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Abstract: The rapid evolution of digital technology and the increasing integration of artificial intelli-
gence in agriculture have paved the way for groundbreaking solutions in plant identification. This
research pioneers the development and training of a deep learning model to identify three aromatic
plants—rosemary, mint, and bay leaf—using advanced computer-aided detection within the You Only
Look Once (YOLO) framework. Employing the Cross Industry Standard Process for Data Mining
(CRISP-DM) methodology, the study meticulously covers data understanding, preparation, modeling,
evaluation, and deployment phases. The dataset, consisting of images from diverse devices and
annotated with bounding boxes, was instrumental in the training process. The model’s performance
was evaluated using the mean average precision at a 50% intersection over union (mAP50), a metric
that combines precision and recall. The results demonstrated that the model achieved a precision
of 0.7 or higher for each herb, though recall values indicated potential over-detection, suggesting
the need for database expansion and methodological enhancements. This research underscores
the innovative potential of deep learning in aromatic plant identification and addresses both the
challenges and advantages of this technique. The findings significantly advance the integration of
artificial intelligence in agriculture, promoting greater efficiency and accuracy in plant identification.
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1. Introduction

Since ancient times, aromatic herbs such as mint, basil, and rosemary have enhanced
food flavor and aroma and prolonged shelf life due to their antiseptic properties [1]. These
herbs play an integral role in daily life, with culinary and medicinal applications. Aromatic
herbs are typically small plants whose leaves emit distinct aromas, occasionally leading to
confusion with medicinal herbs. Although there are similarities, medicinal herbs have a
broader range of uses involving various plant parts, whereas aromatic herbs are primarily
valued for their leaves.

Aromatic plants have long been utilized in medicine, food preservation, seasoning,
and religious ceremonies. The diversity among aromatic herbs is extensive, and their visual
differentiation poses significant challenges. The enhanced visual characterization of these
herbs can substantially benefit wholesalers, retailers, farmers, cooperatives, importers,
exporters, and the agro-industry. This improved understanding facilitates accurately
identifying desired herb types for purchase, sale, consumption, and registration purposes
for research endeavors [2,3].

With the increasing prevalence of digital technologies and digital transformation,
efforts have been made to observe how these technologies can help produce aromatic herbs.
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In the digital transformation scenario, it is observed that new digital technologies facilitate
improvements in business processes, simplify operations, and create new business models.
Object detection and categorization in images is one of the most significant problems in
computer vision and related fields [4]. Additionally, the process becomes more intricate
due to the various perspectives, sizes, angles, perspectives, occlusions, and illumination.

Previous investigations [2,5,6] have attempted different approaches to improve the
accuracy and efficiency of herb identification from images. However, there have been
limitations regarding detecting the shape of herbs, a critical characteristic for identifying
the leaf family and removing the background. These issues were investigated previously,
but have not been solved.

One way to ensure better accuracy in image detection is with convolutional neural
networks (CNNs), which, like a neural network in the human brain, is a circuit with
connections of neurons with weights between nodes, where a positive weight represents
a stimulating connection, while negative values represent inhibitory connections. With
the development of technology, deep learning enables the development of an image object
detection model. CNNs are amongst the most widely utilized deep learning models for
image detection and classification, owing to their superior accuracy to other machine
learning algorithms [7].

Owing to the substantial increase in the utilization of digital images, deep learning, an
artificial intelligence (AI) method, through an image object detection scheme, can enhance
customer experience by identifying diverse types of horticultural products in the supply
chain, such as aromatic herbs. The research question is as follows: to what extent can a
deep learning model employing the You Only Look Once (YOLO) v8 framework effectively
differentiate and accurately identify various aromatic herbs, including rosemary, mint, and
bay leaf?

The current study aimed to develop and present a procedure for identifying three types
of aromatic herbs using object detection algorithms through YOLO v8 architecture. The
present study is organized as follows: In addition to this introduction, Section 2 presents the
background, Section 3 describes the methodology used, and Section 4 presents the results and
summarizes the discussion. Finally, Section 5 presents the conclusion and future research.

2. Background

Object detection is a component of computer vision that involves recognizing and
positioning objects in videos or images [8,9]. Object class detection is usually based on a
set of features, meaning each object of a specific class has certain characteristics based on
which it is classified into different classes. Deep learning is a machine learning method that
allows machines to recognize patterns in data [9]. Given a large dataset of labeled examples,
it enables the learning of the most predictive features directly from images. Within the
machine learning scenario, CNNs have become extremely popular and effective [10]. A
CNN comprises a series of layers, and each layer receives the previous layer’s output
as its input. The input plane receives images of characters with a standardized size and
centeredness, and each layer’s units receive input from a set of smaller units located in
the previous layer [11]. Two unique attributes of the architecture of CNNs are their sparse
connections and shared weights [12]. CNNs exploit spatially local correlation by imposing
a pattern of local connectivity between neurons of adjacent layers, where units in layer m
are connected to three spatially adjacent units in layer m − 1. Every convolutional filter
in the layer is repeated across the entire layer, sharing the same weights and biases. Such
an approach will help CNNs to generalize the identification of problems more effectively
while also increasing the learning efficiency by reducing the number of free parameters to
be learned.

Object detection is a fundamental and long-standing problem in computer vision.
Its task is to generate bounding boxes (in 2D pixel coordinates) for detected objects in
an image that belongs to pre-specified object classes and assign classification scores to
them [13]. It has been observed that object detection has improved significantly due to deep
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neural networks, with convolutional neural networks (CNNs) being the most prominent
architectures. The window that slips between classifiers and single-shot convolutional
neural networks generates similar high-density windows around a particular object’s
correct location. Non-maximum suppression (NMS) chooses the single most significant
candidate within the cluster of detection results for each object in each image. Therefore,
non-maximum suppression (NMS) is analogous to a traditional clustering problem and
generally depends on two primary operations: determining the cluster assignment for each
detection and identifying a representative for each cluster [14]. Sun et al. [11] explain how
NMS eliminates redundant boxes and selects the candidate box that best represents the
object. Meanwhile, the remaining candidate box is called the object representative. Among
the various algorithms widely used in various object detector models, YOLO stands out.

Through a procedure called backpropagation, a CNN learns the weights and biases
of the kernel from a collection of input images [15]. These values serve as parameters
that encapsulate essential characteristics of the images, independent of their location.
These kernel weights slide through an input image performing element-wise dot products,
producing intermediate results that are subsequently summed with the learned bias value.
Then, each neuron obtains an output based on the input image. These outputs are also
called activation maps. To reduce the number of parameters and prevent overfitting, CNNs
decrease the resolution of inputs using a different layer called pooling. Activation functions
are employed in a CNN to augment the model with nonlinearity. This enables the model to
learn more intricate patterns in data.

2.1. You Only Look Once (YOLO)

YOLO is an object detection approach that aims to predict which objects are present
and where they are by looking at the image only once [16]. In recent years, there has
been a rise in research articles addressing object identification using the YOLO algorithm.
However, we found a few articles about using YOLO to detect herbs. There has been a
theoretical basis for recognizing the rhizome and main root in plants through “internal
content difference” and “external morphological difference” [17]. Weed detection was
previously performed to assist laser weed removal robots [18]. Previous studies [3,19]
determined YOLO’s adaptability and efficiency in plant and herb identification through
image analysis, leveraging its speed and accuracy in object detection tasks. The technology
is beneficial for enhancing agricultural practices and scientific research by automating the
extraction of detailed trait data from images.

Recent advances in research have demonstrated the effectiveness of image recognition
systems based on YOLO. A notable example is the study by [20], which presents the imple-
mentation of an apple detection system using YOLO v3, and which was later integrated
into a harvesting manipulator robot. The developed system improved apple identification
accuracy under various lighting and obstruction conditions. Furthermore, the trajectory of
the manipulator robot was optimized using reinforcement learning techniques, resulting
in a 92% increase in accuracy in laboratory tests. Under controlled conditions, the system
achieved a 100% recognition rate. These improvements concur with the increasing popular-
ity of utilizing convolutional neural networks (CNNs) in agriculture, proving effective in
solving complex computer vision tasks.

Similarly, a previous study was conducted [21] by applying YOLO v3 with advanced
pre- and post-processing techniques for apple identification, highlighting the evolution
of computer vision algorithms to meet the demands of modern horticulture. The im-
provements implemented resulted in reduced error rates and average identification time,
making the system more efficient and comprehensive than previous versions, such as
the faster region-based convolutional neural network (RCNN) and dynamic activation
sparsity network (DaSNet) v2. This study highlights the importance of computer vision in
agricultural automation.

On the other hand, the study by [22] discusses aspects related to object detection in
images, covering everything from likelihood relationships to using scalable and efficient
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neural networks. Given the increasing relevance of object identification and recognition
tasks in images, the authors explore the development of convolutional neural networks
to solve recognition problems. The study includes the evaluation of several pre-trained
architectures, considering metrics such as error probabilities, precision, detection recall,
intersection over union, and average interpolated precision.

Mirzaei et al. [23] contribute a comprehensive review on small object detection and
tracking, addressing challenges and methods in computer vision. The study analyzes
small object detection techniques, including methods based on CNNs, image processing
algorithms, and machine learning techniques. This review article offers a detailed analysis
of the current literature, serving as a valuable resource for researchers and professionals
involved in developing small object detection and tracking systems.

2.2. YOLO v8

The YOLO v8 architecture consists of three main components: a backbone, a neck, and
a decoupled head. The backbone employs an EfficientRep block, a convolutional neural
network (CNN) designed to extract features from the input image. The neck, called the
C2f module (C2f module refers to an optimized version of the CSP—cross stage partial
bottleneck—with two convolutions, known as the C2 module), integrates these features
from various depths of the backbone to generate a more detailed image representation.
Finally, the decoupled head processes this fused feature map to estimate the size of the
boxes surrounding the object in the image and the probability of the object being classified
as a specific type [24], see Figure 1.
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The backbone is a lightweight CNN optimized for efficiency and accuracy. It comprises
multiple convolutional layers, each designed to extract different levels of abstraction from
the input image. Although the specific details of these convolutional layers are not depicted
in the provided image, they are extensively documented in the YOLO v8 literature [24]. The
neck, or C2f module, is a novel architectural feature introduced in YOLO v8. It aggregates
feature maps from different depths of the backbone using a channel concatenation operation.
This concatenation enables the network to learn relationships between features at various
levels of abstraction, thereby enhancing the model’s accuracy.

The decoupled head is tasked with generating the final predictions. It utilizes the fused
feature map from the neck to predict bounding boxes and class probabilities for the objects
in the image. The decoupled head includes several convolutional layers, culminating in
one layer that predicts bounding boxes and another that predicts class probabilities.

Overall, the YOLO v8 architecture represents an advanced and efficient design for
object detection. The EfficientRep backbone achieves an optimal balance between accuracy
and speed, the C2f module facilitates the learning of richer feature representations, and
the decoupled head ensures precise predictions of objects within the image. Research on
aromatic herb identification has evolved significantly in recent years, addressing different
approaches and methodologies. In this section, we review the main studies that form the
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basis of our work, highlighting the most relevant contributions and the gaps that persist in
the literature.

2.3. Related Works

Research on aromatic herb identification has evolved significantly in recent years,
addressing different approaches and methodologies. In this section, we discuss the primary
investigations that form the basis of our work, highlighting the most relevant contributions
and the gaps that persist in the literature.

Che Soh et al. [25] investigated the process of herb identification, which is accom-
plished through organoleptic methods and relies heavily on botanical compounds; this
makes it difficult to differentiate different species of herbs based on their aroma alone be-
cause of their shared physical attributes and aroma. Artificial technology is different from
humans; unlike humans, it is thought to have the capacity to differentiate different species
precisely. The authors developed an electronic nose that intended to recognize the scent of
12 species, including the Myrtaceae, Lauraceae, and Zingiberaceae families. The output
received by electronic sensors for nasal gas was categorized using two different artificial
intelligence techniques: ANN and ANFIS. From the outcome, ANFIS has a percentage of
94.8 compared to ANN’s percentage of 91.7.

Previous research [26] studied the effectiveness of deep machine learning algorithms
in classifying medicinal plant leaves from images. The investigation sought to create ef-
fective and accurate methods for differentiating between species of plants and diseases,
using advanced technologies such as convolutional neural networks (CNNs) to improve
the accuracy and reliability of plant recognition systems. The methodology included data
collection and pre-processing steps, feature extraction, model development and training,
and performance evaluation. The results indicated that using CNNs increased classifi-
cation accuracy and efficiency, with high recognition rates and potential applications in
environmental and agricultural monitoring.

Fernandes et al. [27] proposed a different approach, which was focused on creating
an architecture that recognized 18 aromatic herbs using augmented reality and computer
vision. The project and development of this architecture facilitated the overlay of virtual
information onto the naturally identified environment, which contained an intuitive and
simple-to-use mobile application. However, the primary obstacle was the creation of large
databases for agricultural solutions with diverse and high-quality images. These images
augmented the real world and provided solutions based on AI and neural networks for
future endeavors.

Duth et al. [28] developed a classification system for medicinal herb leaves using
digital image processing and machine learning techniques. The technologies associated
with convolutional neural networks (CNNs), such as recurrent neural networks (RNNs),
long short-term memory (LSTM), and object detection models like the region-based convo-
lutional neural network (RCNN), Fast RCNN, and Faster RCNN, were employed. These
technologies were employed to extract relevant features from leaf images and improve
classification accuracy and speed. The proposed system achieved high accuracy and robust-
ness in identifying different species of medicinal herb leaves. Compared to other existing
techniques, the proposed method demonstrated effectiveness and accuracy in identifying
the leaves of selected medicinal herbs.

In summary, although these studies provide a solid foundation for our research, there
is a clear need for technologies to identify aromatic herbs. Our work aimed to develop and
present a procedure for identifying three types of aromatic herbs using object detection
algorithms through YOLO v8 architecture.

Training a network specifically for aromatic or medicinal herbs is crucial due to
their visual similarity, which makes accurate identification challenging. Such a model en-
hances agricultural practices by improving crop management and harvesting, automating
identification processes to reduce labor and increase efficiency, and enabling data-driven
decision-making for better sustainability. Additionally, it ensures product authenticity for
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consumers, fosters trust and satisfaction, and supports scientific research on plant charac-
teristics and genetic diversity, leading to potential discoveries. These benefits highlight the
importance of specialized deep learning models in agricultural and market operations.

3. Methods

The YOLO v8 model was employed for the real-time detection of three types of aro-
matic herbs (rosemary, mint, and bay), using a convolutional neural network architecture to
process entire images and apply non-maximum suppression to refine predictions. Through
training with a diverse set of annotated images, the model achieved mAP50 and precision
measurements above 0.7, although it demonstrated recall values above 0.5, suggesting
a trend towards over-detection. It was decided not to incorporate improvements to the
YOLO v8 model, maintaining the original primary structure without changes. The decision
was to assess the performance of the unmodified standard model in accurately identifying
and categorizing aromatic herbs, solely utilizing the training dataset without any further
adjustments to its architecture or hyperparameters.

The YOLO v8 model, with its advanced architecture and real-time processing ca-
pabilities, proved effective in identifying aromatic herbs. By following the CRISP-DM
methodology, the study ensured a systematic approach to model development, from un-
derstanding the business requirements to deploying a robust solution in a practical setting.

The investigation intended to create a model for identifying some herbs commercial-
ized at the largest Brazilian center for food distribution, the Company of Warehouses and
General Warehouses of São Paulo (CEAGESP). Considering the proposed research problem,
the study followed the Cross Industry Standard Process for Data Mining (CRISP-DM)
model [29]. Table 1 presents the research stages.

Table 1. Summary of procedures performed using the CRISP-DM model.

CRISP-DM Stage Activity Tool/Method

Business
Understanding

Identify experts within the organization.
Gather and outline needs and expectations.
Verify the existence of image databases within the
organization.

Visits and meetings with representatives from
CEAGESP.

Data Understanding
Understand the available data.
Evaluate the quality of the available data.
Verify if the volume of data meets business needs.

Analysis of the formats and characteristics of the
three selected herbs.

Data Preparation

Select data for analysis.
Cleanse the data.
Format the data appropriately.
Select the model training environment.
Choose the tool for creating bounding boxes.
Understand the model metrics.

Creation of the database using photos (in JPG
format) obtained from different cell phone
models, NIKON cameras, Samsung tablets, and
websites.
Use of Google Cloud via Colab Pro and Colab
Pro+ products.
Utilization of the CVAT [30].

Modeling Select the appropriate technique for modeling. Utilization of the YOLO V8 framework

Evaluation Analyze performance metrics. Analysis of the model’s recognition accuracy.

Deployment Prepare the analysis report. Analyze the results.

The selected herbs for training were rosemary, mint, and bay leaf. According to the
botanical description [31–33], rosemary can have opposite leaves, lack petioles, and be
simple, linear, and leathery, with stellate hairs on the underside that are whitish in color
and dark green on the upper surface. Mint leaves are described as having opposite leaves,
provided with short petioles, oblong to oval in shape, with toothed margins. Bay leaf has
persistent, petiolate, alternate leaves, elliptical or lanceolate, leathery with undulated, entire
smooth edges, bright green on the upper surface, and pale green on the lower surface.
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Table 2 shows the leaves of the aromatic herbs used in the study. Following this
instruction, bounding boxes were created on the images used for training.

Table 2. Reference of the trained aromatic herbs.

Aromatic Herb Leaf Reference

Rosemary
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After consolidating the images, a cleaning process was conducted where images with
significant blur were discarded. Finally, for each database, 10% of the images were selected
for the validation process and 90% of the images were selected for the training process,
resulting in the following:

• Rosemary leaf: 27 images for validation and 234 images for training.
• Mint leaf: 35 images for validation and 302 images for training.
• Bay leaf: 31 images for validation and 262 images for training.

The storage of the image database on the Google Cloud provider was utilized due to
its connection with the Collaboratory platform [30], which is also from Google. Individual
databases and a single database containing all three aromatic herbs were created for each
herb. The classes for the single database containing the three aromatic herbs were classified
as bay leaf (0), rosemary (1), and mint (2). The bounding boxes were created using the
computer vision annotation tool [30].

The selection between the validation database and the test database was made ran-
domly. In summary, the image database was analyzed and, taking care to prevent very
similar images from being trained and validated, to avoid overfitting, the images were
manually separated.

The images obtained during a visit to CEAGESP are herbs that have suppliers from
different cities in São Paulo, Brazil. Regarding the maturity of the herbs, there was no
specific selection concerning this requirement, as the focus has always been on identifying
the herb regardless of its maturity. Consumers will face this condition daily; therefore, the
database was not limited to maturity. The challenges regarding the identification of mint
start from the definition of the bounding box; that is, as this herb has small leaves, it is
necessary to define it by leaf or by the set of leaves, which are characteristics of the herb.
When benchmarking with models available in Roboflow, there are these two situations.
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The bay leaf is used fresh or dehydrated; therefore, like the other herbs in the study, they
were not separated by maturity levels.

Furthermore, it has a variety of shapes as it originates from several tree species, with
Loureiro and Umbellularia being the most common. Rosemary is a small evergreen shrub
with thick aromatic leaves and many varieties. Regarding the identification challenges, the
bounding boxes for each shrub are created.

The adopted performance metrics by class highlight explanations which are critical
for understanding the model’s performance for each class, especially in datasets with
multiple object categories. For each class in the dataset, the following were calculated.
(1) Precision (P): the accuracy of detected objects, indicating how many detections were
correct (Equation (1)); (2) recall (R): the model’s ability to identify all instances of objects in
the images (Equation (2)); (3) mAP50: average precision (AP) is calculated at an intersection
over union (IoU) threshold of 0.50. This measures the model’s accuracy by considering
only “easy” detections (Equation (3)); and (4) mAP50–95: the average of the average
precision calculated at various IoU thresholds, ranging from 0.50 to 0.95. This provides a
comprehensive view of the model’s performance at different detection difficulty levels.

Precision = TP/(TP + FP) (1)

where TP (true positives) = number of correct positive predictions, and FP (false positives)
= number of incorrect positive predictions made by the model.

Recall = TP/(TP + FN) (2)

where TP (true positives = number of correct positive predictions, and FN (false negatives)
is the number of positives the model incorrectly predicted as negative.

mAP =
1
N

N

∑
i=1

APi (3)

where N = the number of classes and AP = average precision.
As for the generated graphical measures, the following were adopted: (1) the F1

score curve represents the F1 score at various thresholds. Interpreting this curve can
provide insights into the model’s balance between false negatives and false positives at
different thresholds; (2) the precision–recall curve, which is a graphical representation of
the precision values at different thresholds; and (3) the recall curve, which is a graph that
illustrates how recall values change at different thresholds.

In the training quantity, epochs are defined, meaning one epoch is a complete iteration
of the entire training dataset in one cycle to train the model. During the epoch process, the
model processes each training sample in the dataset, and its weights and biases are updated
according to the calculated loss or error. The number of epochs is a hyperparameter that
defines how often the learning algorithm will run through the entire training dataset. The
training database is privately owned, and the programming logic for using YOLO v8
followed the instructions in the model document.

The model detects herbs individually, not by mixing them in a different group. This
means that each herb is identified and analyzed on its own merits rather than being
combined with other herbs to form a composite group. This approach allows for the more
precise identification and analysis of each herb’s unique characteristics and properties.

Training a deep learning model for identifying aromatic herbs substantially benefits
from a comprehensive and high-quality training database. Such a database, comprising
annotated images, enhances the model’s accuracy and precision, reducing over-detection
issues by providing more representative samples. It ensures the model’s robustness against
variations in herb appearance due to environmental factors and different cultivation prac-
tices. Additionally, it improves efficiency in agricultural operations by ensuring correct
herb identification, thus streamlining processes in wholesale markets and retail.
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4. Results and Discussion

The input of a neural network has weights, and these numbers are initialized randomly.
In the learning process, these numbers are updated every time the neural network is
stimulated, meaning the weights are adjusted towards the ideal value. There is no definition
of a standard number of epochs for a neural network, but the present research aimed for
a mAP50 greater than or equal to 0.7. In this scenario, a separate model was generated
for each aromatic herb, considering 300 epochs. After this process, a single model was
generated for all three herbs, also considering 300 epochs. Table 3 presents the performance
metrics for each trained aromatic herb.

Table 3. Summary of training for the aromatic herb model.

Aromatic Herb Epoch Quantity Time mAP50 mAP50–95 P R

Rosemary 300 13 h 0.739 0.369 0.724 0.786
Mint 300 15 h 0.738 0.408 0.739 0.714

Bay Leaf 300 16 h 0.7 0.387 0.611 0.727

The graphical measures of the F1 curve are shown in Figure 2a–c.
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For the rosemary class, despite the mAP precision scores being above 0.7, it is no-
ticeable that the recall measure exceeds the values of the previously mentioned measures,
suggesting that negative objects are being incorrectly classified as positive. The F1 measure
reinforces the need for improvement in detection, since it represents a balanced average
of the model’s ability to capture positive cases (recall) and to be precise with the cases it
captures (precision). Additionally, it is noted that there is no need to change the number of
epochs, since the mAP measure did not drop below 0.65 from 268 epochs onwards.

Although the recall measure for the mint class is below the precision and mAP mea-
sures, there is a slight difference. Therefore, it is understood that it follows the same
behavior and improvements as the rosemary class. Additionally, the training occurred until
295 epochs, as there were no differences in the measures after this epoch.

Regarding the bay leaf class, the precision, mAP50, and F1 measures below the recall
measure suggest that the object was not successfully identified with the trained sample.
Concerning the variation in the mAP50 measure, after 192 epochs, the measure varied
between greater than or equal to 0.6 and less than 0.7, meaning there were no measures
above 0.7.

Google-enhanced computational resources (Colab Pro+) were used to train the model
with the three aromatic herbs. Due to the machine’s capacity and constant internet connec-
tion, the training occurred in six parts. Table 4 presents the performance metrics for the
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trained consolidated model. According to Google, Colab Pro+ is a paid service offered by
Google Colab, a cloud-based collaborative notebook platform. The central processing unit
(CPU) is the general-purpose processing unit of a computer. While it is versatile and can
handle a wide range of tasks, it may not be optimized for compute-intensive operations. On
the other hand, the TPU (tensor processing unit) is custom-designed to accelerate machine
learning workloads, particularly those that involve neural networks and large-scale data.
Then, TPUs are highly specialized and can outperform GPUs in specific scenarios for train-
ing state-of-the-art deep learning models, especially when dealing with large datasets and
complex neural networks in fields like natural language processing and computer vision.

Table 4. Summary of training for the consolidated model of aromatic herbs.

Step Epoch
Quantity Time (h) mAP50 mAP50–95 P R

1 50 8

All: 0.480
Bay Leaf: 0.479

Rosemary: 0.516
Mint: 0.445

All: 0.221
Bay Leaf: 0.245

Rosemary: 0.203
Mint: 0.215

All: 0.531
Bay Leaf: 0.561

Rosemary: 0.513
Mint: 0.52

All: 0.507
Bay Leaf: 0.405

Rosemary: 0.750
Mint: 0.365

2 51 8

All: 0.691
Bay Leaf: 0.595

Rosemary: 0.823
Mint: 0.653

All: 0.321
Bay Leaf: 0.301

Rosemary: 0.328
Mint: 0.33

All: 0.672
Bay Leaf: 0.552

Rosemary: 0.862
Mint: 0.602

All: 0.724
Bay Leaf: 0.667

Rosemary: 0.821
Mint: 0.283

3 52 10

- All: 0.715
- Bay Leaf: 0.612

- Rosemary: 0.862
- Mint: 0.671

- All: 0.381
- Bay Leaf: 0.334

- Rosemary: 0.405
- Mint: 0.405

- All: 0.692
- Bay Leaf: 0.617

- Rosemary: 0.802
- Mint: 0.658

- All: 0.702
- Bay Leaf: 0.610

- Rosemary: 0.893
- Mint: 0.603

4 53 9

- All: 0.761
- Bay Leaf: 0.664

- Rosemary: 0.942
- Mint: 0.679

- All: 0.376
- Bay Leaf: 0.342

- Rosemary: 0.384
- Mint: 0.400

- All: 0.778
- Bay Leaf: 0.618

- Rosemary: 1
- Mint: 0.715

- All: 0.692
- Bay Leaf: 0.602

- Rosemary: 0.871
- Mint: 0.603

5 54 11

- All: 0.737
- Bay Leaf: 0.642

- Rosemary: 0.871
- Mint: 0.698

- All: 0.383
- Bay Leaf: 0.349

- Rosemary: 0.408
- Mint: 0.393

- All: 0.743
- Bay Leaf: 0.655

- Rosemary: 0.857
- Mint: 0.718

- All: 0.695
- Bay Leaf: 0.593

- Rosemary: 0.857
- Mint: 0.635

6 40 8

- All: 0.723
- Bay Leaf: 0.619

- Rosemary: 0.884
- Mint: 0.666

- All: 0.395
- Bay Leaf: 0.332

- Rosemary: 0.439
- Mint: 0.414

- All: 0.754
- Bay Leaf: 0.661

- Rosemary: 0.919
- Mint: 0.682

- All: 0.664
- Bay Leaf: 0.593

- Rosemary: 0.813
- Mint: 0.587

In the training of the three classes, it is noted that, concerning the measures presented,
from the third training onwards, the variations in the measures were below 0.05. The recall
and precision results showed the same characteristics as the individual training, i.e., values
close together, indicating that the model is deficient in capturing positive cases (recall) and
in being precise with the cases it captures (precision).

The class related to the aromatic herb rosemary presented mAP50, precision, and
recall values above 0.8; thus, it was possible to recognize rosemary images during testing.
However, when testing with an image of the herb chive, confusion in identification was
noted, indicating an opportunity to add the chive class to the model, improve the database
for the rosemary herb, and redo the bounding boxes, considering the herb, not the bunch.

The class related to the herb mint presented mAP50 and precision values close to 0.65,
but the recall measure was also close to 0.6. The objective was to achieve a mAP50 value
above 0.7. Considering the results of the other measures, one can understand the recognition
confusion in the testing stage and the opportunities for improvement in the database for
the mint herb and redo the bounding boxes. The class related to the bay leaf presented
the worst performance measures. Despite the precision value of 0.66, the mAP50 and
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recall values were close to 0.6. Therefore, there were various recognition confusions when
considering different untrained aromatic herbs during the testing phase. Thus, there is an
opportunity to improve the database for the bay leaf herb and redo the bounding boxes.

The challenges previously raised [8,18,34] were noted in the method stage, as image
recognition became challenging due to variations in the aromatic herb’s size, angle, and
quality. These proportions or new or unusual configurations characteristic of aromatic
herbs represent a challenge regarding the volume and diversity of the database to be used
for training. Most difficulties we found in the present study, such as overlay detection and
false positive detections, were also perceived by Weaver and Smith [32] when digitalizing
an herbarium. We recommend increasing the number of images to overcome this issue.

After analyzing the results, we understand that the research’s problem and objective
have been achieved. Despite the opportunities for improvement in recognition through the
improvement of the database and bounding boxes, it is noted that it is possible to train a
deep learning model to identify diverse types of aromatic herbs.

Concerning the models’ results for each herb and the model for the classes, there is an
opportunity for improvement in the model training process for all aromatic herbs [17,18,35].
A model that does not produce false negatives, i.e., a model in which no undetected
bounding boxes should be detected, has a recall of 1.0. Therefore, it is essential to classify
negative samples. In the current approach, the mAP compares the ground truth bounding
box with the detected bounding box. It returns a score, emphasizing the improvements to
be implemented for a new training session.

Although this study was performed using the internet in real-time, there is an oppor-
tunity for training without internet dependency regarding the training environment when
the training is conducted in an environment connected to the internet and from a cloud
service provider. Thus, in addition to the cost of using this provider’s environment, there
were challenges regarding the constant connection of the environment. Internet speed does
not influence training, but possible connection fluctuations do, because, as the training
took place using resources from a public cloud, connection drops cause interruptions and
continuity in training.

5. Conclusions

We found a model to automatically detect herbs (rosemary, mint, and bay leaf). The
model with all classes showed mAP50 and precision measures greater than 0.7. However,
it also showed values above 0.5 for the recall measure, indicating a possibility of over-
detection. The recall measure indicates the ability of a model to find all the bounding boxes
of the ground truth (positive samples); therefore, based on the results and discussions
presented, the improvement of the database and bounding boxes stands out to better avoid
noise in detection.

Concerning the database, as it was the first contact with the object under study and
with the image identification process, the definition of the minimum number of images was
presented in the study. Furthermore, no parameters were found to requalify the minimum
quantity for training aromatic herbs in the literature. As mentioned, after analyzing the
results, the need for database improvement is evident and is in progress.

Author Contributions: Conceptualization, S.N.A., W.A.C.L., J.C.L.F. and M.T.O.; methodology, S.N.A.
and M.T.O.; software, S.N.A.; validation, W.A.C.L., J.C.L.F. and M.T.O.; formal analysis, M.E.F. and
O.V.; investigation, S.N.A., W.A.C.L., J.C.L.F. and M.T.O.; resources, W.A.C.L., J.C.L.F., M.E.F., O.V.
and M.T.O.; data curation, O.V.; writing—original draft preparation, S.N.A.; translation to English,
F.P.L.A.; writing—review and editing, I.d.A.N.; visualization, M.T.O.; supervision, S.N.A.; project
administration, M.T.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be available from the corresponding author.



AgriEngineering 2024, 6 1935

Acknowledgments: We appreciate the support from CEAGESP (Companhia de Entrepostos e Ar-
mazéns Gerais de São Paulo). This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fontes, V.; Pereira, D.C.; Pupin, B.; Sakane, K.K. Aplicação de Espectroscopia no Infravermelho: Como ferramenta para análise

quantitativa de orégano. Rev. Univap 2020, 26, 15–25. [CrossRef]
2. Carranza-Rojas, J.; Goeau, H.; Bonnet, P.; Mata-Montero, E.; Joly, A. Going deeper in the automated identification of Herbarium

specimens. BMC Evol. Biol. 2017, 17, 1–14. [CrossRef]
3. Triki, A.; Bouaziz, B.; Mahdi, W.; Gaikwad, J. Objects Detection from Digitized Herbarium Specimen based on Improved YOLO

V3. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, Valletta, Malta, 27–29 February 2020; Volume 4, pp. 523–529. [CrossRef]

4. Aamir, M.; Pu, Y.F.; Rahman, Z.; Abro, W.A.; Naeem, H.; Ullah, F.; Badr, A.M. A Hybrid Proposed Framework for Object Detection
and Classification. J. Inf. Process. Syst. 2018, 14, 1176–1194. [CrossRef]

5. Munisami, T.; Ramsurn, M.; Kishnah, S.; Pudaruth, S. Plant leaf recognition using shape features and colour histogram with
k-nearest neighbour classifiers. Procedia Comput. Sci. 2015, 58, 740–747. [CrossRef]

6. Agarwal, S.; Jalal, A.; Khan, M. Plant Identification Using Leaf Image Analysis. In Proceedings of the 3rd International Conference
on Internet of Things and Connected Technologies (ICIoTCT), 2018, Malaviya National Institute of Technology, Jaipur, India,
26–27 March 2018.

7. Véstias, M.P. A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms 2019, 12, 154.
[CrossRef]

8. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros,
J.; et al. Development and validation of a Deep Learning Algorithm for detection of diabetic retinopathy in retinal fundus
photographs. JAMA 2016, 316, 2402–2410. [CrossRef]

9. Johnston, T.; Young, S.R.; Hughes, D.; Patton, R.M.; White, D. Optimizing Convolutional Neural Networks for Cloud Detection.
In Proceedings of the Machine Learning on HPC Environments—MLHPC’17, New York, NY, USA, 12 November 2017; Volume 4,
pp. 1–9. [CrossRef]

10. Lecun, Y.; Bengio, Y. The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 1995.
11. Sun, K.; Li, Z.; Zheng, Y.; Kuo, H.-W.; Lee, K.-P.; Tang, K.-T. An Area-Efficient Accelerator for Non-Maximum Suppression. IEEE

Trans. Circuits Syst. II Express Briefs 2023, 70, 2251–2255. [CrossRef]
12. Symeonidis, C.; Mademlis, I.; Pitas, I.; Nikolaidis, N. Neural Attention-Driven non-maximum suppression for person detection.

IEEE Trans. Image Process. 2023, 32, 2454–2467. [CrossRef]
13. Oro, D.; Fernández, C.; Martorell, X.; Hernando, J. Work-Efficient Parallel Non-Maximum Suppression Kernels. Comput. J. 2022,

65, 773–787. [CrossRef]
14. Wang, Z.J.; Turko, R.; Shaikh, O.; Park, H.; Das, N.; Hohman, F.; Kahng, M.; Chau, D.H.P. CNN Explainer: Learning Convolutional

Neural Networks with Interactive Visualization. IEEE Trans. Vis. Comput. Graph. 2021, 27, 1396–1406. [CrossRef]
15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 7–12 June 2015; pp. 779–788. Available
online: https://arxiv.org/abs/1506.02640 (accessed on 10 May 2024).

16. Ultralytics YOLOv8 Docs. Available online: https://docs.ultralytics.com/ (accessed on 12 March 2024).
17. Zhang, H.; Pan, Y.; Liu, X.; Chen, Y.; Gong, X.; Zhu, J.; Yan, J.; Zhang, H. Recognition of the rhizome of red ginseng based on

spectral-image dual-scale digital information combined with intelligent algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2023, 297, 122742. [CrossRef] [PubMed]

18. Fatima, H.S.; Hassan, I.U.; Hasan, S.; Khurram, M.; Stricker, D.; Afzal, M.Z. Formation of a Lightweight, Deep Learning-Based
weed detection system for a commercial autonomous laser weeding robot. Appl. Sci. 2023, 13, 3997. [CrossRef]

19. Kholiya, D.; Mishra, A.; Pandey, N.; Tripathi, N. Plant Detection and Counting using Yolo based Technique. In Proceedings of the
3rd Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 25 August 2023; pp. 1–5. [CrossRef]

20. Andriyanov, N. Development of Apple Detection System and Reinforcement Learning for Apple Manipulator. Electronics 2023,
12, 727. [CrossRef]

21. Kuznetsova, A.; Maleva, T.; Soloviev, V. Using YOLOv3 Algorithm with Pre- and Post-Processing for Apple Detection in
Fruit-Harvesting Robot. Agronomy 2020, 10, 1016. [CrossRef]

22. Andriyanov, N.A.; Dementiev, V.E.; Tashlinskii, A.G. Detection of objects in the images: From likelihood relationships towards
scalable and efficient neural networks. Comput. Opt. 2022, 46, 139–159. [CrossRef]

23. Mirzaei, B.; Nezamabadi-pour, H.; Raoof, A.; Derakhshani, R. Small Object Detection and Tracking: A Comprehensive Review.
Sensors 2023, 23, 6887. [CrossRef] [PubMed]

24. Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and
Industrial Defect Detection. Machines 2023, 11, 677. [CrossRef]

https://doi.org/10.18066/revistaunivap.v26i51.2451
https://doi.org/10.1186/s12862-017-1014-z
https://doi.org/10.5220/0009170005230529
https://doi.org/10.3745/JIPS.02.0095
https://doi.org/10.1016/j.procs.2015.08.095
https://doi.org/10.3390/a12080154
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1145/3146347.3146352
https://doi.org/10.1109/TCSII.2022.3233738
https://doi.org/10.1109/TIP.2023.3268561
https://doi.org/10.1093/comjnl/bxaa108
https://doi.org/10.1109/TVCG.2020.3030418
https://arxiv.org/abs/1506.02640
https://docs.ultralytics.com/
https://doi.org/10.1016/j.saa.2023.122742
https://www.ncbi.nlm.nih.gov/pubmed/37098315
https://doi.org/10.3390/app13063997
https://doi.org/10.1109/ASIANCON58793.2023.10270530
https://doi.org/10.3390/electronics12030727
https://doi.org/10.3390/agronomy10071016
https://doi.org/10.18287/2412-6179-CO-922
https://doi.org/10.3390/s23156887
https://www.ncbi.nlm.nih.gov/pubmed/37571664
https://doi.org/10.3390/machines11070677


AgriEngineering 2024, 6 1936

25. Che Soh, A.; Yusof, U.K.; Radzi, N.F.M.; Ishak, A.J.; Hassan, M.K. Classification of aromatic herbs using artificial intelligent
technique. Pertanika J. Sci. Technol. 2017, 25, 119.

26. Chanyal, H.; Yadav, R.K.; Saini, D.K.J. Classification of Medicinal Plants Leaves Using Deep Learning Technique: A Review. Int. J.
Intell. Syst. Appl. Eng. 2022, 10, 78–87.

27. Fernandes, J.C.L.; Okano, M.T.; Lopes, W.A.C.; Antunes, S.N.; Vendrametto, O. An Architecture to Identify Aromatic Herbs using
Augmented Reality (AR) and Mobile Application. WSEAS Trans. Environ. Dev. 2023, 19, 1459–1467. [CrossRef]

28. Duth, S.; Vedavathi, S.; Roshan, S. Herbal Leaf Classification using RCNN, Fast RCNN, Faster RCNN. In Proceedings of the 2023
7th International Conference on Computing, Communication, Control And Automation (ICCUBEA), Pune, India, 18–19 August
2023; pp. 1–8.

29. Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R. CRISP-DM 1.0: Step-By-Step Data Mining Guide;
Semantic Scholar Inc.: Seattle, DC, USA, 2000.

30. CVAT—Computer Vision Annotation Tool. Available online: https://www.cvat.ai (accessed on 12 November 2023).
31. Vaz, A.P.A.; Jorge, M.H.A. Alecrim. Corumbá, MS: Embrapa Pantanal, 2006. 1 p. (Plantas Medicinais, Codimentares e

Aromáticas). Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAP/56607/1/FOL68.pdf (accessed on 12
December 2023).

32. Vaz, A.P.A.; Jorge, M.H.A. Hortelã. Corumbá, MS: Embrapa Pantanal, 2006. Plantas Medicinais, Codimentares e Aromáticas. Avail-
able online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAP/56556/1/FOL90.pdf (accessed on 12 December 2023).

33. Vaz, A.P.A.; Jorge, M.H.A. Louro. Corumbá, MS: Embrapa Pantanal, 2006. Plantas Medicinais, Codimentares e Aromáticas. Avail-
able online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAP/56112/1/FOL113.pdf (accessed on 12 December 2023).

34. Cloud Google Colab. Available online: https://colab.research.google.com/notebooks/intro.ipynb (accessed on 12 Decem-
ber 2023).

35. Weaver, W.; Smith, S. From leaves to labels: Building modular machine learning networks for rapid herbarium specimen analysis
with LeafMachine2. Appl. Plant Sci. 2023, 11, e11548. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.37394/232015.2023.19.132
https://www.cvat.ai
https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAP/56607/1/FOL68.pdf
https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAP/56556/1/FOL90.pdf
https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAP/56112/1/FOL113.pdf
https://colab.research.google.com/notebooks/intro.ipynb
https://doi.org/10.1002/aps3.11548
https://www.ncbi.nlm.nih.gov/pubmed/37915430

	Introduction 
	Background 
	You Only Look Once (YOLO) 
	YOLO v8 
	Related Works 

	Methods 
	Results and Discussion 
	Conclusions 
	References

