in the
NIR (about 50% reflectance). One of the first commercial sensor-control herbicide applica-
tion was the WeedSeeker®, which used a modulated light source to detect green vegetation
material and then activated a solenoid valve to turn on the spray nozzle and which was
found to work successfully in cotton [20]. Swarm Farm, an Australian autonomous vehicle
company [21], has used Weedit technology (similar to the Weedseeker [22]) for preplant
weed control on autonomous sprayers.

3.1.4. Planting

Cotton planting is currently done by large multirow systems to cover as much acreage
as possible during narrow planting windows when soil moisture, soil temperature and
forecast weather are favorable. However, the ability of small all-wheel-drive robots to
navigate wet fields without severe compaction or ruts may complement current planters
when parts of a field are too wet for large equipment to enter. This occurs frequently
around playa lakes in West Texas and on delta clay soils where drainage is poor. Fendt has
proposed a swarm robotic concept, referred to as “Project Xaver,” for crop planting that
may be useful for cotton in such wet field conditions [23]. As described in the vision of
Project Xaver, precise geolocation of early season plants could be the first step in managing
the inputs for each individual plant. It could also be an important data layer to assist in
weed control decisions later in the season by ensuring no tillage or herbicides are applied
to that point in the field.

3.1.5. Gap Fill Planting

Poor conditions at the time of planting (cold and/or dry soil) and extreme weather
events such as wind and hails storms while the plant is small can result in poor plant stands
that may justify replanting [24]. The ability to image fields for delayed emergence, skippy
stands, seedling desiccation, or death has already been demonstrated [25,26]. In the future,
it would be useful to combine these data with a robotic planter that is guided by a drone
to focus solely on the parts of the fields with poor stands, offering growers a timely tool
to substantially increase a uniform healthy stand. With large planters, growers must wait
multiple weeks after emergence to assess stands before considering the difficult replant
decision for large sections or entire fields. With small robotic planters, growers could elect,
at the earliest possible time. to put additional seed in the ground without removing the
original plants. This decision could be made multiple times during the planting window



AgriEngineering 2021, 3 343

with software that records replant seed placement and models its progress to emergence.
This targeted planting could be a significant saving on seed costs, seed treatment costs,
crop termination herbicides, labor, and equipment operation costs.

3.1.6. Uncapping after Planting

One of the successful tools for stand establishment under dry-windy, poor seedbed,
or saline conditions is to cap the bedded row by hipping a small (~4 inch tall) soil behind the
planter. This can be successfully uncapped by dragging a medium weight chain anytime
between 1 day after planting until 1 day before normal emergence (without a cap). The
weight of the cap keeps the hypocotyl from unfurling. When the cap is removed close to
a normal emergence time, emergence is observed within 1 day as the hypocotyl quickly
unfurls due to the built-up turgor pressure [27]. This method is not adopted because of
the labor required to uncap at a time when labor is being used to plant and because of the
risk of rain after planting that would prevent entry of tractors to uncap. Therefore, the
development of robotic uncappers would solve both the labor and field access problems
and could handle several hectares in a day since they can enter wet fields, uncapping
energy use is low, and since there is no need for in-row precision or seed/chemical refilling.

There may be other planting innovations that are possible with robots that we have
not considered. Growers have been moving away from applying herbicides, fungicides,
or starter fertilizers at planting because they deem it necessary to focus only on plant-
ing. There may be a role for robots in applying pre-emergent herbicides or other starter
chemicals once new options become available.

3.2. Within-Season Management
3.2.1. Stand Evaluation

Many studies have demonstrated the potential value of the use of multispectral data
for detection of crop stress, but one limitation has been the frequency with which images are
collected [28]. An autonomous ground-based robot could collect frequent and high spatial
resolution images of the crop throughout the season while engaged in other production
tasks or when not assigned other task similar to what has been done in crop phenotyping
studies [29]. For example, a narrow-focus thermal camera could also calculate a crop water
stress index (CWSI) [30] on each plant. Ideally, a lack of growth or a high CWSI would be
paired with replanting capabilities allowing additional seed placement where early plant
growth had stalled, suggesting root injury. A benefit of running imaging robots in the field
on a weekly or near-continuous basis is the ability to detect nutrient deficiency or drought
early enough to make a correction before significant yield loss resulted.

Another potentially valuable cotton growth evaluation tool is light detection and
ranging (LIDAR) scanning, which enables accurate mapping of all plant heights, widths,
and branching geometry. LIDAR data can measure positions of plant stems, branches,
leaves, and bolls to sub-centimeter accuracy, which could be used in near real time to
evaluate stands with respect to norms established for each plant variety [31]. When
combined with conventional and thermal imaging, LIDAR data could be used to locate
and possibly correct problematic sections within fields.

3.2.2. Crust Busting

In some soil types, a rainfall after planting can lead to a crust at the soil surface that
prevents crop emergence, and sometimes a rotary hoe is used to break the crust to allow
emergence to occur [32]. Robots would be ideal at crust busting. If they had a precise
GPS, a variable down-pressure rolling spike that also served as a soil penetrometer, with
the ability to sense emerged cotton seedlings and both forward and reverse imaging, then
they could detect skips and apply a very precise force just to the side of the drill row that
only breaks the crust and pushes no further. Since this kind of robot would not damage
emerged cotton, it could be deployed earlier than current broad area crust busting practices,
which damage some emerged plants. Since soil moisture content is critical for ease of crust
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busting, the back-facing camera compared with the front-facing camera could be used to
determine if the crust was being broken and could either adjust more down pressure or
delay a day until the crust had dried more.

3.2.3. Sand Fighting

In areas of the Southwest where lack of water prevents the use of winter cover crops,
young cotton plants can be damaged by blowing sand [33]. Traditional sand fighting
is currently done after a rain when the soil surface has lost its roughness, and a tillage
implement is run down the soil furrow to increase soil roughness [34]. However, robots
could offer the new possibility during a rain to build surface roughness from the wet soil.
There may even be utility for a robot to create roughness prior to a rain or paired with a
drone to focus sand fighting where the greatest amount of sand is blowing.

3.2.4. Weed Control

There is substantial public and private sector activity in robotic systems for within-
season weed control. Slaughter et al. [35] provide a comprehensive review of past efforts,
and several current systems are summarized by Pandey et al. [36]. One of the first appli-
cations of a robotic system for within-season weed control was developed for a cotton
crop [37]. Using a machine vision system, they were able to correctly spray 89% of weeds
in the field and misapplied herbicide to cotton 21% of the time. Since then, many systems
have transitioned to using machine vision for weed identification, coupled with a wide
range of weed removal methods. Distinguishing weeds from crops is a challenge even
for today’s best machine vision systems, but several prototypes from both industry and
universities are showing promise.

Multiple efforts are taking a “see and spray” approach using computer vision and
machine learning to detect weeds between rows. The tractor-mounted equipment from
Blue River Technology (Sunnyvale, CA, USA) utilizes a controlled lighting cover and two
sets of cameras to identify and spray weeds in real-time. Although originally developed for
lettuce, both the Robovator (F. Poulsen Engineering, Denmark) and the Robocrop InRow
Weeder (Garford Farm Machinery Ltd., Peterborough, UK) use vision-based techniques for
mechanical weed removal, and this technology could be adapted for future use in cotton.

In addition to tractor-mounted autonomous weeding implements, multiple companies
are developing small, standalone autonomous robots capable of weeding. Two different
companies have developed a small platform for weed control using a delta arm and
machine vision. Nexus Robotics (Halifax, Nova Scotia, CA, USA) has a small platform,
the R2-Weed2, that uses a neural network to identify and either mechanically remove
weeds or apply herbicide. That system is similar to a commercial prototype from eco-
Robotix (Vaud, Switzerland), whose first prototype used a delta manipulator to apply a
small amount of herbicide to weeds and which adds the use of solar panels to recharge the
robot’s battery while in the field [38]. The startup Small Robot Company (Salisbury, UK)
is developing an autonomous weeding robot that will use electricity from a system devel-
oped by RootWave (Warwick, UK) to kill weeds. Another non-herbicide weed removal
robot was developed by Deepfield Robotics (Bosch, Gerlingen, Germany) and is now man-
aged by Farming Revolution GmbH. Their BoniRob platform uses a mechanical stamping
mechanism to remove small weeds at an early growth stage.

A similar weed detection and control system focused on machine vision to classify
weeds in images collected while moving through cotton and peanut fields is in devel-
opment [39]. The actual operation of the system will include a diode laser, an herbicide
spot-spraying nozzle, and a mechanical weeder to control weeds when in the seedling
stage. Identification of the weed species will allow the selection of the best control method.
For example, weeds in the row with cotton can be controlled using the laser. Weeds that
are between rows and known to have herbicide resistance could be controlled with the
laser or the mechanical weeder. Control can also be rotated between tactics to help reduce
resistance to a specific control method.



AgriEngineering 2021, 3 345

To enable the system for cotton, training images of 12 weed species were collected:
crowfoot grass, goosegrass, crabgrass, Texas panicum, yellow and purple nutsedge, pig-
weed, pitted morning-glory, ivyleaf morning-glory, smallflower morning-glory, and sickel-
pod were collected. Additional work is being conducted by researchers at North Carolina
State University and Mississippi State University to increase the number of images available
to develop an open-source image database of weeds important to cotton. Similar databases
have been developed for other crops and environments [40]. United States Department
of Agriculture-Agricultural Research Service (USDA-ARS) engineers are also working to
develop a simulated three-dimensional cotton field that can be used to adjust lighting and
background conditions for the training of machine vision systems. Maja et al. [41] have
evaluated the use of the ClearPath Husky robot as a platform to tow tillage implements
that do not require weed detection capabilities. Two weeder/tiller prototypes were tested
in 2019 and 2020. The first module has six individual prongs on each side, where each
prong measured approximately 15 cm. The prong was designed to penetrate about 3.8 cm
into the soil. Two wheels were used to ensure the prongs would be kept at a constant depth
into the ground. A slider mechanism was designed to make the width of the two-prong
holder adjustable. The second weeder/tiller was an adjustable harrow disk, where the disk
holder can be adjusted at a certain angle. Since the disk used was off the shelf and heavy,
it was retrofitted with two wheels to minimize the mobile robot’s force to pull the weeder.

3.2.5. Insect & Disease Management

The use of robotic systems to scout fields to identify problems has been demonstrated
in several studies, such as Nagasaka et al. [42] who developed a “dog” robot using a camera,
laser system, and controller area network (CAN) bus to find problems in the field. A large
portion of the Cotton Belt fields are visited at least twice a week by a field scout to determine
whether insect populations are exceeding thresholds or whether disease symptoms warrant
a pesticide application at the cost of around $22.00 ha−1 [43]. As such, there is great future
potential to use robotic scouts to alert growers of the infiltration of pests before populations
exceed levels known to justify a pesticide spray. With insects, a significant challenge exists
in identifying the species present and to distinguish between beneficial insects and pests as
well as to distinguish between the different pests to determine which are over threshold.
However, systems could be developed relying on imaging of plant damage and/or insects,
pest DNA sampling, or volatile detection to determine which species are present [44]. As an
example, the ability to determine through imaging whether new leaf area is being added at
a rate commensurate with heat units would add to the precision of a spray for thrips, as a
decrease in the rate of early season canopy development is a known symptom of thrips
damage [45]. Growers occasionally “revenge spray” thrips at a time when they are no
longer an impediment to adequate leaf area expansion. The presence of thrips in the field
would also need to be determined in addition to reduced canopy development rates.

As with herbicide applications, land- and air-based robotic systems could also be used
to make insecticide and fungicide applications. Often, diseases are confined to certain
areas of field as are certain pests such as spider mites, which would be good candidates for
spot spraying applications. These applications could improve pest control by penetrating
deeper into the canopy given their proximity and orientation to the plant. These systems
could also release semiochemicals for mating disruption, beneficial attraction, or pest
repellency while performing other tasks such as weed control or scouting [46].

3.2.6. Nuisance Animal Deterrent

Feral hogs, deer, rabbits, and bears are becoming another pest for cotton producers
in different regions of the Cotton Belt. A robot designed to autonomously deter nuisance
animals has been patented [47]. While not currently used by cotton producers, the concept
is that once the animal is detected the robot is designed to simulate a predator of the
target animal.
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3.2.7. Fertility

Past research has shown that multi-spectral reflectance data can be used to detect
nutrient deficiencies in cotton, particularly nitrogen [48,49]. Small swarm robots equipped
with multi-spectral sensors could provide the ability to monitor cotton plant foliage to
identify plants or portions of the field before the onset of nutrient deficiencies or if ex-
cessive nutrients are available. The robots would be able to make real-time prescription
applications, or prescription maps could be developed for use in traditional fertilizer
applicators. This approach would allow growers to become less dependent on preplant
fertilizer applications, which lead to more upfront expenses and increased environmental
risks, especially for nitrogen.

3.2.8. Plant Growth Regulation

The mainstem growth rate is used to precisely time plant growth regulator (PGR)
applications to reduce internode length and to instigate fruiting, and multi-spectral vegeta-
tion indices have been used as a tool to create site-specific PGR rates in cotton [50]. If robots
become powered by inexpensive solar energy, there may be value in running a spraying
robot through the field continuously to optimize PGR rates in the crop during times of
excessive vegetative growth. Early applications of PGRs can be highly effective if low rates
are applied regularly, which would lead to increased crop uniformity and would optimize
harvest efficiency and fiber quality. The key is to avoid PGR applications to slowly growing
cotton, which can cause additional stress, and robotic sensors or drone imaging could
assess plant stress during multiple passes through the field as descripted in Section 3.2.1;
prescriptions could be applied by swarm robots.

3.2.9. Mid-Season Leaf Removal

When labor was inexpensive in China (during the 1990s), lower leaves were hand-
removed once they were shaded [51]. This was done to minimize boll rot during early boll
opening. In addition, vegetative branches were also removed if the mainstem was well
established. There may be utility in this practice for target spot, hard lock, and boll rot
in the humid Southeast [52]. This method may also set up boll conditioning and a better
plant architecture for robotic harvesting. Although a robotic harvester will gather early
opening bolls, unless they fluff out, it may be difficult for a robot to pick them. Cotton
generates many more squares on vegetative branches than needed to contribute to final
yield [53]. Removal of these branches should not affect yield, assuming an adequate plant
population, but will help narrow the fruiting window and reduce the need for a late-season
insecticide application.

3.3. Harvest
3.3.1. Plastic Trash Removal

There are currently challenges in some cotton fields located near highways and urban
areas with plastic trash littering fields, which is ultimately harvested with the cotton [54].
A potential near-term application for robotics systems is the use of high-resolution un-
piloted aerial system (UAS) imagery to identify plastic and other contaminants present
and the deployment of an unpiloted ground vehicle (UGV) or UAS to remove those items
from the field prior to harvest [55]. Detection of plastic by UAS is currently based on
multi-spectral cameras and thus can only detect plastic not obscured by the crop canopy;
it is more feasible after the crop has been defoliated. Some improvement in detection
would be expected for cameras deployed on agricultural equipment already making passes
through the field.

3.3.2. Automated Yield Monitor Calibration

Current cotton yield monitors indirectly measure cotton mass flow based on light
attenuation or microwave reflectance of seed cotton in the convey ducts and thus can
require a variety of specific calibration factors [56]. Automation of cotton yield monitor
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calibration has been accomplished by the use of pressure sensors to measure the weight
of the basket by monitoring the static pressure in the hydraulic lift cylinder circuit of a
traditional basket stripper harvester. The software running the system was split into two
parts that were run on an embedded low-level micro-controller and a mobile computer
located in the harvester cab. The system was field tested under commercial conditions and
found to measure basket load weights within 2.5% of the reference scale [57,58]. As such,
the system was proven to be capable of providing an on-board auto-correction to a yield
monitor for use in multi-variety field trials. The implementation sub-systems, electronic,
micro-controller firmware and human-machine-interface (HMI) software designs are pro-
vided in Pelletier et al. [59–61]. Ongoing research is currently being conducted in a joint
research effort between USDA-ARS and Texas A&M University (TAMU) to extend this
system to include an optical cotton yield monitor that estimates mass flow of cotton bolls
in the pneumatic air ducts. Such integrated systems promise to continue the trend of
“smarter” agricultural equipment in the future.

3.3.3. Automated Material Tracking

Automated identification of cotton modules is already a possibility because of radio
frequency identification (RFID) tags incorporated into the plastic wrap used to cover
cylindrical cotton modules formed by John Deere’s harvesters. Each RFID tag contains a
module identifier (module ID) that is unique to that module. Harvesters equipped with the
HID Cotton Pro system from John Deere create a database of harvest-related data for each
module using the module identifier as the primary key. The data files generated on the
harvester can be manually downloaded onto a USB memory drive or wirelessly transmitted
to a John Deere website for later retrieval. The module ID can be read from the RFID tag
using electronic scanning tools and used to help growers and ginners manage modules
and associated information gathered during the harvesting, storage, transportation, and
ginning processes. To demonstrate the utility in this new identification system, an electronic
module management system was developed that incorporates several RFID interrogation
tools: (1) a mobile application for scanning modules by hand in the field or at the gin
yard [62]; (2) a system for use on module trucks that automates the process of scanning
modules when loaded or unloaded [63]; (3) a stationary bridge utility for scanning modules
at the truck scale; and (4) a stationary bridge utility for scanning modules at the gin module
feeder. Each time a module is scanned by one of these tools, the module ID is associated
with a GPS location and client/farm/field ownership information. A data management
utility was developed as part of the electronic module management system and compiles
module-specific information from all data sources into one location for analysis and use
by producers and ginners [62]. Two additional tools were developed that provide module
and lint bale data to the electronic module management system: the Cotton Harvest File
Download Utility and a PBI Logger Utility. The Cotton Harvest File Download Utility was
developed by Cotton Incorporated and utilizes an API from John Deere to automatically
download, unzip, and sort HID files into a file structure easily utilized by gin office staff
and which can be easily imported into the data management utility. The PBI Logger
Utility is a tool used in the gin to automatically scan the 1D barcode on the Permanent
Bale Identification (PBI) tag affixed to each lint bale as it exits the bale press. The PBI
Logger associates a timestamp and bale weight with each PBI when the tag is scanned.
An algorithm titled “PBI to Round Module Mapping” was developed to automate the
process of associating lint bales with the round module from which they were ginned.
Associating lint bale PBIs back to the round module opens the door for fiber quality
mapping at the field level once lint grade information is obtained from USDA-Agricultural
Marketing Service (AMS) Cotton Classing Offices.
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3.3.4. Frequent Harvest System

The ability to conduct multiple harvests after the first open boll could improve fiber
quality and reduce yield loss due to extreme weather events [64]. The first cotton boll on a
plant will be mature and ready for removal on average 50 days before the field is harvested
under the current mechanical harvester system. The ability to frequently harvest the plant
(5 to 10 times during the season) will reduce the risk of fiber damage and/or yield reduction
due to extreme weather events. It will also limit the time white fly or aphid secretions
result in what is referred to as “sticky cotton”. Finally, as the bolls harvested during the
season will have developed under similar environmental conditions, the uniformity of
fiber properties such as micronaire and length is likely to increase.

An enabling technology for frequent harvest will be the ability to use machine vision
tools to detect cotton boll under various lighting conditions. The use of machine vision
to identify cotton bolls is underway in the U.S. [65], India [66], and China [67]. Cotton is
easier than other crops to identify for harvest as, when ready for harvest, it is white in
contrast to green and brown backgrounds. Additionally, if the boll is open, it is ready to
harvest, unlike some fruits where a specific color indicates the fruit is mature and ready
for harvest.

3.3.5. End Effector for Cotton Harvest

A key requirement of a robotic cotton harvester is an appropriate end effector. Lab
tests were conducted to estimate the power requirements for a suction end effector and
found a minimum of 1 kW was required [68]. Because solar-recharged batteries would be
ideal for multiple field robots, this level of power requirements appears to be excessive for
in-field solar robots. Multiple potential versions of an energy-efficient end effector based
on mechanical picking have been considered by those trying to develop new mechanisms
to selectively remove seed cotton from the boll. Each require doffing and transfer of picked
seed-cotton. One approach used in a prototype autonomous cotton harvest system in India
has been to use a set of three cylindrical rotating pins at the end of a suction tube controlled
by a robotic arm [69]. Another has been the use of four equally spaced mechanical fingers
to grasp the cotton and remove it from the boll [70].

A challenge for both suction and mechanical approaches is the cotton boll orientation.
Three potential solutions exist to deal with this issue: (1) utilizing a high degree of freedom
manipulator that can face cotton boll along with artificial intelligence to calculate control
actions such as is done for robotic fruit [71] and pepper [72] harvesting; (2) adding auxiliary
components to the end effector to force the cotton boll to change its orientation; and
(3) designing an end effector that can pick seed cotton without considering cotton boll
orientation. A design that shows promise involves the use of rotating pins that could pull a
boll into a suction device (Figure 1).
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Figure 1. Preliminary design of an end-effector for cotton boll removal [73]. Adapted from
Gharakhani and Thomasson (2021).

The concept for the finger end-effector is rotating pins. Multiple prototypes of this
concept including one, two, and three fingers were manufactured and evaluated (Figure 2).
The one-finger configuration has the lowest picking speed and it has difficulty transferring
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the seed cotton to the doffing mechanism. The three-finger configuration has the highest
picking speed and the best penetration through the plant, but it tends to ingest not only
the seed cotton but also the calyx and even leaves and branches. A potential solution is to
move the end-effector forward and backward a few times during picking of the seed cotton
so that the end-effector cannot ingest undesired material. The two-finger configuration
does not tend to ingest undesired material, but it is more sensitive to cotton boll orientation.
Therefore, if the open cotton boll is not facing the end-effector, the end-effector must rotate
until its lower surface (not the tip) is face to face with the cotton boll. In future work,
the two and three-finger end-effectors will be further tested and compared by attaching
them to a system of linear actuators to conduct more precise tests to optimize the system.
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Figure 2. Image 1: one-finger end-effector; image 2: one-finger end-effector; images 3 and 4: three-
finger end-effector [73]. Adapted from Gharakhani and Thomasson (2021).

3.3.6. Autonomous Cotton Boll Removal

Fue et al. [74] used a stereoscopic camera, machine vision processing, a deep learning
network model (YOLOv3), and an embedded computer to manage computation of the
images to identify cotton bolls in the field. A red rover was used as the platform for testing
the system, as illustrated in Figure 3. Results have shown that bolls were identified and
located with a high level of confidence using one camera looking downward with sparse
foliage later in the season.
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Cotton boll images used for training the YOLOv3 deep neural network (DNN) model
were augmented 27 times using CLoDSA. CLoDSA is an open-source image augmentation
library for object classification, localization, detection, semantic segmentation, and instance
segmentation [75]. A total of 2085 images were collected and labeled, and images were
augmented to provide a new labeled dataset of 56,295 images. The YOLOv3 model was
used to train the dataset using a Lambda server (Intel Core i9-9960X (16 Cores, 3.10 GHz)
with two RTX 2080 Ti GPUs, blowers with NVLink, and a memory of 128 GB, Lambda
Computers, San Francisco, CA, USA). One thousand iterations provided the optimal
performance for YOLOv3, and the training took only 4 h.

The platform (Husky from Clearpath Robotics) noted in [36] for weed control is
designed to be retrofitted with different manifolds that perform specific tasks, e.g., spraying,
scouting (having multiple sensors), phenotyping, weeding, harvesting, etc. Performance
evaluation for the cotton harvesting was performed in terms of how effectively the harvester
removed the cotton bolls and the effective distance [76,77]. Preliminary results on the
performance of the developed mobile robot platform for cotton harvesting showed an
average success rate of 57.4% in harvesting locks that are about half an inch close to
the harvester nozzle. Further design enhancement was done in 2020 where a stripper
mechanism was added and placed on the side of the Husky (Figure 4). The new design
replaced the suction cap with a rolling stripper similar to a stripping machinery and used
the same suction motor to move the harvested bolls to the bucket previously used in the
first harvester prototype. The stripper on the side is driven by a single 24 V motor. Current
efforts are examining the possibility of using the Husky as a once-over harvester.
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Currently, there are additional harvest concepts being discussed. One example is one
where there is non-selective harvest of a limited part of the plant (for example, the bottom
fives nodes in the first harvest cycle) at a high rate of speed (no boll detection). A slower
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“gleaner” robot then follows using a machine vision system to collect any bolls that were
not captured. Another concept is, rather than having multiple single row units, “intelligent”
headers could be developed to allow some similar to the “red rover” in Figure 3, which
could be adapted to a multiple row system still capable of multiple harvest passes through
the same field. Additional concepts are under development and the economic models
described in a later section will be an important component in ranking various concepts.

There is a clear interest in developing a harvest system that is capable of multiple
passes through the field as it is anticipated that more frequent harvests will increase the
quality of the cotton and reduce the risk of harvest loss due to severe weather events
relative to a single end-of-year harvest event. Even with the most efficient harvesters
operating in the timeliest manner, lower-positioned mature cotton bolls are left exposed to
weathering for over 50 days while the upper position bolls mature and wait to open. This is
particularly important in the areas of the U.S. where tropical storms that commonly occur
in the fall can drastically limit lint yield. Multiple timing harvesting events will also allow
for a greater uniformity of cotton fiber quality characteristics and fiber grades from each
harvest event [78]. This fiber uniformity should provide additional market opportunities
and premiums for farmers.

It may also be desirable to prune lower leaves and vegetative branches (“suckers”
in viticulture lingo) once the lower bolls have been harvested. Selective application of a
defoliant or boll opener during the robot harvesting to facilitate the next week’s passes
may be advisable. In stripper-harvested areas, the use of robotic harvesters may allow for
the avoidance of the desiccation pass, which in turn would lower production costs.

To better quantify the potential value of frequent harvests to calibrate economic
models, frequent hand-harvest studies (with the goal to harvest two times per week after
the first open boll) were conducted at two sites in Texas (an irrigated site near College
Station and a non-irrigated location near Vernon), and one near Tifton, Georgia in 2018 and
2019 and also in west Tennessee in 2019. A similar experimental protocol was followed at
all four sites. The primary treatments were: (1) frequent harvesting by hand throughout the
season (no defoliants applied); (2) hand harvesting one time at the end of the season; and
(3) machine harvesting one time at the end of the season following accepted defoliation
practices. In 2018, all sites except for Georgia conducted the harvest treatments across
two varieties, and, in 2019, all sites had two varieties. Additional details can be found
in [79,80]. In a majority of the sites and years, color grades were consistently higher for
the frequently harvested cotton relative to a single harvest at the end of the season. Yield
impacts were not as consistent; however, in 2018, there was a significant yield advantage to
the frequently harvested treatment compared to the end-of-season harvest treatments as
Hurricane Michael impacted the Georgia site. All of the data sets from this study can be
used in economic modeling of different cotton harvest systems.

3.3.7. Economic Models of Cotton Harvest

Two distinct methodologies have been applied to support economic analysis of robotic
versus current mechanical harvest systems. One was based on potential capacity with
a financial analysis. The second incorporated stochastic nature of weather and yield
probabilities rather than relying upon deterministic metrics. Both perspectives have been
developed into interactive dashboards such that interested individuals can enter farm-
specific parameters.

Evaluation of the number of robots needed to replace the status quo systems relies
upon a range of machinery and environmental parameters. Many of these attributes
are farm-specific such that a single use-case would not be sufficient to provide global
recommendations across cotton producing areas; therefore, interactive dashboards were
created so that the end-user could not only enter their own parameters but change those
parameters for a series of their own sensitivity analyses. A deterministic capacity calculator
is currently available on the development site at [81], and a dynamic analysis dashboard is
available at [82].
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The deterministic model dashboard allows the user to select their chosen state to
populate the calculator with data specific to their state from USDA-NASS. Days suitable
for fieldwork [83] and crop progress for planting, percent open bolls, and harvest are
collected and presented for exploratory analysis on the first table. The third tab allows the
user to select the time window for two separate harvest systems (such as basket versus
modulating picker, or modulating picker versus autonomous robotics). In addition to the
harvest window that populates the calculator with the number of days to harvest given
long term probabilities, the user can select machinery parameters such as field efficiency,
ground speed, swath width, hours worked per day, days worked per week, etc. for each
system. The user can also select the number of machinery units for either harvest system;
this is specifically useful for comparing a single cotton picker, i.e., status quo, to swarms of
modular robotics. Interactive graphs allow the user to change any of the aforementioned
parameters to receive visual assessment of the probabilistic area potentially harvested. This
partially answers the question of “how many small robots are needed to replace the status
quo such that harvest is completed on the same date?” Parameterizing a whole-farm linear
programming model using capacity metrics from the comparison above, returns to fixed
costs for a series of scenarios can be calculated and then compared to a base scenario farm.

3.4. Ginning

As autonomous tractors become available [84], the ability to automate management
of cotton modules on the gin yard could not only reduce labor requirements at the gin but
also reduce human errors. Fiber bales leaving the gin could be automatically loaded in a
truck or warehouse. There are already other industries making use of robotic systems for
warehouse management [85], and these systems could be adapted for managing cotton
bales at the gin.

There is a growing amount of automation occurring in the ginning industry including
wide use of automated strap applicators and baggers at the bale press [86]. Systems have
also been developed to automatically retrieve the classing sample, but it still requires
a person to insert the barcoded tag and place it in the container for the classing office.
Automatic baggers to wrap finished cotton bales are also gaining adoption by U.S. gins [87].

The removal of plastic contamination from cotton lint is an issue of top priority to
the U.S. cotton industry. One of the main sources of plastic contamination showing up in
marketable cotton bales is plastic used to wrap cotton modules produced by John Deere
round module harvesters [88]. Despite diligent efforts by cotton ginning personnel to
remove all plastic encountered during module unwrapping, plastic still finds a way into
the cotton gin’s processing system. In order to help address this revenue-loss, engineers
at the USDA-ARS Cotton Production and Processing Research Unit developed an auto-
mated robotic machine-vision-based detection-ejection system that was designed to rapidly
identify and then remove these pieces of plastic from the cotton flow [89,90]. The location
selected was on the gin-stand feeder apron, just prior to entering the gin stand, where the
cotton is spread out to the thinnest stream in the ginning process. Thus, the feeder apron
is the ideal location to apply a vision system to detect and remove plastic contamination
flowing in seed cotton. One of the challenges to this location is that the detection operation
must be high-speed as there is only a 0.5 m length of feeder apron on which to detect and
then blow the plastic out of the seed cotton. Furthermore, at this location, the cotton flows
down the feeder-apron at greater than 3 m s−1, leaving the machine-vision software only
about 25 ms in which to capture an image, analyze, and then set a digital output line that
will actuate a solenoid to blow the plastic out of the seed cotton stream. To accomplish all of
this within the short time-constraint, the software was written in C++ using a combination
of custom software while leveraging high-quality open-source machine-vision libraries,
with the primary library being OpenCV.
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A prototype of the plastic-inspection-detection-ejection-system (PIDES) is shown in
Figure 5 with unit in action shown in Figure 6. The system is now being marketed and sold
by Lummus Corp. under the brand-name Visual Inspection Plastic Removal (VIPR) system.
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Figure 6. Plastic-inspection-detection-and-ejection system (PIDES) plastic removal system in opera-
tion, taken with high-speed video. (a) shows target just before ejection, after detection. (b) shows
target during ejection process, and (c) shows target after ejection is complete.

3.5. Warehouse Operations

Several industries have automated warehouse operations that range from completely
autonomous materials handling to collaborative robots [91]. Automated control of cotton
warehouse operations would be ideal in the U.S., as every bale of cotton is uniquely
identified, and the fiber properties (e.g., fiber length, strength, and color) are measured.
The ability to automatically find bales has promise to increase the efficiency of warehouse
operations both for cotton merchants and textile spinning mills. An initial study has
been conducted to evaluate the efficiency of various bale handling methods in cotton
warehouses [92].
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4. Discussion of Potential Challenges to Cotton Automation

In discussions with U.S. cotton producers, potential challenges have been identified
for autonomous farm applications. It is important to remember that any system designed
for on-farm use must be reliable and extremely durable. Almost all field operations,
particularly planting, pest control, and harvest, must occur within a narrow time window,
and any delays due to equipment failure will be impediments to long-term adoption. It is
also important to recognize there will be obstacles in the field such as large weeds, rocks,
and deep ruts created by pivot tracks or tractors; therefore, robots with small-diameter
wheels will not be able to reach all areas of the field.

Autonomous systems must be comparable in terms of efficiency and performance to
agricultural machinery currently in use. While several smaller systems may be able to cover
the same area as a larger piece of machinery, the operational velocities and efficiencies of
many autonomous robotics are limited by the speed and performance of real-time vision-
based detection and actuation algorithms. Additionally, for multiple smaller systems to
adequately and efficiently cover the field, multi-robot planning algorithms and real-time
coordination would be needed.

For equipment that will be unattended, vandalism and theft are concerns. Geofencing,
the ability to transmit real-time images of any unauthorized personnel attempting to
interact with the equipment is needed.

Field sizes vary across the country and it is common in the southeastern U.S. to have
fields that range in size from 2 to 250 ha [15]. Furthermore, farm operations have fields that
are commonly spread over a wide geography, such as 30 km or more in radius, and over
poorly accessible roads. So, for applications where the equipment is expected to cover large
areas, the logistics of transportation between fields must be carefully considered, especially
if the vehicle must be transported on public roads as opposed to transported as a kit to be
assembled on site.

In addition to being cost competitive with traditional systems, robotic systems need
to have a short payback time, as it is anticipated that some of these technologies will
change rapidly.

Another key point in considering automated systems for large area applications is
that the system needs to be truly autonomous and must require minimal management
time. Using the cotton harvest example, while many cotton producers find the risk re-
duction to extreme weather events that frequent harvest with a robot could bring, there
is significant concern about executing a complicated system at harvest time. The current
harvest system used in the U.S. is a once-over, round-module building harvester that can
allow one person to harvest as much as 4 ha per hour. The dependability and simplicity
of this system partially explains its rather quick adoption in the U.S., Brazil, and Aus-
tralia. If multiple automated machines were needed to replace this single machine, they
must be just as dependable and self-sufficient as the current system in addition to being
economically competitive.

There is a great deal of societal concern about the use of robots in replacing human
labor and creating employment crises across many disciplines, not just agriculture. In the
case of labor for cotton harvest where mechanization is already prevalent, the impact on
labor requirements will not be significant, as one to two employees are currently all that are
needed to harvest approximately 2000 acres per year [83]. However, in parts of the world
such as eastern China and much of India where cotton is still hand harvested, the impacts
on farm labor are of more concern. Some lessons learned from the first wave of cotton
harvest mechanization could help inform how robotic harvest may impact hand-harvested
areas of the world. Several have speculated about the forces that drove the ultimate
adoption of machine harvesting for U.S. cotton, with labor shortages being a significant,
but only partial, explanation for the early adoption in some regions [93]. Ultimately, there
is evidence that when yields became high and the per acre costs of the technology was
lowered, workers were likely displaced by mechanization [94]. The World Bank recently
completed a study on the potential societal impacts of cotton harvest mechanization
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in Uzbekistan [95]. From that study they concluded there would be situations where
alternative incoming-earning opportunities would need to be created in the short-term,
particularly to support women in rural communities if mechanical cotton harvesting is
widely adopted. The report offers several measures that could be taken to minimize
the negative impacts of mechanization, and the overall report does suggest the societal
impact of robotic harvest on non-mechanized rural communities will have to be considered.
A summary of challenges and potential solutions to increasing the automation of cotton
production is provided in Table 1.

Table 1. Summary of potential challenges to increasing the automation of cotton production systems.

Challenge Potential Solution

Reliability/Durability Service-based system so service company maintains the system.
Modular parts for fast & easy replacement.

Field Obstacles Collision avoidance and automatic path correction.
Robust suspension system.

Vandalism/Theft Mounted camera monitoring surroundings.
Geofence.

Timely operations Machine-to-machine coordination.
Provide time-in motion data.

Small Fields Assign a single machine to field.
Automate transportation between fields.

Cost Must be at least equal to current system.
Decision aids needed to help compare.

Labor
Must decrease labor in mechanized production systems.
The social implications of displaced labor needs to be considered
for non-mechanized production systems.

Management Must not increase farmers’ management requirements, so, must
be a truly automated system.

5. Summary and Conclusions

Every aspect of the cotton production system could benefit from automation and/or
robotics. Current uses of robotics in agriculture are aimed at weed control and also
automating intensive sampling and scouting tasks, such as soil sample collection and plant
monitoring. A summary of several of the commercial services or prototypes discussed
in this review is provided in Table 2 and illustrates that the application of automated
systems in agriculture has already started. The production of cotton, particularly harvest
and ginning, have additional requirements beyond that of many agricultural commodities
such as corn and soybeans. Table 3 summarizes many of the operations during the cotton
season that could benefit from robotic systems. Under certain weather conditions the ability
to frequently harvest will increase yield and fiber quality. Key questions on the benefit
side of the equation come from speed potential and reduced vulnerability to breakdown,
especially considering harvest-related uncertainty coming from weather-driven threats to
yield and quality. On the cost side, questions arise from the number of robots envisioned
and the variety of tasks that each robot can be expected to support. Enabling technologies
that will accelerate the speed of agricultural automation include open-source codes systems
such as ROS, the increased availability of image data sets specific to cotton to train machine
vision systems for pest detection and identification of cotton bolls, and advancements in
deep learning architectures for efficient object classification, detection, and segmentation.
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Table 2. Examples of autonomous systems currently used in agriculture or with advance prototypes with application to cotton.

Automated System Company, Country Function Web Site

Modified Bobcat T450 Robo Ag, Wolcott, IN, USA Soil sampling https://rogoag.com/
(Accessed 27 May 2021)

Between row gas powered
track UGV

Rowbot Systems, Minneapolis,
MN, USA

Cover crop planting
In-season fertilizer

https://www.rowbot.com/
(Accessed 27 May 2021)

Multi-row autonomous gas
platform with selective spray

technology

Swarm Farm (platform),
Gindie, Qld, Australia

Weedit (spray control), CJ
Steenderen, The Netherlands

Weed control as a service

https://www.swarmfarm.
com/(Accessed 27 May 2021)
https://www.weed-it.com/

(Accessed 27 May 2021)

UAS

Multiple. Examples: Precision
Hawk, Raleigh, NC, USA.

Drone Deploy, San Francisco,
CA, USA.

Management zone
development

Stress detection
Plastic detection

https://www.precisionhawk.
com/(Accessed 27 May 2021)

https:
//www.dronedeploy.com/

(Accessed 27 May 2021)

Xaver swarm between row
electric units

Fendt (AGCO),
Marktoberdorf, Germany Planting

https:
//www.fendt.com/int/xaver

(Accessed 27 May 2021)

Multi-row electric Nexus Robotics, Halifax, NS,
Canada Weed control https://nexusrobotics.ca/

(Accessed 27 May 2021)

AVO solar/electric multirow
ecoRobotix,

Yverdon-les-Bains,
Switzerland

Weed control
https:

//www.ecorobotix.com/
(Accessed 27 May 2021)

Multi-row electric Farming Revolution GmbH,
Ludwigsburg, Germany Weed control as a service

https://www.farming-
revolution.com/ (Accessed 27

May 2021)

Husky between row electric ClearPath, Kitchener, ON,
Cananda Development platform

https:
//clearpathrobotics.com/
(Accessed 27 May 2021)

Electric between row or over
row

Rabbit Tractors, Cedar Lake,
IN, USA

Cover planting
Soil sampling

Spraying

https:
//www.rabbittractors.com/

(Accessed 27 May 2021)

VIPR automated plastic
removal

Lummus Corp, Savannah, GA,
USA

Removing plastic in ginning
process

https://www.lummus.com/
cottonginning (Accessed 27

May 2021)

Table 3. Field and gin activities that could benefit from automation and technology and/or hardware
needed for implementation.

Enabling Technology or Hardware

Field Activity Forward
Camera

Back
Camera Implement RTK

GPS
Machine
Vision

Thermal
Imaging

Initial Planting X Planter X

Gap Fill
Planting X Planter X X X

Uncapping X Tillage X

Stand
Evaluation X Sensor X X X

Curst Busting X X Tillage X

https://rogoag.com/
https://www.rowbot.com/
https://www.swarmfarm.com/(Accessed
https://www.swarmfarm.com/(Accessed
https://www.weed-it.com/
https://www.precisionhawk.com/(Accessed
https://www.precisionhawk.com/(Accessed
https://www.dronedeploy.com/
https://www.dronedeploy.com/
https://www.fendt.com/int/xaver
https://www.fendt.com/int/xaver
https://nexusrobotics.ca/
https://www.ecorobotix.com/
https://www.ecorobotix.com/
https://www.farming-revolution.com/
https://www.farming-revolution.com/
https://clearpathrobotics.com/
https://clearpathrobotics.com/
https://www.rabbittractors.com/
https://www.rabbittractors.com/
https://www.lummus.com/cottonginning
https://www.lummus.com/cottonginning
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Table 3. Cont.

Enabling Technology or Hardware

Field Activity Forward
Camera

Back
Camera Implement RTK

GPS
Machine
Vision

Thermal
Imaging

Sand Fighting X Tillage X

Insect Control X Sprayer X X

PGR 1 X Sprayer X X

Weed Control X Sprayer/Tillage X X

Harvesting X Rapid arm with
end effector X X

1 Plant Growth Regulator.

In the future, support will be needed to continue to enable autonomous weed control
and harvest applications for cotton. Open source sharing of code and image libraries is
a key strategy to accelerate agricultural automation. An increased effort to create open-
source image libraries of cotton parts and weed species important to cotton to encourage
commercial interest working in these areas to adapt their systems to cotton applications is
needed. The ability to simulate different field conditions (e.g., lighting, crop size, and soil
background) to augment image data sets is also a priority.
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Appendix A. Cotton Background Information

Cotton is produced in more than 80 countries around the world, and the top eight
producing countries are listed in Figure A1 (note that all cotton production data in this
appendix are from the USDA, Foreign Agricultural Service [96]). Of those top eight
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countries, harvest is completely mechanized in the United States, Brazil, and Australia.
China is shifting its production to the western part of the country, and now has more than
50% of its cotton mechanically harvested as well. For the remaining countries, particularly
India, cotton is still predominately hand harvested. Competition for labor is increasing
in India, so labor for cotton harvesting is a challenge. The agronomic system in India is
developed around the hand harvesting of hybrid cotton (high planting seed costs) at low
plant densities and large fruits (referred to as bolls) to facilitate hand harvest. Thus,
in addition to the currently mechanized countries, India could be an important market
for automated harvest applications in the future as they will have to change their entire
production system to use current cotton harvest systems.
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Figure A1. Percent of cotton production by country, averaged from 2016 to 2021 [50].

Table A1 shows harvest area, fiber production, and yield averages in the U.S. and
global averages (world). Fiber yield in the U.S. ranges from a high of approximately
2000 kg ha−1 in the west to values as low as 500 kg ha−1. For every pound of cotton fiber
there is also 1.3 pounds of cottonseed produced and harvested with the fiber. The seed and
fiber are separated at the cotton gin where the cottonseed is then sold as a dairy feed or
crushed to create cottonseed oil and meal.

Table A1. Area harvested, fiber production, and yield for the five-year average of crop years 2016 to
2020 [50].

Attribute Region Value

Area Harvested, 1000 ha United States
World

4121
32,818

Number of 218 kg bales of fiber produced United States
World

18,215
116,926

Fiber Yield, kg ha−1 United States
World

961
776

Prior to approximately 2008, all mechanized cotton harvest involved a harvester
removing the seed cotton (fiber and seed) into a basket, emptying that basket into a “boll
buggy” (with the same function as a grain cart) and then storing it in a 9000 kg module at
the edge of the field for later delivery to the cotton gin. One step many producers have
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taken to reduce labor requirements is to use cotton harvesters that compress the seed cotton
into modules while actively harvesting the crop. These machines, shown in Figure A2,
have decreased labor requirements, but there are concerns about increased soil compaction
due to the weight of the machines and the cost of the machines, which is also significant
(up to a U.S. list price of ~$1,000,000).
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boll. A cotton stripper is much more aggressive and removes a large portion of other plant
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