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Abstract: Almonds are becoming a central element in the gastronomic and food industry worldwide.
Over the last few years, almond production has increased globally. Portugal has become the third
most important producer in Europe, where this increasing trend is particularly evident. However, the
susceptibility of almond trees to changing climatic conditions presents substantial risks, encompass-
ing yield reduction and quality deterioration. Hence, yield forecasts become crucial for mitigating
potential losses and aiding decisionmakers within the agri-food sector. Recent technological advance-
ments and new data analysis techniques have led to the development of more suitable methods to
model crop yields. Herein, an innovative approach to predict almond yields in the Trás-os-Montes
region of Portugal was developed, by using machine learning regression models (i.e., the random
forest regressor, XGBRegressor, gradient boosting regressor, bagging regressor, and AdaBoost regres-
sor), coupled with remote sensing data obtained from different satellite platforms. Satellite data from
both proprietary and free platforms at different spatial resolutions were used as features in the study
(i.e., the GSMP: 11.13 km, Terra: 1 km, Landsat 8: 30 m, Sentinel-2: 10 m, and PlanetScope: 3 m).
The best possible combination of features was analyzed and hyperparameter tuning was applied to
enhance the prediction accuracy. Our results suggest that high-resolution data (PlanetScope) com-
bined with irrigation information, vegetation indices, and climate data significantly improves almond
yield prediction. The XGBRegressor model performed best when using PlanetScope data, reaching a
coefficient of determination (R2) of 0.80. However, alternative options using freely available data with
lower spatial resolution, such as GSMaP and Terra MODIS LST, also showed satisfactory performance
(R2 = 0.68). This study highlights the potential of integrating machine learning models and remote
sensing data for accurate crop yield prediction, providing valuable insights for informed decision
support in the almond sector, contributing to the resilience and sustainability of this crop in the face
of evolving climate dynamics.

Keywords: Prunus dulcis; machine learning; regression models; multispectral data; vegetation indices;
remote sensing

1. Introduction

The almond tree, Prunus dulcis (var. dulcis (Rosaceae)), is a globally important nut
tree [1]. Originating from the Middle East and South Asia, almonds are extremely important
for the human diet due to their high protein content, good fats, and essential micronutrients,
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including vitamin E and magnesium. Moreover, almond consumption provides diverse
health benefits, from improving cholesterol levels and cardiovascular health, to potentially
reducing cancer risks [2]. Almond production is very important for the economy in many
regions of the world [3]. Almonds are mainly produced in the United States of America
(1,858,010 tons), Australia (360,328 tons), and Spain (245,990 tons) [4].

Climate change poses significant risks to crop yields, due to changing weather patterns
and more regular risky weather events, such as floods, droughts, and heat waves [5]. These
events can have a negative impact on almond productivity and quality [6], compromis-
ing stock supplies and promoting price fluctuations. Given these circumstances, precise
crop yield prediction has become indispensable, as it equips policymakers and market
participants with essential tools to effectively mitigate these risks. Through the analysis of
historical data and current agricultural conditions, it becomes possible to develop mod-
els for estimating seasonal yield forecasts and evaluating potential supply shortages or
surpluses [7]. Furthermore, this information may assist governmental agencies in making
informed decisions regarding trade policies, food aid, and agricultural investments [8].

Crop yield prediction is a difficult undertaking that requires integrating several fac-
tors, including weather, soil properties, pest and disease incidence, and management
practices [9]. More precise modelling techniques for forecasting agricultural yield have
recently been developed, due to developments in technology and data analysis. Simple
statistical models (i.e., linear regressions) remain the most popular approach for predicting
agricultural yield, providing helpful information for decisionmakers [10]. However, ma-
chine learning (ML) algorithms have become a promising approach, as they can increase
prediction accuracy by finding patterns and relationships in the data [11]. Due to these
facts, machine learning (ML) is currently one of the most important subfields of artificial
intelligence (AI) [12]. Remote sensing (RS) is another promising field of research that may
potentially benefit crop yield prediction. Advances in RS technologies have made it possible
to monitor crop development and health in real time from aerial viewpoints, which has
enhanced crop production forecasting. RS technologies provide detailed information on
the crop conditions, including plant biomass, water content, and nutrient status, which can
be utilized to make more precise predictions about future yields [13].

Numerous studies emphasize the significance of ML and RS in predicting crop yield.
Klompenburg et al. [14] developed a systematic literature review to detect prevalent models,
features, and evaluation parameters in crop yield prediction. The authors observed that
linear regression (LR) and neural networks (NN) are frequently applied models, along with
random forest (RF) and support vector machines (SVM). Moreover, rainfall, temperature,
and soil type are the main features implemented, along with vegetation indices (VIs), such
as the normalized difference vegetation index (NDVI) [15] and the enhanced vegetation
index (EVI) [16]. Ali et al. [17] highlighted the application of various RS technologies
alongside multi- and hyperspectral data, radar, and LiDAR data in crop monitoring and
yield prediction. They identified the NDVI, the EVI, and the soil-adjusted vegetation index
(SAVI) [18] as commonly used VIs. Similarly, Escolà et al. [19] evaluated the application
of Sentinel-2 derived VIs, such as the NDVI, the wide dynamic range vegetation index
(WDRVI), the green–red vegetation index (GRVI), and the green normalized difference
vegetation index (GNDVI), for estimating barley production. Regarding almond yield
prediction using RS data, two studies have emerged. Zhang et al. [20] applied ML models
to satellite (Landsat 8) and aerial imagery to forecast almond yield from orchards in
California. They achieved a coefficient of determination (R2) of 0.71 for early and mid-
season predictions using stochastic gradient boosting (SGB). Tang et al. [21], also in the
context of California, explored the use of deep learning (DL) methods, using unmanned
aerial vehicle (UAV) data, and developed a convolutional neural network (CNN). Their
model obtained an R2 of 0.96 and a low error of 6.6% for tree-level almond yield estimation,
emphasizing the significant potential of DL for precise tree-level yield prediction.
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Although the abovementioned studies exhibit strong results in forecasting almond
yield, they are tailored to California [20,21] and, as far as we know, there is a notable
absence of research specifically dedicated to Portuguese almond yield forecasting. Despite
the growing importance of almond cultivation in this country, this absence represents
a critical gap in our understanding of the factors that influence almond yields in this
region. The current research seeks to fill this research gap by developing a method for
predicting almond yields in the TM region of Portugal, using ML regression models, and
identifying the key factors that significantly influence almond yields. Furthermore, an
improvement on previous studies may be the analysis of RS data from a diverse range
of platforms, including freely available medium-resolution data and proprietary higher
resolution data. This strategic combination may be used to investigate the effectiveness
of medium-resolution RS platforms, compared to their higher resolution counterparts, for
predicting almond yields. This information could potentially be used by sector stakeholders
to enhance the decision-making process, enabling more informed and strategic choices for
optimizing cultivation practices, resource allocation, and overall productivity.

Considering the research gaps identified, the purpose of this study is 4-fold: (1) to
use state-of-the-art ML regression models to accurately simulate the yield from several
orchards in the TM region; (2) to integrate RS data from different platforms at different
spatial resolutions, including from both open and proprietary platforms; (3) to identify
the key features that significantly influence these predictions; and (4) to discuss potential
applications of these findings in the sector.

2. Materials and Methods
2.1. Study Area

In this study multiple almond orchards (AO) are included, from four distinct almond
growers (AGs) within the TM region of northern Portugal.

Regarding AO1, AO2, and AO3, these are located in the Torre de Moncorvo municipal-
ity. Regarding AO4, this is located between the Vila Flor and Alfândega da Fé municipalities
(Figure 1a). These orchards present different characteristics, namely AO1 has 5.7 hectares
with 1387 almond trees; AO2 has 2.9 hectares with 765 almond trees; AO3 has 3.0 hectares
with 756 almond trees; and AO4, the largest area, has 12.3 hectares with 3198 almond trees.

This region of TM is mountainous and presents warm and dry summers and mod-
erately cold and wet winters [22]. These characteristics are typical of the Mediterranean
climate, which makes the region suitable for almond cultivation.

Considering the yield levels recorded from 2017 to 2021, AO4 and AO3 had the highest
productivity, averaging 1041 kg/ha and 785 kg/ha, respectively, while AO1 and AO2 had
lower productivity with an average of 462 kg/ha and 372 kg/ha, respectively, in the same
period (Figure 1b).

2.2. Data Collection and Processing

The data processing workflow consists of four sequential steps (Figure 2). In the
first step, the data acquired from various sources is collected, including the agronomic
parameters, vegetation indices, and climate data (identified in the following subsections).
The second step involves the integration of various features into a dataset comprising
171 features. The third step includes the application of ML regression models, which
includes the feature selection process, the selection of ML regression models, and hyperpa-
rameter optimization. In the fourth step, the model evaluation is conducted. The details of
the four-step approach are provided in the subsequent subsections.
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Figure 1. Overview of the location of the almond orchards, for each almond grower (AG) (a), and
(b) the yield values, from 2017 to 2021, presented in kg/ha, for each AG.

2.2.1. Agronomic Data

The agronomic data contains several parameters collected from each site. In addition
to yield data (the target feature), yearly irrigation information was also acquired from each
grower, recorded as binary values (0 for no irrigation and 1 for irrigation). Irrigation is
recognized as a vital factor that significantly influences the optimal growth and develop-
ment of trees, consequently affecting crop productivity [23]. The availability and efficient
distribution of water directly affects physiological processes, such as transpiration and
nutrient uptake, which are critical for trees to reach their full yield potential. Moreover,
appropriate irrigation practices can help alleviate the adverse effects of environmental
stressors, such as droughts or heat waves, which are becoming increasingly prevalent due
to climate change [24]. Furthermore, data regarding the average tree age (plantation date)
were incorporated as a feature of the dataset. The age of almond trees is of paramount
importance for productivity, as older trees tend to have more extensive root systems, estab-
lished canopies, and enhanced nutrient storage, leading to increased almond production
and increased overall orchard yield [20]. The data were pre-processed for each orchard
separately to filter the outliers, based on distribution analysis.

2.2.2. Remote Sensing Data

Several RS data from various platforms with different spatial resolutions were con-
sidered (Table 1). The Global Satellite Mapping of Precipitation (GSMaP) by the Japan
Aerospace Exploration Agency (JAXA) was used, which provides global precipitation data
using a combination of sensors at ~11 km [25]. It was developed in Japan specifically for
the GPM mission [26]. The Land Surface Temperature (LST) from the Moderate Resolution
Imaging Spectroradiometer (MODIS), operated by the National Aeronautics and Space
Administration (NASA), was obtained at a resolution of 1 km [27]. It should be noted that
the thermal sensor in the MODIS only offers 1 km resolution. Landsat 8, operated by NASA
and the United States Geological Survey (USGS), offers multispectral data at a resolution of
30 m [28]. Land cover classification and analysis of vegetation are potential applications of
these data. Sentinel-2 was developed by the European Space Agency (ESA) and provides
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multispectral imagery at a resolution of 10 m. This is the best resolution imagery available
for free today [29]. PlanetScope, which is a proprietary data source, is formed of several
small satellites (constellation), operated by Planet Labs Inc., designed for high-frequency
global imaging of Earth. The satellites acquire imagery in the visible and near-infrared
spectra and provide a spatial resolution of 3 m. The proprietary high-resolution data
provided by PlanetScope enables detailed mapping and monitoring of various features,
including urban areas, vegetation dynamics, and environmental changes [30].
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Table 1. Remote sensing platform overview: sensors, bands, spatial resolutions, and revisiting time.

Platform/
Satellite Sensor Product Spatial

Resolution (m)
Revisiting

Time

GSMaP

Multi-Band Passive
Microwave and

Infrared
Radiometers

Hourly
Precipitation

Rate
11,000 3 h

Terra

Moderate-
Resolution Imaging
Spectroradiometer

(MODIS)

Daytime and
Nighttime Land

Surface
Temperature

(LST)

1000 1 day

Landsat 8 Operational Land
Imager (OLI)

RGB and NIR
bands 30 16 days

Sentinel-2 Multispectral
Instrument (MSI)

RGB and NIR
bands 10 5 days

PlanetScope DOVE-R RGB and NIR
bands 3 1 day

Monthly composites from GSMaP, MODIS Terra LST, Landsat 8, and Sentinel-2 (from
2017 to 2021) were computed using the Google Earth Engine (GEE). The GEE is an online in-
frastructure that archives satellite imagery and geospatial data, offering powerful analytics
tools, leveraging cloud-based infrastructure. These benefits make it an invaluable tool for
exploring Earth’s dynamics and supporting fact-based decision making [31]. On the other
hand, PlanetScope’s monthly composites were acquired using the Planet Explorer platform,
which is a fully automated, cloud-based imaging and analysis platform that grants users
access to comprehensive, daily data from the PlanetScope and SkySat constellations.

2.2.3. Vegetation Indices Computation

VIs were also included in the feature dataset, namely the enhanced vegetation index
2 (EVI2), the GRVI, the NDVI, and the SAVI (Table 2). The use of the EVI2 in crop yield
prediction models is justified by its many advantages, and has been shown to achieve
higher prediction accuracy compared to other VIs, such as the NDVI [32]. It also offers
higher sensitivity, especially in areas with high biomass, and provides valuable information
on crop conditions and yields [33,34]. Regarding the GRVI, it is often used as a phenological
indicator, detecting changes in canopy vegetation [35]. Moreover, in a study by Sanches
et al. [36], the GRVI showed a high correlation with sugarcane yields. Concerning the NDVI,
it can be implemented to monitor crop growth, detect plant stress, and make decisions
regarding irrigation, fertilization, pesticide application, and has also been employed in
numerous studies to accurately predict crop yields [37,38]. The SAVI, in turn, is also a
suitable VI for use in yield prediction models, since it attempts to minimize the effects of
soil brightness using a correction factor [39]. It is similar to the NDVI, but accounts for
variations in soils, making it useful in arid and semi-arid regions, where vegetation cover is
low and soil brightness can significantly affect vegetation detection [40]. Furthermore, in a
study by da Silva et al. [41], the SAVI had the highest correlation with soybean grain yield,
possibly due to the use of the soil effect correction, demonstrating its ability to predict
crop yields.

As previously mentioned, three different platforms, each with varying spatial res-
olutions, were used to obtain the VIs (Section 2.2.2). The data from each platform were
processed, and atmospheric corrections were implemented before it became available.
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Table 2. Vegetation indices used in almond yield prediction and their respective equations. G: green;
L = 0.5; N: near infrared; R: red.

Name of Index Equation Reference

Enhanced vegetation index 2 EVI2 =
2.5×(N−R)

(N+2.4×R+1)
[16]

Green–red vegetation index GRVI = G−R
G+R [42]

Normalized difference
vegetation index NDVI = N−R

N+R [15]

Soil-adjusted vegetation index SAVI = N−R
N+R+L × (1 + L) [18]

The data for each orchard were obtained using the geospatial data abstraction library
(GDAL) in Python to calculate the mean value for each grower. Figure 3 illustrates the
above-described procedure, by displaying an example of the NDVI computed for the
three VI platforms, in March 2019. Figure 3a–c depicts the NDVI images, with the spatial
resolution associated with each platform. They were then subjected to a mean calculation,
yielding a singular value that was then used in the creation of the final dataset. These three
VI datasets were produced to compare the performance of the Landsat 8, Sentinel-2, and
PlanetScope data.
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2.3. Dataset Creation

The final dataset is created using three different groups: climate data, VIs, and agro-
nomic data. As mentioned in Section 2.2.3, the three datasets were used in parallel with the
VIs customized according to the RS platform (Landsat 8, Sentinel-2, and PlanetScope) to
compare the performance of each. This information, extracted for each orchard, was then
used as potential inputs into the ML regression models. Each of the datasets contained
171 features, corresponding to the average tree age, irrigation, monthly mean daytime
temperature (2017–2021), monthly mean nighttime temperature (2017–2021), monthly accu-
mulated precipitation (2017–2021), monthly EVI2 (2017–2021), monthly GRVI (2017–2021),
monthly NDVI (2017–2021), and monthly SAVI (2017–2021). To consider the potential effect
of alternate bearing (biannual cyclic production patterns), features from the previous year
were also included to assess their potential impact on the following year’s production. In
addition to features, the datasets also included the yield (mean kg per ha) as a target.

2.4. Application of Machine Learning Regression Models

The application of ML regression models followed a three-step process: feature se-
lection, model implementation, and hyperparameter tuning (detailed in the following
subsections). In the feature selection phase, relevant features were carefully chosen
to enhance the model’s accuracy and performance. Subsequently, the regression mod-
els were implemented using a cross-validation methodology, establishing a connection
between the input features and the target feature. The final step involved optimizing
the hyperparameters to fine tune the models to improve the predictive accuracy and
generalization capability.

2.4.1. Feature Selection Process

Feature selection plays a key role in the ML pipeline. Selecting the most suitable
features improves the model’s performance, reduces computational efforts, and assists in
the interpretation of the results. By selecting the most relevant features, more accurate,
efficient, and interpretable models can be achieved, facilitating better decision making and
a better understanding of the underlying data patterns. Herein, for the selection of the best
possible features, the bestFeatures script [43] was used. This is a tool for identifying the best
possible combination of features for fitting a ML model. This method uses cross-validation
(CV) to evaluate different feature subsets and their corresponding performance scores (R2).
The CV method partitions the dataset into training and testing subsets, multiple times
(folds). For each fold, part of the dataset (testing) is always unseen by the algorithm. It
then computes the cross-validated score for each combination of features and tracks the
maximum score achieved, effectively controlling the problem of overfitting. The method
also ensures a low level of correlation related to the features. The output of the method
includes the R2 score and error metrics, corresponding to the best feature combination. For
the current analysis, this method was used considering a 5-fold CV, and a combination
of 1 to 8 features, determined by the script’s best performing approach. The analysis was
performed separately for each dataset (agronomic features, climate features, and VIs, from
the three different platforms), as well as for mixed datasets (e.g., climate features + VIs),
depending on the vegetation data acquisition platform. Table 3 lists the selected features,
according to the type of features considered.
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Table 3. Selected features using bestFeatures script, categorized by feature type. CD: climate data;
DT: daytime temperature; Irrig.: irrigation; L8: Landsat 8; LY: last year; NT: nighttime temperature;
PS: PlanetScope; S2: Sentinel-2; VI: vegetation indice.

Type of Features Selected Features

Irrig. Irrigation
CD DTJan.; DTAug.; DTNov. (LY); NTMar.

VI—PS EVI2Feb.; GRVIMar.; GRVIJul.; SAVIDec. (LY)
VI—S2 EVI2Aug.; GRVIJan.; NDVIAug.; SAVIAug.
VI—L8 EVI2May.; NDVIMay.; NDVIAug.; SAVISep. (LY)

Irrigation and CD Irrigation; DTMar.; DTAug.; NTMar.
Irrigation and VI—PS Irrigation; GRVIMay.; NDVIJan.; SAVIMay.
Irrigation and VI—S2 Irrigation; EVI2Apr.; EVI2Jul.; GRVIJan.
Irrigation and VI—L8 Irrigation; SAVIMay; SAVIAug.; SAVISep. (LY)

CD and VI—PS DTAug.; EVI2Mar.; NDVIMar.; SAVIDec. (LY)
CD and VI—S2 DTJan.; DTOct. (LY); EVI2Dec. (LY); NDVIAug.
CD and VI—L8 DTMar.; DTAug.; EVI2Jun.; SAVISep. (LY)

Irrigation, CD and VI—PS Irrigation; NDVIJan.; SAVIMay.; DTMar.
Irrigation, CD and VI—S2 Irrigation; GRVIMay; DTMar.; DTAug.
Irrigation, CD and VI—L8 Irrigation; NDVIMay; DTMar.; NTFeb.

2.4.2. Machine Learning Regression Model Selection

Several ML regression models were applied to predict almond yield. Among these
models, the random forest regressor (RFR) stands out as a prominent option due to its
effectiveness in supervised learning [44], and it is used in many fields of study. The RFR
algorithm generates an ensemble of decision trees, collectively called an RF. Each decision
tree independently learns patterns and relationships within the data, contributing equally
to the final prediction, improving the performance and efficacy of the model and dealing
with potential overfitting problems [44]. The XGBRegressor (XGBR) was also implemented
in this study and is a supervised learning algorithm that belongs to the gradient boosting
family. It employs a boosting technique that sequentially improves decision trees, to create
a powerful ensemble model [45]. XGBR optimizes the training objective through gradient
descent, allowing it to effectively identify complex patterns and dependencies in the data.
The model has shown remarkable performance in several areas, making it a valuable
tool for almond yield prediction [45]. Regarding the gradient boosting regressor (GBR)
algorithm, it is also a gradient boosting-based regression model. It iteratively builds an
ensemble of decision trees, with each successive tree better than the previous ones, creating
a strong predictive model. The GBR model is widely used in predictive analytics and has
demonstrated its efficiency and potential for predicting almond yield [46]. The bagging
regressor (BR) algorithm, on the other hand, uses a bagging technique similar to the RFR
model. It generates an ensemble of decision trees by resampling the training data and
fitting each sample to a separate tree, which are combined to form the final output. Its
ability to handle high-dimensional data and complex relationships makes it a suitable
candidate for almond yield prediction [47]. Lastly, the AdaBoost regressor (ABR) algorithm
is a boosting-based regression model that iteratively adjusts the weights assigned to the
training instances, placing more emphasis on the samples that are difficult to predict
accurately. ABR is known for its adaptability to different data types and its ability to handle
noisy or incomplete datasets [48]. The ML regression models were implemented using the
Python library Scikit-learn [49].
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2.4.3. Hyperparameter Tuning

Following the selection of the best feature combination, the ML models were applied
using hyperparameter tuning. This method may significantly improve the performance
of ML regression models [50] by adjusting each model’s internal parameters, such as the
learning rate and tree depth. In this study, a systematic approach for hyperparameter
tuning was employed, utilizing the GridSearchCV method with a 5-fold CV. Again, 5-fold
cross-validation further ensures robustness by splitting the dataset into five subdivisions,
using four for training and one for validation in a rotating fashion. This iterative process
allows the model to be trained and validated multiple times, always withholding the
testing data from the algorithm, providing a robust assessment of its performance across
various hyperparameter settings. The method examines several hypotheses and identifies
the optimal hyperparameters, based on the performance of the models, considering the
R2 results. This approach aims to maximize the predictive accuracy of the ML regression
models. The specific hyperparameters applied in the implementation of the regression
models are identified in Table 4.

Table 4. Main hyperparameters considered during regression models implementation. Tested
hyperparameter values: n_estimators (NE): 100, 200, 300; max_depth (MD): 3, 5, 7, 9, 1; max_samples
(MS): 0.5, 0.75, 1.0; learning_rate (LR): 0.1, 1.0, 10. CD: climate data; Irrig.: irrigation; L8: Landsat 8;
PS: PlanetScope; S2: Sentinel-2; VI: vegetation indice.

Type of
Features

RFR XGBR GBR BR ABR

NE MD NE MD NE MD NE MS NE LR

Irrig. 100 3 100 3 100 3 100 0.5 100 1.0
CD 100 3 100 3 300 3 100 1.0 100 0.1

VI—PS 100 5 100 5 100 3 100 1.0 300 0.1
VI—S2 200 7 100 7 100 3 200 0.75 100 1.0
VI—L8 100 5 200 7 100 3 100 1.0 300 0.1

Irrig. and
CD 100 7 100 7 100 3 100 1.0 200 0.1

Irrig. and
VI—PS 200 3 100 5 300 3 200 1.0 100 0.1

Irrig. and
VI—S2 300 5 100 5 300 3 300 1.0 300 1.0

Irrig. and
VI—L8 200 5 200 5 200 3 200 1.0 300 0.1

CD and
VI—PS 200 7 200 5 300 3 200 1.0 100 1.0

CD and
VI—S2 200 9 200 3 300 3 300 1.0 300 1.0

CD and
VI—L8 100 5 100 5 300 3 100 1.0 200 0.1

Irrig., CD
and VI—PS 100 5 100 3 100 3 300 1.0 100 1.0

Irrig., CD
and VI—S2 100 5 100 3 200 3 100 1.0 300 1.0

Irrig., CD
and VI—L8 100 3 100 3 200 3 100 1.0 200 1.0
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2.5. Model Evaluation

Several well-known metrics to evaluate regression model performance were used,
including the coefficient of determination (R2), the root mean square error (RMSE), and
the mean absolute error (MAE). R2 measures the percentage of variance in the dependent
variable that can be described by the independent variables in a regression model [51]. The
RMSE accounts for positive and negative deviations between predicted and observed val-
ues. Regarding the MAE, it is calculated as the average of the absolute differences between
the predicted and observed values of the dependent variable. The average magnitude of
errors performed by the model is measured in the units of the same order as that of the
dependent variable and denoted as the MAE. While the RMSE takes the squared differences
into account, the MAE does not which makes it robust in regard to outliers and insensitive
to extreme errors. By considering the mean absolute difference between the observed and
simulated values, the MAE provides the overall accuracy of the model, regardless of the
direction of the errors [52].

3. Results
3.1. Comparative Analysis of Regression Models for Almond Yield Prediction

This study intends to investigate and compare the performance of several ML regres-
sion models in predicting almond tree yield, based on different features extracted from RS
platforms and different agronomic parameters. The features considered were irrigation,
temperature, precipitation, and VIs. The regression models evaluated included the RFR,
XGBR, GBR, BR, and ABR models. Figure 4 shows the performance of the regression
models, using different types of features, considering the VIs computed by PlanetScope
(Figure 4a), Sentinel-2 (Figure 4b), and Landsat 8 (Figure 4c). When focusing on the ir-
rigation feature alone, none of the models demonstrated exceptional performance as a
standalone feature across all three platforms. The R2 scores for all the models ranged from
0.32 to 0.38, suggesting limited predictive capabilities. When considering only the climatic
features, the GBR model and BR model consistently exhibited higher performance, with
R2 scores of around 0.40. For the VIs only, the ABR model outperformed the others, using
PlanetScope data (R2 = 0.59). On the other hand, considering the VIs calculated using
Sentinel-2 data, the BR model performed better (R2 = 0.49). For the VIs from Landsat
8, the best performance was achieved by the RFR model (R2 = 0.61). When combining
features, particularly irrigation and climate data, the RFR model consistently demonstrated
strong performance across all three platforms (R2 = 0.68), indicating its superior predictive
capabilities for this feature combination. Considering the combination of irrigation and
VIs, the XGBR model obtained the best performance using PlanetScope (R2 = 0.76) and
Sentinel-2 (R2 = 0.66) data. In contrast, the GBR model produced the best result (R2 = 0.73)
when the Landsat 8 data were used. Combining the climate data and VIs, the ABR model
performed well using PlanetScope data (R2 = 0.61). On the other hand, the XGBR model
performed better using the Sentinel-2 (R2 = 0.62) and Landsat 8 data (R2 = 0.69). Finally,
considering all three groups of features combined (irrigation, climate data, and VIs), the
XGBR model showed the best performance using PlanetScope data (R2 = 0.80), while the
RFR model showed the best performance using Sentinel-2 data (R2 = 0.67) and the ABR
model using Landsat 8 data (R2 = 0.72). The results presented showed that the XGBR and
RFR models proved to be the most appropriate models for predicting the target feature
using the PlanetScope data across different feature combinations. However, when using
Landsat 8 data, the ABR model also provided remarkable results.

The performance of several regression models was also evaluated based on MAE and
RMSE metrics, considering the different combinations of feature types (Table 5). Notably,
the best combination of features that yielded optimal results varied across the models.
When focusing on the irrigation feature, all the models (RFR, XGBR, GBR, BR, and ABR)
achieved similar performance, with MAE values ranging from 158 to 161 kg/ha and
RMSE values ranging from 206 to 212 kg/ha. For the climate data features, the XGBR
(MAE = 210 kg/ha; RMSE = 255 kg/ha) and BR (MAE = 184 kg/ha; RMSE = 238 kg/ha)
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models exhibited slightly higher values compared to the other models. Among the VIs,
when the PlanetScope data were used, the best performance was achieved with the ABR
model (MAE = 143 kg/ha; RMSE = 186 kg/ha). For the Sentinel-2 data, the lowest MAE
(165 kg/ha) was obtained with the BR model and the lowest RMSE (214 kg/ha) was
obtained with the RFR model. Considering the VIs from Landsat 8, the lowest MAE
(133 kg/ha) was obtained with the GBR model and the lowest RMSE (189 kg/ha) with
the RFR model. Combining irrigation with climate data generally improved the model’s
performance, compared to using either feature individually, resulting in lower MAE and
RMSE values, ranging from 116 to 137 kg/ha and 158 to 177 kg/ha, respectively. Similarly,
incorporating all feature types tended to improve the model’s predictive performance,
especially when using irrigation, climate data, and VIs from PlanetScope, which achieved
the best performance with the XGBR model (MAE: 95 kg/ha; RMSE: 119 kg/ha).

Table 5. Performance of regression models by feature type and remote sensing platform, assessed
using mean absolute error (MAE) and root mean square error (RMSE). Units in kg/ha. CD: climate
data; Irrig: irrigation; L8: Landsat 8; PS: PlanetScope; S2: Sentinel-2; VI: vegetation indice.

Type of
Features

RFR XGBR GBR BR ABR

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Irrig. 159 211 161 211 161 211 160 212 158 206
CD 184 237 210 255 178 211 184 238 179 223

VI—PS 154 200 173 220 148 194 152 201 143 186
VI—S2 168 214 177 224 181 232 165 215 184 229
VI—L8 144 189 158 250 133 193 145 191 142 202

Irrig. and
CD 134 170 125 177 116 158 137 172 133 174

Irrig. and
VI—PS 132 158 107 138 117 138 131 159 118 153

Irrig. and
VI—S2 147 190 130 168 130 168 149 192 120 163

Irrig. and
VI—L8 145 176 141 199 111 147 144 178 142 180

CD and
VI—PS 157 193 151 189 152 210 160 193 143 177

CD and
VI—S2 156 211 139 175 196 220 154 211 160 209

CD and
VI—L8 139 174 127 159 123 162 133 171 114 154

Irrig., CD
and VI—PS 126 153 95 119 95 125 129 153 113 151

Irrig., CD
and VI—S2 135 173 126 175 124 171 135 174 123 173

Irrig., CD
and VI—L8 126 163 137 178 154 194 123 163 108 152

3.2. Selected Features and Their Contribution to Almond Yield Prediction

Considering the information from the previous subsection, optimal performance was
achieved with the XGBR model using the irrigation feature, climate data (specifically, the
daytime temperature in March), and VIs (the NDVI in January and the SAVI in May)
calculated using PlanetScope data. This subsection is intended to present the features that
were important to almond yield prediction. Figure 5a shows that in the almond orchards
where irrigation was applied (AG3 and AG4), higher yield values were recorded, about
913 kg/ha, while in the almond orchards where irrigation was not applied (AG1 and AG2),
lower yield values were recorded, about 417 kg/ha. Comparing the NDVI in January and
the yield (Figure 5b), it is possible to observe higher NDVI values related to a higher yield,
although it is not a clear linear relationship. In the almond orchards of AG4 (Figure 1b),
higher NDVI values were recorded in January from 2019 to 2021, which may have made a
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positive contribution to achieving higher production values compared to other growers.
Similarly, regarding the SAVI in May (Figure 5c), it does not seem to be linearly associated
with the yield, highlighting the importance of ML models, as non-linear patterns can be
identified by these models. On the other hand, regarding the daytime temperature in March
(Figure 5d), it is evident that lower values were associated with lower yield values. The
lowest daytime temperature value in March (12.2 ◦C) was recorded in 2018 in the almond
orchards of AG2, which coincided with the lowest yield value (82 kg/ha) compared to the
other growers (Figure 1b). As for the highest values recorded for the daytime temperature
in March, the maximum value reached was 22.5 ◦C in 2019 by AG4, who obtained higher
yield values (1203 kg/ha).
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4. Discussion

The present study aimed to develop ML models to simulate almond yields in the TM
region, applying open and proprietary RS data. The comparison was made among various
free RS platforms (MODIS Terra LST, GSMaP, Landsat 8, and Sentinel-2) and a paid one
(PlanetScope). Several ML regression models (RFR, XGBR, GBR, BR, ABR) were applied,
and the optimum feature combination was selected to achieve the best performance. The
combination of irrigation data, daytime temperature in March, the NDVI in January, and
the SAVI in May (from the PlanetScope platform) showed the best performance (R2 = 0.80),
using the XGBR model. Indeed, the use of VIs with a higher resolution (3 m) from the
PlanetScope data had a positive influence on the almond yield prediction, as the results
obtained with Sentinel-2 (R2 = 0.67—RFR) and Landsat 8 (R2 = 0.72—ABR) data were
lower. However, it is worth noting that free data with lower resolution could also be a
viable alternative to PlanetScope, particularly RS platforms providing climatic data, such
as MODIS Terra LST and GSMaP, achieving an R2 of 0.68 when using the RFR model with
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irrigation and climate data. Regarding the XGBR model, it was observed that the best
results were reached when using three groups of features (irrigation, climate data, and VIs)
(R2 = 0.80). On the other hand, the XGBR model obtained inferior performance when using
only irrigation information (R2: 0.32), only climate data (R2: 0.19), or only VIs (PlanetScope—
R2 = 0.44). In this case, the RFR model achieved a higher level of performance than the
XGBR model. This situation might be due to the XGBR model being more capable of
handling complex relationships between features [45], while the RFR model is known to
perform better with simpler features. Considering other studies related to almond yield
prediction, Zhang et al. tested several ML models, obtaining the best performance with the
SGB model, with an R2 of 0.71, which is also a boosting model [20].

Considering the most important features, irrigation and daytime temperature in March
stood out, highlighting the role of water availability and suitable temperatures for almond
yields [53]. In fact, AG3 and AG4 show higher yield values, due to the available irriga-
tion. Furthermore, March is considered a crucial period for almond trees, as flowering
occurs at this stage [54]. Almond trees are highly sensitive to climatic conditions during
the flowering period, and adequate temperatures are essential for successful pollination
and fruit development. According to Tamimi [54], the ideal temperature for almond tree
flowering during the day is between 15 ◦C and 30 ◦C, and temperatures outside this range
can lead to problems, resulting in reduced fruit production. In effect, daytime temperatures
in March in the agricultural fields of AG2 were recorded, with a minimum temperature
of 12.2 ◦C recorded in 2018, which is below the considered ideal temperature for almond
flowering, which can explain the low production in that year (Supplementary Figure S1).
On the other hand, in the agricultural fields of AG4, a maximum temperature of 22.5 ◦C
was recorded in 2019, falling within the range of ideal temperatures for flowering, resulting
in increased production that year. Similar studies have also highlighted temperature-
related features. Zhang et al. [20] emphasized the importance of the feature “long-term
mean maximum April-June temperature” in predicting almond production. According
to the authors, this factor significantly affects the blooming period of almond trees. Al-
monds are sensitive to temperature fluctuations during this critical stage, and optimal
temperatures promote successful pollination and higher yield. However, exceeding the
temperature threshold can negatively impact pollination and reduce fruit set, leading to
lower almond yield. Therefore, monitoring and considering the long-term mean maximum
April-June temperature is essential for accurately predicting almond yield. Other studies,
such as the study by Tombesi et al. [55], have also considered that warm springs accelerate
fruit development.

The intricate relationships unveiled throughout this analysis underscore the necessity
of employing sophisticated ML models for understanding the dynamics influencing almond
production. The interdependence of variables like irrigation, climate indicators, and
vegetation indices highlights the need for advanced analytical tools, and the application
of sophisticated machine learning (ML) models becomes imperative. Unlike simpler
models, such as linear regression, which assume linear relationships between the variables,
the complexities of almond production necessitate more sophisticated approaches. The
utilization of advanced ML models, like the XGBR model applied in this study, allows for
the exploration of intricate, non-linear relationships among various contributing factors. In
the realm of almond production, where variables often exhibit non-linear dependencies,
these models excel in discerning patterns that may elude simpler methodologies.

Some limitations must be acknowledged. Optimal results were achieved through the
utilization of a proprietary/paid platform, potentially limiting accessibility for certain users.
Furthermore, the lower resolution of data provided by open platforms may impede the
identification of smaller orchard areas. Nevertheless, our study underscores the viability of
utilizing freely available remote sensing data. While the data were sourced from multiple
farmers, expanding the dataset could enhance the robustness of our findings. Despite the
abovementioned limitations, the current study methodology holds promise for adaptation
and implementation in various agricultural settings worldwide. Another important point
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is the careful analysis of features to increase the overall performance of the ML regression
models. In this way, this study not only allows for the prediction of almond yields, but also
enables the identification of the key factors that significantly influence these predictions.
Furthermore, the models developed allow the implementation of early prediction of sea-
sonal almond yields, with the potential integration of climate data and extreme weather
events. The comparison between open and proprietary RS data shows that these models
can be implemented using these two types of datasets. As such, these results provide
valuable insights for farmers and other sector stakeholders, in the decision-making process,
which can enhance the sustainability of the almond sector in Portugal.

5. Conclusions

This study investigates the potential of RS data and ML models for predicting almond
yield. Various RS platforms were evaluated, including both freely available platforms,
including MODIS Terra LST, GSMaP, Landsat 8, and Sentinel-2, as well as a paid plat-
form, PlanetScope. In addition, the performance of several ML regressors, including RFR,
XGBR, GBR, BR, and ABR, were evaluated. The inclusion of high-resolution VIs from the
PlanetScope platform significantly increased the accuracy of almond yield prediction. The
XGBR model trained with a feature set comprising irrigation data, the daily temperature in
March, the NDVI in January, and the SAVI in May from the PlanetScope platform showed
the highest predictive performance, achieving an R2 value of 0.80. This indicates that the
model could effectively explain 80% of the variation in the almond yield. However, freely
available RS platforms, such as MODIS Terra LST and GSMaP, can also serve as viable
alternatives to PlanetScope data. Despite the lower spatial resolution, the data from these
platforms demonstrated that it still provides valuable insights for predicting almond yield.
It is worth noting, however, that the choice of ML model was found to be a critical factor
in the prediction accuracy. While the XGBR model consistently outperformed the other
models, it proved more prone to noise and outliers when only one or two types of features
were used. Therefore, the selection of the most suitable ML algorithm should be based on
the dataset and features to be considered. Irrigation and the daytime temperature in March
were among the most important features for predicting almond yield, highlighting the
pivotal role of water and temperature in crop growth and development. Future research
may be aimed at the continuous improvement of the dataset implemented in this study, by
increasing the number of almond orchards by considering broader geographical areas and
including established climatic and temporal relationships with the yield in the evaluated
orchards. This will improve the generalization ability of the models. It would also be useful
to consider very-high resolution UAV multispectral data to provide tree-level almond yield.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agriengineering6010015/s1; Figure S1. Monthly average land surface
temperature (left panels) and monthly precipitation sum, for 2017 to 2021, in the studied almond
orchards: (a) almond grower 1, (b) almond grower 2, (c) almond grower 3, (d) almond grower 4.
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