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Abstract: Vision transformers (ViTs) have recently gained traction in plant disease clas-
sification due to their strong performance in visual recognition tasks. However, their
application to tomato leaf disease recognition remains challenged by two factors, namely
the need for models that can generalise across diverse disease conditions and the absence
of a unified framework for systematic comparison. Existing ViT-based approaches often
yield inconsistent results across datasets and disease types, limiting their reliability and
practical deployment. To address these limitations, this study proposes the ViT-Based Ro-
bust Framework (ViT-RoT), a novel benchmarking framework designed to systematically
evaluate the performance of various ViT architectures in tomato leaf disease classifica-
tion. The framework facilitates the systematic classification of state-of-the-art ViT variants
into high-, moderate-, and low-performing groups for tomato leaf disease recognition. A
thorough empirical analysis is conducted using one publicly available benchmark dataset,
assessed through standard evaluation metrics. Results demonstrate that the ConvNeXt-
Small and Swin-Small models consistently achieve superior accuracy and robustness across
all datasets. Beyond identifying the most effective ViT variant, the study highlights critical
considerations for designing ViT-based models that are not only accurate but also efficient
and adaptable to real-world agricultural applications. This study contributes a structured
foundation for future research and development in vision-based plant disease diagnosis.

Keywords: ViT; tomato disease recognition; plant disease; deep learning; precision agriculture

1. Introduction
The agricultural sector is critical to global food security and contributes significantly

to national economies. In this context, tomato cultivation is a major contributor to local
and international markets [1]. The demand for tomatoes has increased in recent years,
mainly driven by the expanding fast-food industry and the growing consumption of
processed tomato-based products. The rising demand has led to more efforts to improve
tomato production. Tomato farming also plays a vital role in supporting the livelihoods of
smallholder farmers, particularly in developing countries. In many regions, it serves as a
cash crop that enhances household income and rural employment opportunities. However,
tomato crops are highly vulnerable to a variety of leaf diseases, such as early blight, late
blight, and leaf mold, which can adversely affect the plant and significantly reduce yield
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quality and quantity, consequently leading to economic losses [2]. Therefore, timely and
accurate identification of these diseases is essential for effective application and sustainable
crop management.

Traditionally, disease detection in plant leaves has relied on manual inspection by
agricultural experts and farmers, which is labour-intensive, time-consuming and prone
to human error [3]. To overcome these limitations, in the past, researchers have utilised
artificial intelligence (AI) and computer vision-based solutions [4]. Convolutional neural
networks (CNNs), in particular, have demonstrated significant effectiveness in image-
based plant disease recognition tasks [5]. To improve performance and better adapt to the
characteristics of specific plant disease datasets, custom-designed CNNs are commonly
employed in this domain [6,7]. More recently, transfer learning has gained prominence as
an effective alternative, leveraging pre-trained CNNs to enhance classification accuracy
while minimising reliance on large labelled datasets. Building on this approach, various
pre-trained CNN models have been employed for plant leaf disease classification, each
offering distinct advantages and strengths [8]. VGG16 and VGG19 are widely used base-
lines due to their computational efficiency, while ResNet50 and ResNet101 leverage skip
connections to achieve greater depth and generalisability in distinguishing visually similar
leaf diseases [9–11]. MobileNet’s lightweight architecture makes it particularly well-suited
for deploying leaf disease classification models on mobile and embedded agricultural
devices [12]. EfficientNet balances accuracy and efficiency using compound scaling, while
DenseNet enhances leaf disease detection through feature reuse across layers [13–15].
However, the inherent limitations of convolutional operations often hinder CNNs from
capturing subtle and infrequent features in leaf images, which are crucial for distinguishing
visually similar disease patterns [16].

In recent years, vision transformers (ViTs) have emerged as a robust alternative to
CNNs for a range of computer vision tasks. Originally introduced for natural language
processing (NLP), ViTs gained popularity after outperforming CNNs on various bench-
mark datasets, particularly in image classification tasks with large amounts of labelled
data [17–19]. Recent studies have shown that ViTs effectively capture intricate features,
enhancing their ability to distinguish between subtle disease patterns, such as those found
in plants, where differences are difficult to detect [20,21]. Additionally, unlike traditional
deep learning methods that often require extensive preprocessing and manual feature
extraction, ViTs minimise the need for specialised knowledge in feature engineering [22].
This is particularly valuable in agriculture, where effective disease detection enhances trust
in AI and informs expert decision-making. As plant disease detection advances, ViTs are
expected to provide more accurate and efficient solutions for sustainable crop management.
Recently, researchers have developed ViT variants to enhance the efficiency of image-based
classification tasks, which leverage the transformer model’s ability to accurately capture
contextual relationships and features within images. Notable variants that are used in
plant disease recognition include compact convolutional transformers (CCTs) [23], Swin
transformers [24], MobileViT [25], MaxViT [17], and EfficientViT [26].

Despite the growing adoption of ViTs in plant disease recognition, their practical
application in agriculture remains limited due to several unresolved challenges. Specif-
ically, these include (1) the absence of high-performing ViT models that can accurately
classify diverse and visually similar leaf diseases under real-world agricultural conditions
and (2) the lack of a systematic comparative framework to evaluate and benchmark the
effectiveness of various ViT variants using leaf images. While several ViT-based approaches
have demonstrated encouraging results, their performance often varies across datasets and
disease types, making generalisation difficult in uncontrolled environments. Furthermore,
practical deployment in agricultural settings requires models that are not only accurate



AgriEngineering 2025, 7, 185 3 of 22

but also computationally efficient and adaptable to resource-constrained environments.
To address these limitations, this study introduces ViT-RoT, a benchmarking framework
designed to systematically evaluate ViT architectures for tomato leaf disease recognition. By
establishing a structured comparative analysis of ViT variants, ViT-RoT provides insights
into the trade-offs between accuracy, efficiency, and generalisability, ensuring that selected
models are optimised for real-world agricultural applications. This research conducts
a comprehensive empirical study to identify the most robust ViT models for accurately
classifying tomato leaf diseases under diverse conditions. The study aims to establish a
well-defined evaluation framework that enhances disease detection in real-world agricul-
tural settings by incorporating systematic benchmarking and performance analysis. The
key contributions of this study are outlined below.

1. ViT-RoT, as shown in Figure 1, a novel benchmarking framework, is introduced
to systematically evaluate the performance of ViT architectures in tomato leaf dis-
ease recognition.

2. A comprehensive comparative and empirical analysis of multiple state-of-the-art ViT
variants is conducted under consistent experimental settings. This enables an objective
evaluation of each model’s capability in recognising complex disease patterns in
tomato leaf images.

3. Extensive performance benchmarking is conducted on three benchmark datasets using
standard evaluation metrics to comprehensively assess the classification effectiveness
of each ViT variant to classify images into high-, moderate-, and low-performing ViT
variants. The results demonstrate that ConvNeXt-Small and Swin-Small consistently
outperform all other ViT variants in tomato disease recognition.

Dataset

Image Resizing

Disease

Healthy

224 x 224

Original Size

Splitting

Training

Validation and
Testing

70%

30%

NormalizationAugmentation

LeafPrep

ViT ZooAgriTrain

Swin
CSwin
CCT

Mobile ViT
ConvNeXt-ViT
Efficient ViT

PlantScore

Figure 1. Overall flow of the proposed ViT-RoT framework for tomato leaf disease recognition.

The remainder of this paper is organized as follows: Section 2 discusses related works
in the field of transformer-based tomato leaf disease recognition; Section 3 describes the
proposed methodology and the experimental setup; Section 4 presents the results; and
Section 5 concludes the paper with future research directions.

2. Related Work
Over the years, numerous studies have investigated the application of deep learning

techniques for automated leaf-based plant disease detection, with a particular emphasis
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on the use of CNN-based pre-trained models [27,28] and, more recently, ViTs [29,30].
These models have been applied across various crops, including tomato plants, to identify
and classify diseases from leaf images. This section categorises and reviews a selection
of closely related studies on tomato leaf disease recognition into two main approaches,
namely (1) CNN-based methods and (2) ViT-based methods. For a more comprehensive
overview, readers are encouraged to refer to recent survey papers [5,31].

2.1. CNN-Based Approaches

CNN-based approaches have consistently outperformed traditional machine learning
methods in plant disease recognition from leaf images, with notable success in classifying
tomato diseases. Maeda et al. [32] evaluated five CNN models, such as AlexNet, GoogleNet,
Inception V3, ResNet-18, and ResNet-50, for classifying nine distinct tomato diseases and
healthy leaves, and they reported that GoogleNet achieved the highest performance with
an AUC score of 99.72%. However, the study concluded that GoogleNet’s architectural
complexity may lead to longer training times and higher computational demands com-
pared to more lightweight models. In [33], a comparative analysis of several CNN-based
architectures for the classification of tomato diseases was performed. The findings indicated
that the ResNet-50 architecture achieved superior performance, with an accuracy of 96.51%
compared to 95.83% for AlexNet and 95.66% for GoogleNet. These results were obtained us-
ing the stochastic gradient descent (SGD) optimiser. However, despite its high accuracy, the
ResNet-50-based model demonstrated relatively slow inference times, which may have hin-
dered its practical applicability in real-time disease detection scenarios. In [34], the authors
demonstrated that the pre-trained convolutional neural network models EfficientNet-B4
and EfficientNet-B5 outperformed several other state-of-the-art architectures previously
regarded as highly accurate. However, EfficientNet-B4 had 19 million parameters and
EfficientNet-B5 had 30 million parameters. As a result, more computational time was
required to accommodate the increased resource demands. Yulita et al. [35] proposed a
tomato disease detection method that used DenseNet as the backbone. The model was
trained on 18,160 images from the PlantVillage repository and achieved a classification
accuracy of 95.40% after 30 training iterations, successfully distinguishing between nine
disease categories and healthy leaves.

2.2. ViT-Based Approaches

Self-attention is the fundamental mechanism enabling ViTs to capture global depen-
dencies in an image. Unlike CNNs, which rely on local convolutional filters, self-attention
dynamically assigns weights to different parts of the image based on their importance. For-
mally, given input patch embeddings X ∈ RN×d, the self-attention mechanism computes
attention scores using query (Q), key (K), and value (V) matrices:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

where dk is the scaling factor. This allows ViTs to weigh different patches based on relevance,
which enables robust feature extraction for complex leaf disease patterns [36].

The recent popularity in the adoption of ViTs for plant leaf disease classification is
attributed to their self-attention mechanisms, which facilitate improved classification ac-
curacy while reducing the need for extensive pre-processing. For instance, Reedha et
al. [37] demonstrated the effectiveness of the convolutional-free ViT model, which lever-
ages the self-attention mechanism to transform an image into a sequence of patches for
processing by a standard transformer encoder. Despite the limited size of the dataset, the
authors reported high classification performance, which they attributed to the applica-
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tion of data augmentation, transfer learning, and the relatively small number of target
classes. Thai et al. [29] applied a ViT-based approach to cassava leaf disease identification,
achieving at least a 1% higher accuracy than popular CNN models and a 90% F1 score.
However, the model is large, with 85.79 million parameters, which limits its applicability in
resource-constrained Internet of Things (IoT) environments. To address this, they employed
quantisation, reducing the model’s size by three times before deploying it on a Raspberry
Pi 4 module.

Researchers have proposed various ViT variants to address specific challenges in
image-based leaf disease classification, each offering distinct advantages regarding compu-
tational efficiency, classification accuracy, and adaptability to diverse application contexts.
In [38], the authors proposed a model called TLMViT, which integrates transfer learning
with ViT architectures for plant disease classification. This approach enhances feature
extraction by first utilising pre-trained CNN models, such as VGG19 or ResNet50, fol-
lowed by a ViT at a deeper layer. The model was evaluated on the PlantVillage and wheat
datasets, achieving validation accuracies of 98.81% and 99.86%, respectively. Recent ad-
vancements in the Swin transformer have made it highly efficient in processing images,
making it well-suited for real-time detection systems that need fast responses. For instance,
Sun et al. [24] employed the PlantVillage and Tomato-Village datasets to evaluate a Swin
transformer-based approach for tomato disease classification. The results demonstrated
that the proposed system exhibited high effectiveness in disease detection, achieving an
accuracy of 99.7%. Additionally, the integration of the CNN-attention module improved
the model’s performance.

In a similar vein, an extended study by Thakur et al. [39] presented PlantXViT, a
lightweight model that integrates CNNs and ViTs for efficient plant disease identification
across various crops, specifically designed for deployment in IoT-based smart agriculture
systems. Evaluations on five datasets show PlantXViT outperforms state-of-the-art models,
achieving accuracies of 93.5%, 92.5%, and 98.3% on apple, maize, and rice datasets, respec-
tively. Similarly, MobileViT is a lightweight hybrid model combining the strengths of CNNs
and ViTs for efficient and accurate image classification [25]. Building upon this, Han et
al. [40] proposed an enhanced MobileViT network, incorporating a Squeeze-and-Excitation
module for improved feature fusion and a global attention mechanism to enhance feature
representation, thereby increasing classification accuracy. Experimental results show the
improved model achieves an 88.86% recognition accuracy, which is 4.28% points higher
than the original MobileViT, outperforming other CNN models. In a related MobileViT
advancement, Tonmoy et al. [41] introduced MobilePlantViT, a hybrid ViT model for effi-
cient plant disease classification. With only 0.69 million parameters, it outperformed larger
models like MobileViTv1 and MobileViTv2, achieving test accuracies from 80% to over
99% across various datasets. This highlights its potential for lightweight, resource-efficient
AI in smart agriculture. Hossain et al. [17] evaluated different transformer-based models
for classifying tomato leaf diseases. They found that MaxViT outperformed the others,
achieving an accuracy of 97%. In another study by Emmanuel and Hidayaturrahman [26],
pre-trained ViT models, including EfficientViT b-series, EfficientViT m-series, and Mobile-
ViT, were used for plant disease classification. The research compared those ViT models and
concluded that EfficientViT b2 is the best model for plant disease classification, provided
that training time and parameter size are not a concern.

In summary, the literature shows a growing interest in applying ViTs for plant disease
detection, with several studies highlighting their effectiveness in classifying plant diseases
from leaf images. While these models show great novelty, challenges still exist, especially
in adapting them to handle the variability of agricultural conditions and their potential in
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tomato leaf disease recognition. Issues such as the need for more robust models and the lack
of a standard framework to evaluate different ViT variants for this task remain unexplored.

3. Proposed Method
In this section, the ViT-Based Robust Framework for tomato leaf disease recognition

(ViT-RoT) is introduced as a unified framework for the detection and classification of
tomato plant diseases using ViT architectures. The ViT-RoT is designed to address the
need for accurate and efficient plant disease recognition by leveraging the powerful feature
extraction capabilities of ViTs. The framework systematically evaluates the performance of
various ViT-based models under a carefully designed and standardised experimental setup,
ensuring consistency and fairness in comparisons. All experiments were conducted using
the tomato leaf data from the Tomato Leaves Dataset, which provides a comprehensive
collection of images depicting different disease types, including common and rare infections.
Figure 2 illustrates sample images from the dataset, showcasing both diseased and healthy
tomato leaves to highlight the visual differences used for classification.

Healthy

Late blight Leaf moldEarly blightBacterial spot Powdery mildew

Septoria leaf spot Spider mites Target spot Tomato
mosaic virus

Tomato yellow
leaf curl virus

Figure 2. Sample images from the Tomato Leaves Dataset, including examples of leaves affected by
various diseases and a healthy leaf.

The proposed ViT-RoT framework integrates LeafPrep, a standardised preprocessing
pipeline; ViT Zoo, a module for managing model variants; AgriTrain, a specialised training
strategy; and PlantScore, a uniform evaluation protocol to facilitate reliable benchmarking
across multiple state-of-the-art transformer models. The overall pipeline of the proposed
ViT-RoT framework is shown in Figure 1.

3.1. LeafPrep—Preprocessing Pipeline

The first module of the ViT-RoT framework is the preprocessing stage, namely Leaf-
Prep. This module plays a critical role in ensuring data consistency and proper preparation
before model training and evaluation. LeafPrep is designed to standardise the input images
and enhance the model’s ability to generalise across varying conditions. It consists of four
essential steps, namely image resizing, augmentation, normalisation, and train–validation–
test splitting.

First, each raw input image Iraw is resized to a fixed resolution of 224× 224 pixels to
match the input size requirements of ViT architectures:

Iresized = Resize(Iraw, 224, 224)

where Resize(·) represents the resizing operation.
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Following resizing, a series of data augmentation techniques are applied to increase
dataset diversity and improve model robustness. The main augmentations used in Leaf-
Prep are

• RandomHorizontalFlip: Flips the image horizontally with a probability of 0.5.
• RandomVerticalFlip: Flips the image vertically with a probability of 0.5.
• RandomRotation: Applies random rotations within a specified angle range.
• RandomResizedCrop: Randomly crops and resizes the image to enhance spatial

variability.
• ColorJitter: Adjusts brightness and contrast to introduce colour variations.
• Normalise: Standardises pixel values to zero mean and unit variance.

These operations can be formally represented as

Iaug = Augment(Iresized)

where Augment(·) may include the above transformations.
After augmentation, the images are normalised to have zero mean and unit variance,

which is essential for stabilising and accelerating the training process. The normalisation
step can be mathematically expressed as

Inorm(x, y, c) =
Iaug(x, y, c)− µc

σc

where Iaug(x, y, c) denotes the pixel value at spatial location (x, y) and channel c, while µc

and σc are the mean and standard deviation of channel c computed across the training dataset.
Finally, the preprocessed dataset is split into two disjoint subsets, which are the training

and validation sets. If the entire dataset is denoted by D, the split can be expressed as

D = Dtrain ∪Dval with Dtrain ∩Dval = ∅

This commonly uses a ratio such as 70% for training and 30% for validation. Through
these carefully designed preprocessing steps, LeafPrep ensures that the input to the ViT-
based models is standardised, diverse, and representative of real-world variability.

3.2. ViT Zoo—Model Variant Module

After the preprocessing stage, the subsequent module in the proposed ViT-RoT frame-
work, namely ViT Zoo, is dedicated to classifying tomato leaf diseases utilising ViTs. ViTs
have recently emerged as a powerful alternative to traditional CNNs for image classification
tasks. Unlike CNNs, which rely on localised receptive fields and convolutional operations,
ViTs treat an image as a sequence of patches and apply a self-attention mechanism to
capture global contextual information.

Formally, given a preprocessed input image Inorm ∈ R224×224×3, it is divided into N
non-overlapping patches {p1, p2, . . . , pN}, where each patch is pi ∈ RP2×3 for patch size
P × P. The sequence of flattened patches is then linearly embedded using a learnable
projection matrix E ∈ R(P2×3)×D, resulting in

z0 = [Ep1; Ep2; . . . ; EpN ] + Epos

where Epos denotes the positional embedding added to retain positional information.
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The embedded patches are subsequently processed through L transformer encoder
layers. Each layer consists of a multi-head self-attention (MSA) mechanism and a feed-
forward network (FFN), defined as

z′l = MSA(LayerNorm(zl−1)) + zl−1

zl = FFN(LayerNorm(z′l)) + z′l

for l = 1, 2, . . . , L. The final output is then passed through a classification head, typically a
linear layer, to predict the disease class.

Figure 3 illustrates the ViT architecture, highlighting its key components and structure
specifically adapted for tomato leaf disease classification. This design allows ViTs to
effectively capture complex disease patterns and subtle variations that may be overlooked
by CNNs.

Linear Projection of Flattened Patches

Transformer Encoder

MLP Head

1 2 3 5 84 96 7
Patch + Position 

Embedding
( * Extra Learnable Embedding)

0 *

11. Healthy

3. Late blight
4. Leaf mold

2. Early blight
1. Bacterial spot

5. Powdery mildew

6. Septoria leaf spot
7. Spider mites
8. Target spot

10. Tomato mosaic virus
9. Tomato yellow leaf curl virus

  Lx

Embedded 
Patches

Norm

Multi-Head
Attention

Norm

MLP

Transformer Encoder

Classes

Figure 3. Overview of the ViT architecture, showcasing its core components and structure for tomato
leaf disease classification.

The overall ViT-based classification process is summarised in Algorithm 1. The tomato
leaf disease classification algorithm using ViT begins by dividing a normalised image
into small patches, projecting them into a latent space with positional embeddings and
processing them through multiple transformer layers. After successive applications of MSA
and FFN with residual connections, a classification head predicts the disease label.

The ViT Zoo module leverages several state-of-the-art ViT-based models, each offering
unique architectural innovations tailored to enhance performance in plant disease recogni-
tion. Apart from the primary ViT, the models employed, such as CCT, Swin transformer,
MobileViT, ConvNeXt-ViT, and EfficientViT, are described in detail in the next subsections.

Algorithm 1 Tomato Leaf Disease Classification using ViT

Require: Normalized image Inorm
1: Divide Inorm into N patches of size P× P. Here, the P is 3
2: Flatten and project each patch using learnable embeddings
3: Add positional embeddings to obtain initial input z0
4: for l = 1 to L do
5: Apply MSA and residual connection
6: Apply FFN and residual connection
7: end for
8: Apply classification head to predict disease label
9: return Predicted class
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3.2.1. CCT

The CCT architecture, as shown in Figure 4, merges convolutional layers with trans-
former architectures by replacing patch embeddings with convolutional tokenisers. This
design adds inductive biases like locality and translation equivariance, missing in vanilla
ViTs. CCT also replaces class tokens and positional embeddings with sequence pool-
ing, enhancing flexibility and reducing input structure dependence [42]. It outperforms
lightweight transformers like ViT-Lite and ConViT, especially on tasks with limited data
and high spatial variance, making it ideal for plant disease recognition in leaf imagery.

Sequence Pooling

Reshape

0 321 4

MLP Head

Optional Positional
 Embedding

Convolutional .......

11. Healthy

3. Late blight
4. Leaf mold

2. Early blight
1. Bacterial spot

5. Powdery mildew
6. Septoria leaf spot

7. Spider mites
8. Target spot
9. Tomato mosaic virus
10. Tomato yellow leaf curl virus

Transformer EncodersTransformer EncodersTransformer EncodersTransformer Encoders

Figure 4. Overview of the CCT architecture, showcasing its core components and structure for tomato
leaf disease classification.

3.2.2. Swin Transformer

Swin transformer (i.e., shifted window transformer), as shown in Figure 5, is a hier-
archical ViT designed for various computer vision tasks. Unlike standard ViTs that use
fixed-size patches, Swin transformer computes self-attention within local non-overlapping
windows, reducing computational complexity [43]. A shifted windowing mechanism
between layers enables cross-window interaction, enhancing model expressiveness. This
design improves efficiency while maintaining long-range dependency modelling, which
makes it effective for tasks like image classification and object detection and segmentation,
where both local and global patterns are crucial.

3.2.3. MobileViT

MobileViT, as shown in Figure 6, is a lightweight, mobile-friendly ViT designed
to combine the strengths of CNNs and transformers, making it suitable for resource-
constrained devices [44]. It replaces traditional local convolutions with global context
modelling through transformer layers, capturing both local and long-range dependencies
while maintaining efficiency. Its compact design and generalisation ability make it ideal for
mobile-based agricultural diagnosis, such as real-time tomato leaf disease detection.
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Figure 5. Swin ViT architecture: a modular framework for tomato leaf disease recognition.
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Figure 6. MobileViT architecture: lightweight and efficient transformer design for tomato leaf disease
recognition.

3.2.4. ConvNeXt–ViT

The ConvNeXt–ViT hybrid architecture, as shown in Figure 7, merges the strengths
of convolutional networks and ViTs for efficient image understanding. ConvNeXt, a mod-
ernised CNN inspired by transformer principles, provides a strong convolutional backbone
with improved spatial hierarchies and stability [45]. Combined with a ViT module, the
hybrid model captures both localised features and global context. This design boosts
feature richness and performance, making it ideal for complex tasks in image analysis.

3.2.5. EfficientViT

EfficientViT, as shown in Figure 8, is a family of resource-efficient ViTs designed to
balance accuracy and latency. It uses depthwise convolutions, efficient attention modules,
and multi-resolution processing to reduce complexity while preserving performance [46].
Well-suited for edge deployment, EfficientViT offers fast inference on low-power devices
and handles high-resolution agricultural images effectively, making it ideal for real-time
tomato leaf disease detection in precision farming.
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3.3. AgriTrain—Training Strategy

The AgriTrain module of the ViT-RoT framework defines the training strategy em-
ployed to optimise the ViT models for robust tomato leaf disease recognition. A supervised
learning approach was utilised, where the objective is to minimise the discrepancy between
the predicted class probabilities and the ground-truth labels.
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Given a training set D = {(xi, yi)}N
i=1 consisting of N normalized images xi and their

corresponding labels yi ∈ {1, . . . , C} for C classes, the model fθ(·) with parameters θ is
optimized by minimizing the cross-entropy loss LCE, defined as

LCE = − 1
N

N

∑
i=1

C

∑
c=1

1{yi=c} log( p̂i,c)

where p̂i,c denotes the predicted probability of sample i belonging to class c and 1{yi=c} is
an indicator function that equals 1 if yi = c and 0 otherwise.

Model training was conducted using the AdamW optimiser, an improved variant of
the Adam optimiser that incorporates decoupled weight decay to prevent overfitting. The
parameter update rule for AdamW is given by

θt+1 = θt − η

(
mt√

vt + ε
+ λθt

)
where η is the learning rate, mt and vt are biased estimates of the first and second moments of
the gradients, ε is a small constant for numerical stability, and λ is the weight decay coefficient.

During training, multiple evaluation metrics were continuously monitored. To mit-
igate the risk of overfitting, an early stopping mechanism was employed. Training was
halted if the validation loss did not improve over a specified patience period p. The
AgriTrain strategy is summarised in Algorithm 2.

Algorithm 2 AgriTrain—Supervised Training Strategy for ViT-RoT

Require: Training data D, initialised model fθ , optimiser (AdamW), loss function (cross-
entropy), patience parameter p

1: Initialise optimiser and set best validation loss to infinity
2: for each epoch do
3: Train the model on the training set and compute training loss
4: Evaluate the model on the validation set and compute validation loss
5: if validation loss improves then
6: Save current model checkpoint
7: Update best validation loss
8: Reset patience counter
9: else

10: Increment patience counter
11: if patience counter ≥ p then
12: Stop training
13: end if
14: end if
15: end for

The progression of the model’s performance was visualized using training and val-
idation loss curves to monitor learning behaviour and identify potential overfitting or
underfitting. Following training, the best model checkpoint, selected based on the lowest
validation loss, was used for further qualitative analysis. Inference was carried out on
randomly selected validation samples to assess the real-world effectiveness of the model.
The models were trained using the default hyperparameters provided by their respective
official implementations, as summarized in Table 1. These configurations include parame-
ters such as learning rate, batch size, optimiser, and loss function, ensuring consistency and
fair comparison between models.
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Table 1. AgriTrain—hyperparameter comparison for ViT-RoT. CE denotes cross-entropy loss; LS-CE
denotes label smoothing cross-entropy.

Hyperparameter ViT Swin EfficientViT MobileViT ConvNeXt CCT

Number of Epochs 100 100 100 100 100 100
Batch Size 32 32 16 32 32 32
Learning Rate 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5 1× 10−4

Early Stopping Patience 10 10 10 10 10 10
Early Stopping Delta 0 0 0 0 0 0
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Loss Function CE CE CE CE CE LS-CE
Image Size 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224
Mixed Precision No No Yes Yes No Yes

3.4. PlantScore—Evaluation Metrics

To evaluate the performance of the trained models, four widely used evaluation met-
rics, such as accuracy, precision, recall, and F1-score, were employed in the PlantScore
module. These metrics provide a comprehensive view of classification effectiveness, par-
ticularly in scenarios with class imbalance. Let TP denote true Positive, TN denote true
negatives, FP denote false positives, and FN denote false negatives. The metrics are
subsequently defined as follows:

Accuracy measures the proportion of total correct predictions out of all predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision quantifies the proportion of correct positive predictions among all predicted
positives.

Precision =
TP

TP + FP
(2)

Recall measures the proportion of actual positive cases that were correctly predicted.

Recall =
TP

TP + FN
(3)

The F1-score is the harmonic mean of precision and recall, providing a single score
that balances both concerns.

F1-Score = 2× Precision× Recall
Precision + Recall

(4)

For multi-class classification, these metrics were computed for each class and aggre-
gated using macro averaging, ensuring equal weight was given to all classes regardless of
their frequency in the dataset.

4. Experiments
4.1. Datasets

The Tomato Leaf Disease Dataset, utilized in the ViT-RoT framework experiments,
comprises 23,531 RGB images across 11 distinct classes, encompassing a variety of tomato
leaf diseases along with healthy leaves. These classes include Bacterial Spot, Early Blight,
Healthy, Late Blight, Leaf Mold, Powdery Mildew, Septoria Leaf Spot, Spider Mites (Two-
spotted Spider Mite), Target Spot, Tomato Mosaic Virus, and Tomato Yellow Leaf Curl Virus.

The dataset comprises images resized to 224 × 224 pixels to align with the input
requirements of modern convolutional and transformer-based neural network architectures.
Primarily captured using mobile phone cameras in controlled laboratory conditions, the
dataset offers high-resolution imagery. A smaller subset includes images from semi-natural
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agricultural environments, introducing limited variability in lighting and background to
enhance representational diversity.

The dataset was split into 18,848 training images and 4683 validation images, as
shown in Figure 9. This partitioning supports effective model training and evaluation
while partially addressing class imbalance. Class representation ranges from 1256 images
(Powdery Mildew) to 3905 images (Late Blight), ensuring sufficient samples for robust
classification. The mix of controlled and semi-controlled settings makes the dataset suitable
for evaluating data-efficient vision transformers in plant disease recognition. However,
the limited inclusion of uncontrolled, real-world agricultural scenarios may hinder direct
generalization to field conditions without further domain adaptation.

The dataset is publicly available on Kaggle (https://www.kaggle.com/datasets/
ashishmotwani/tomato/data, accessed on 10 June 2025), promoting reproducibility and
facilitating further research in agricultural AI applications.

Bacterial Spot

Early Blight

Healthy

Septoria Leaf Spot

Spider Mites Two Spotted Spider Mite

Target Spot

Late Blight

Leaf Mold

Powdery Mildew

Tomato Mosaic Virus
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Figure 9. The disease and healthy class distribution in the tomato leaf dataset: (exterior) training set
and (interior) validation sets.

4.2. Research Setup

The ViT-RoT framework experiments were conducted on a laptop equipped with
an NVIDIA RTX 4070 GPU (8GB VRAM), an Intel Core i9 CPU (5.40 GHz clock speed),
and 32GB RAM. A batch size of 16 was optimised for the GPU’s memory constraints.
Experiments were run on Windows 11, with a fixed random seed ensuring reproducibility
of data shuffling, augmentation, and model initialisation.

4.3. Results and Discussions

Several recent studies have explored the effectiveness of various CNN- and ViT-based
architectures for leaf disease classification. Table 2 provides a comparative summary,
highlighting the models used and performance metrics reported in the literature.

Table 3 presents a detailed comparative evaluation of the ViT variants incorporated in
the ViT-RoT framework across multiple metrics, including loss, accuracy, precision, recall,
F1-score, and the number of training epochs. Each model’s performance is accompanied by
its respective ranking (as a superscript) across all evaluation metrics. This detailed compar-
ison highlights the nuances of model trade-offs between the number of training epochs,
model accuracy, and other important evaluation criteria, which provides a comprehensive
overview of the strengths and weaknesses of each variant.

https://www.kaggle.com/datasets/ashishmotwani/tomato/data
https://www.kaggle.com/datasets/ashishmotwani/tomato/data
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Table 2. Performance of CNN- and ViT-based models for tomato plant disease classification.

Model Year Citation Dataset Accuracy

AlexNet 2020 [32] PlantVillage 98.93%
GoogleNet 2020 [32] PlantVillage 99.39%
Inception V3 2020 [32] PlantVillage 98.65%
ResNet 18 2020 [32] PlantVillage 99.06%
ResNet 50 2020 [32] PlantVillage 99.15%
DenseNet121 2021 [47] PlantVillage 99.51% (5-class)
DenseNet201 2021 [48] PlantVillage 98.05% (10-class)
VGG-19 2023 [49] Not standard 98.27%
MobileNet-V2 2023 [49] Not standard 94.98%
ResNet-50 2023 [49] Not standard 99.53%
Faster-RCNN (ResNet-34) 2022 [50] PlantVillage 99.97%, mAP 0.981
ViT 2024 [30] PlantVillage 90.99%

Table 3. Results obtained for all the ViT variants integrated in the ViT-RoT framework with ranks
given in superscripts.

Model Epoch Loss Accuracy Precision Recall F1-Score

ViT Models
ViT-Tiny 17 0.05949 0.986710 0.986810 0.986710 0.986710

ViT-Small 14 0.04904 0.98986 0.98986 0.98986 0.98986

ViT-Base 11 0.05828 0.98838 0.98848 0.98838 0.98838

MobileViT Models
MobileViT-XXSmall 55 0.059710 0.985511 0.985711 0.985511 0.985511

MobileViT-XSmall 38 0.066512 0.985511 0.985512 0.985511 0.985511

MobileViT-Small 15 0.066111 0.981314 0.981314 0.981314 0.981314

EfficientViT Models
EfficientViT-M5 48 0.05266 0.98838 0.98839 0.98838 0.98838

EfficientViT-B0 19 0.04271 0.99004 0.99004 0.98995 0.98995

EfficientViT-B2 44 0.083414 0.977916 0.977916 0.977916 0.977816

Swin Transformer Models
Swin-Tiny 13 0.05155 0.98857 0.98857 0.98857 0.98857

Swin-Small 14 0.069713 0.99041 0.99042 0.99041 0.99041

Swin-Base 8 0.04832 0.99033 0.99033 0.99033 0.99033

ConvNeXt Models
ConvNeXt-Tiny 5 0.04853 0.98995 0.99004 0.99004 0.99004

ConvNeXt-Small 10 0.05427 0.99041 0.99051 0.99041 0.99041

CCT Models
CCT-7×7×2×224 31 0.159016 0.979115 0.979115 0.979115 0.979015

CCT-14×7×2×224 21 0.143415 0.983513 0.983713 0.983513 0.983513

EfficientViT-B0 demonstrates the best performance in terms of loss (0.0427), reflecting
superior convergence, while it also ranks fourth in accuracy and precision and fifth in
recall and F1-score. Although EfficientViT-B0 achieved the lowest loss, Swin-Small and
ConvNeXt-Small jointly achieved the highest accuracy (0.9904), positioning them as the
leading models in terms of classification correctness. The ViT models, including ViT-Tiny,
ViT-Small, and ViT-Base, exhibit high accuracy values, with ViT-Tiny achieving 0.9867,
ranking it in the top 10 across all metrics. These models tend to perform well in terms of
accuracy, precision, and recall, although they show higher loss values compared to other
models. MobileViT models, such as MobileViT-XXSmall and MobileViT-XSmall, generally
show slightly lower performance metrics, with accuracy values around 0.9855, and higher
loss values, indicating a trade-off between model size and performance.
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The EfficientViT models display competitive performance, with EfficientViT-B0 achiev-
ing the highest accuracy among all models (0.9900) and ranking consistently well across
all metrics. In contrast, EfficientViT-B2 shows lower performance, particularly in accu-
racy (0.9779) and other metrics, which places it at the bottom of the rankings. The Swin
transformer models, including Swin-Tiny, Swin-Small, and Swin-Base, exhibit robust per-
formance, particularly Swin-Small, which ranks first in accuracy (0.9904). Similarly, the
ConvNeXt models demonstrate high performance, with ConvNeXt-Small ranking highly
in terms of accuracy and F1-score. The CCT models, on the other hand, lag behind in
comparison, with CCT-7×7×2×224 showing the lowest accuracy and loss, indicating less
efficient performance overall.

According to the results obtained, the ViT variants integrated in the ViT-RoT frame-
work are classified into three categories, namely top performers, moderate performers, and
low performers.

4.3.1. Top Performers

ConvNeXt-Small and Swin-Small models achieved the highest accuracy of 0.9904,
with losses of 0.0542 and 0.0697, respectively, and precision, recall, and F1-scores of 0.9905
and 0.9904. EfficientViT-B0 follows closely with an accuracy of 0.9900 and the lowest
loss of 0.0427. Swin-Base (0.9903) and ConvNeXt-Tiny (0.9899) also perform strongly,
balancing accuracy and computational demands. The confusion matrices for ConvNeXt-
Small, Swin-Small, and EfficientViT-B0 are shown in Figure 10 and illustrate high per-class
accuracy across all disease categories. Notably, ConvNeXt-Small demonstrates excellent
consistency across both common and less frequent classes, with minimal confusion
observed among visually similar diseases such as Powdery Mildew and Septoria Leaf
Spot. Swin-Small also maintains strong overall performance, though it exhibits slightly
more confusion in classes with overlapping visual symptoms. EfficientViT-B0, despite
being more lightweight, exhibits competitive class-level precision and recall, effectively
handling challenging classes like Powdery Mildew and Spider Mites. These observations
highlight the robustness of ViT-based models in capturing fine-grained visual patterns
and their ability to handle class imbalance effectively. Additionally, the heatmap of
precision, recall, and F1-scores for the top-performing models (Figure 11) reinforces this
consistency, with ConvNeXt-Small exhibiting a slight advantage in precision, recording a
value of 0.9905.

4.3.2. Moderate Performers

ViT-Small (0.9898), Swin-Tiny (0.9885), ViT-Base (0.9883), and EfficientViT-M5 (0.9883)
achieve high accuracies with losses between 0.0490 and 0.0582, offering robust performance.
MobileViT-XXSmall and XSmall (0.9855) provide lightweight alternatives, suitable for
resource-constrained environments, with losses of 0.0597 and 0.0665, respectively.

4.3.3. Low Performers

EfficientViT-B2 (0.9779) and CCT-7×7×2×224 (0.9791) exhibit the lowest accura-
cies, with higher losses of 0.0834 and 0.1590, respectively, suggesting training instability.
MobileViT-Small (0.9813) and CCT-14×7×2×224 (0.9835) also trail, limited by capacity or
optimisation challenges.
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Figure 10. Confusion matrices for the top-performing ViT-RoT models (Swin-Small, ConvNeXt-Small,
EfficientViT-B0) on the Tomato Leaf Disease Dataset, illustrating per-class classification accuracy
across 11 classes.
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4.3.4. Performance Trends and Architectural Insights

This section analyses the performance of various ViT variants and hybrid architec-
tures, focusing on their efficiency, accuracy, and training behaviour. Key observations are
summarised below.

• Efficiency vs. Accuracy: Optimised models like ConvNeXt-Small, Swin-Small, and
EfficientViT-B0 outperform larger models (e.g., ViT-Base), suggesting that architectural
efficiency is critical for the dataset’s moderate size.

• Hierarchical Attention: Hierarchical models (ConvNeXt, Swin) consistently outper-
form global attention models (ViT), leveraging localised feature extraction to handle
noise and class imbalance effectively. This is evident in ConvNeXt-Small and Swin-
Small’s top accuracies (0.9904).

• Lightweight Models: EfficientViT-B0 (0.9900) and MobileViT-XXSmall/XSmall
(0.9855) achieve high accuracies with reduced computational demands, ideal for
edge deployment in agricultural diagnostics.

• Training Stability: Lower losses correlate with higher accuracies (e.g., EfficientViT-B0:
0.0427, 0.9900; ConvNeXt-Small: 0.0542, 0.9904), except for EfficientViT-B2 (0.0834,
0.9779), indicating optimisation challenges.

Architectural designs drive the following differences:

• ConvNeXt: ConvNeXt-Small’s top performance (0.9904) stems from its modernised
convolutional design with transformer-inspired elements, excelling in noisy and
imbalanced data. ConvNeXt-Tiny (98.99%) reinforces this robustness.

• Swin Transformers: Swin-Small and Swin-Base leverage hierarchical shifted window-
based attention, ideal for multi-scale feature extraction in mixed image conditions.
Swin-Tiny (0.9885) highlights scalability.

• EfficientViT: EfficientViT-B0’s low loss and high accuracy reflect optimised multi-scale
attention. EfficientViT-B2’s lower performance suggests scaling limitations.

• ViT: ViT-Small (0.9898) outperforms ViT-Base (98.83%) due to better generalisation, as
larger ViTs risk overfitting on moderate-sized datasets.

• MobileViT and CCT: MobileViT-XXSmall/XSmall offer efficiency, but MobileViT-
Small (0.9813) and CCT models (0.9791–0.9835) underperform due to limited capacity
or high losses.

4.3.5. Efficiency and Practical Implications

Model efficiency is critical for agricultural diagnostics, particularly for edge deploy-
ment. Figure 12 illustrates parameter counts vs. model accuracy across models, highlighting
lightweight models like EfficientViT-B0 (0.9900) and MobileViT-XXSmall/XSmall (0.9855)
with fewer parameters, suitable for resource-constrained devices. ConvNeXt-Small and
Swin-Small, with marginal accuracy gains (0.9904), are ideal for high-stakes applications
requiring maximum precision.

The ViT-RoT framework’s high accuracies and robust handling of class imbalance make
it a promising tool for automated tomato disease diagnosis. ConvNeXt-Small and Swin-
Small are recommended for production environments due to their superior performance,
while EfficientViT-B0 offers a compelling trade-off for edge devices.

Table 4 highlights the trade-offs between model size, computational complexity, and
inference speed. MobileViT-XXSmall is the most compact (1.27 M parameters) and fastest
(3.965 ms), while EfficientViT-B0 offers the lowest FLOPs (0.10B), making both highly
suitable for edge deployment. In contrast, models like ViT-Base and Swin-Base have
significantly higher parameter counts (86.57 M and 87.77 M, respectively) and FLOPs,
resulting in slower inference times, which makes them less ideal for low-resource settings.
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ConvNeXt-Small and Swin-Small offer a strong balance, with higher accuracy and moderate
resource demands, making them suitable for production environments.
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Figure 12. Relationship between model accuracy and parameter count across different vision trans-
former architecture variants.

Nonetheless, several limitations must be acknowledged. Although the dataset in-
cludes both controlled and outdoor images with occlusion and natural backgrounds, it does
not fully capture the variability of real-world field conditions such as dynamic lighting,
motion blur, and diverse sensor characteristics. The use of a single dataset also limits
generalizability to other cultivars, regions, or unseen diseases. Additionally, contextual
factors like environmental conditions and disease progression over time are not considered.

ViTs also require larger training datasets than CNNs due to their reduced inductive
bias. This can be a challenge in agriculture, where labeled data is often limited, impacting
training efficiency and generalization [51]. Additionally, ViTs exhibit higher computational
complexity, as their self-attention mechanism scales quadratically with the number of
image patches, whereas CNNs scale linearly with the number of pixels processed. This
computational overhead makes ViTs less efficient for resource-constrained environments
compared to traditional convolutional architectures [51].

Table 4. Comparison of deep learning models by parameter count, computational complexity, and
inference efficiency

Model Params (M) FLOPs (B) Average Inference Time (ms)

ViT-Tiny 5.72 0.91 8.575
ViT-Small 22.05 3.22 10.469
ViT-Base 86.57 12.02 25.566

MobileViT-XXS 1.27 0.25 3.965
MobileViT-XS 2.32 0.66 4.734
MobileViT-S 5.58 1.25 5.840

EfficientViT-B0 3.41 0.10 5.126
EfficientViT-M5 12.47 0.52 9.603
EfficientViT-B2 24.33 1.57 16.337

Swin-Tiny 28.29 4.38 16.919
Swin-Small 49.61 8.56 19.583
Swin-Base 87.77 15.19 48.148
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Table 4. Cont.

Model Params (M) FLOPs (B) Average Inference Time (ms)

ConvNext-Tiny 28.59 4.48 18.604
ConvNext-Small 50.22 8.72 20.408

M: millions; B: billions; ms: milliseconds.

5. Conclusions
This study presents the ViT-RoT framework, a systematic approach for evaluating and

benchmarking ViT models for tomato leaf disease classification. Through comprehensive
empirical analysis, the framework categorises ViT variants into high-, moderate-, and
low-performing groups based on their effectiveness in tomato disease recognition. Notably,
ConvNeXt-Small and Swin-Small emerged as top performers, demonstrating superior
accuracy and robustness across multiple datasets. The findings emphasise the importance
of selecting models that balance high performance, generalisability, and efficiency, making
them well-suited for real-world agricultural applications. By providing a structured evalu-
ation framework, ViT-RoT offers valuable insights for advancing AI-driven plant disease
detection and lays the groundwork for sustainable crop management solutions.

The ViT-RoT framework highlights the critical role of model robustness in addressing
real-world disease detection challenges, but opportunities for further refinement remain.
Future work can focus on enhancing dataset diversity by incorporating images from varied
agricultural regions and field conditions to improve model generalisation. Additionally,
optimising ViT architectures for deployment on mobile and edge devices will enable real-
time disease detection in resource-constrained environments. Integrating temporal data and
environmental factors, such as humidity and temperature, could further enhance predictive
accuracy and adaptability, enabling earlier and more precise interventions. Furthermore,
exploring class balancing strategies such as oversampling, class reweighting, or focal loss
will be essential to address dataset imbalance and improve detection accuracy for under-
represented disease categories. These advancements will strengthen the framework’s
applicability, paving the way for more effective AI-based solutions in precision agriculture.
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