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Abstract: Potatoes destined for crisping are normally stored above 8 degrees; below this glucose
accumulates leading to very dark fry colors and potential acrylamide build up. Unfortunately,
sprouting occurs above 4 degrees and impacts product quality, necessitating the use of sprout
suppressant chemicals. Therefore, a goal of breeders is to develop potatoes with excellent fry color,
which is maintained under storage below 8 degrees. Genomic or marker-assisted selection offers an
opportunity to improve the efficiency of potato breeding and thereby assist breeders in achieving
this goal. In this study, we have accumulated fry-color data on a large population of potato lines
and combined this with genotypic data to carry out a GWAS and to evaluate accuracy of genomic
prediction. We were able to identify a major QTL on chromosome 10 for fry color, and predict fry color
with moderate accuracy using genome-wide markers. Furthermore, our results provide evidence that
it is possible to identify a small subset of SNPs for processing characteristics that can give moderate
predictive ability, albeit lower than that achieved with genome-wide markers.

Keywords: potato; fry color; genomic prediction

1. Introduction

Conventional phenotypic selection is carried out by many potato breeders. In the breeding
program at Teagasc a cycle of breeding is initiated each year with 200–300 pair-crosses that produce
over 100,000 true seed. All target ideotypes are then selected from this base population over the
next 12 years. In the early years negative selection is employed to reduce the number of seedlings
from 100,000 down to approximately 2500 by year four. Marker-Assisted Selection (MAS) is then
employed to identify entries with favourable alleles against some common potato pests and diseases.
By year seven the number of entries being evaluated has dropped to approximately 50, and at this
point multi-location field trials are carried out to record accurate phenotypes for a large suite of traits.
A further seven years of multi-environment trialing and phenotyping typically yields one to three
varieties from a cycle of selection. A downside of this selection scheme is that our ability to collect
phenotype information for many important traits in the first years of the program is limited. Clonal
individuals are represented by single tubers in the first field generation, rising to three plots (single
location) in the third field generation. Selection based largely on visually assessable characteristics in
a single location and year carries the risk of eliminating individuals with favourable characteristics
due to chance poor performance. It could be argued that a simple solution is simply to carry forward
greater numbers, but most breeding programs are constrained by logistical and financial limitations
which partly determine selection intensity. Providing more information on non-visually assessable
traits earlier in the program provides a better decision-making framework for breeders in the early
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stages of a program. Approaches to improve genetic gain in potato breeding using pedigree or genomic
information have recently been discussed [1,2].

One approach using best linear unbiased prediction (BLUP) analysis with pedigree information
to estimate breeding values has already been shown to lead to increased genetic gains, particularly for
low heritability traits [2]. Genomic selection uses phenotyped and genotyped entries from a training
set to predict phenotypes of new individuals based only on genomic information and has already
been evaluated in various crop species [3–6]. A recent review concluded that genetic gain can be
substantially improved by implementing genomic selection in potato breeding programs [1], and a
recent study has also demonstrated empirically that genomic prediction for processing traits shows
promise [7]. Genomic selection may be particularly beneficial when many traits can be selected for
using the same genotyping data. An example would be developing potato varieties for the processing
industry where a variety needs to have favourable performance for a large suite of traits, including
fry color, yield, sugar stability under storage, percentage dry matter, tuber shape, flesh color, skin
color, eye depth, tuber number, Potato Cyst Nematode (PCN) resistance, bruising, common scab,
powdery scab, spraing resistance, blackleg resistance, blight resistance, and Potato Virus Y (PVY)
resistance. A body of work has already been completed in an attempt to identify QTL or genes linked
to processing characteristics [3,8–15].

A prerequisite for genomic selection is a genotyped and phenotyped training population for
model development. The reduced cost of sequencing and the availability of genomic resources such
as a reference genome [16] make it now feasible to characterize genetic variation on a genome-wide
scale in potato populations. A greater challenge is the collection of accurate phenotypes for all
target traits on the reference population. This is challenging due to time and cost of multi-year and
multi-environmental trials on a sufficient number of lines to establish a training population. Resource
constraints mean that the most efficient way to collect such data is to aggregate it from later stages of
active breeding programs. However, there are generally much lower numbers of breeding lines under
selection at these stages, meaning data must be aggregated over longer periods to enable sufficient
population sizes. Other issues, such as unbalanced datasets and the fact that selection may have
reduced allelic variation at this stage may also be problematic.

In this study, we have collected phenotypes and genotypes for multiple reference populations
consisting of entries under evaluation in the Teagasc breeding program. These data were then
used to build genomic prediction models that were evaluated on testing sets not used for training.
Predictive abilities varied from low to moderate depending on the training and testing sets used.
Interestingly, our results suggest that marker number can be greatly reduced with limited impact on
predictive ability; that may permit deployment of inexpensive marker assays for prediction of potato
processing characteristics.

2. Results

2.1. Genotyping and Phenotyping Potato Lines

We accumulated phenotypic data on lines over three years (2015–2017) from material undergoing
evaluation in the third field generation of the Teagasc breeding program. Each line was only evaluated
in a single year and location. At the 2015 harvest we processed tubers three weeks after harvest
(referred to as ‘off-the-field’) and also stored tubers for extended periods at either 4.5 ◦C, or 8 ◦C with
chlorpropham treatment. The correlations between data sets were high (Table 1) and in general we
observed that entries which had very light fry color (as measured by the HunterLab L value) when
fried ‘off-the-field’ tended to have very light fry colors when fried after long-term storage.
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Table 1. Correlation of fry color between storage treatments. Pearson correlation coefficients comparing
fry color of the tubers harvested in 2015 (n = 274) stored under different conditions and lengths of time
(shown as days post-harvest).

OTF 8 ◦C + 104d 8 ◦C + 237d 4.5 ◦C + 111d 4.5 ◦C + 183d 4.5 ◦C + 230d

OTF 1
8 ◦C + 104d 0.92 1
8 ◦C + 237d 0.84 0.88 1

4.5 ◦C + 111d 0.84 0.91 0.86 1
4.5 ◦C + 183d 0.78 0.87 0.83 0.91 1
4.5 ◦C + 230d 0.77 0.86 0.83 0.90 0.91 1

In subsequent years we focused our phenotyping efforts on material ‘off-the-field’ (OTF) and
after long-term storage (LTS) at 4.5 ◦C for 230 days and from this point on we will only discuss results
related to these time-points. It is clear from the results that the median HunterLab L values for fry color
in the training population were greatest in the data set fried ‘off-the-field’, and there was a distinct
decrease in median HunterLab L values for tubers stored at 4.5 ◦C (Figure 1). The mean HunterLab L
values for the populations fried ‘off-the-field’ was 13 to 26% higher than tubers stored at 4.5 ◦C for ca.
seven months.
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Figure 1. Boxplot of fry color of three populations through storage. Fry color measured as HunterLab
L-values when fried ‘off-the-field’ (OTF) and after long-term storage at 4.5 ◦C for ca. seven months
post-harvest.
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Additionally, phenotypes were available for lines that had been evaluated for fry-color OTF
in multiple locations and over multiple year (referred to as test panel). All lines were genotyped
using a genotyping-by-sequencing approach after genome complexity reduction with the restriction
enzyme ApeKI. The sequencing depth required to distinguish between the three heterozygous states in
autotetraploid potato has been estimated at 60 [17]. As we did not have sufficient sequencing depth at
each locus we treated the samples as diploids and determined genotypes according to rules developed
in autotetraploid alfalfa [18]. A SNP database of 46,406 SNPs was developed using genotype data
from all lines, and was used for developing genomic prediction models for fry color, and also for QTL
identification with a GWAS. The SNP database had SNPs covering all potato chromosomes, and the
number of SNPs ranged from 2707 on chromosome 10 to 5424 on chromosome 1. SNPs clustered
towards the telomeres, which corresponds to regions of much higher gene density in potato [16]. It
also confirms that Genotyping-By-Sequencing (GBS) with ApeKI digestion (methylation sensitive)
in potato largely avoids the heterochromatin located in the pericentromeric regions. On average the
SNP rate across the genome is one SNP every 17,469 bases; however, GBS is only interrogating regions
around a portion of the ApeKI restriction sites. SNPs were well distributed across all genomic regions
(downstream: 27.99%, exon: 22.30%, intergenic: 11.00%, intron: 11.42%, upstream: 20.18%, utr: 6.40%,
splice sites: 0.71%), with 13,407 genes tagged with at least one SNP. Lines with more than 10,000
missing genotypes (22%) were removed and remaining lines with matching phenotype and genotype
data were used for GWAS and genomic prediction (Table 2).

Table 2. Number of lines with sufficient genotype and phenotype data for further analysis. The three
populations (2015–2017) from the third field evaluation year were used for GWAS and development of
genomic prediction models. A collection of lines from highly unbalanced multi-location and multi-year
trials (test panel) was used to further evaluate the prediction models developed with the 2015–2017 data.

Population OTF LTS

2015 192 192
2016 45 88
2017 219 219

test panel 56 -

2.2. Genome-Wide Association Analysis

A GWAS was performed within each year separately to identify significant QTL for fry color
‘off-the-field’ and after long-term storage at 4.5 ◦C. We did not identify any SNPs significantly associated
with fry color after long-term storage at 4.5 ◦C in any of the three populations. However, we did identify
QTL significantly associated with fry color ‘off-the-field’ in the 2017 population; the largest population
available for analysis (Table 3, Figure 2). We identified significantly associated SNPs on chr04 and
chr10, with the strongest signal on chr10. The SNPs on chr04 (chr04:67971220 and chr04:68008112) are
proximal to a tuber-specific and sucrose-responsive element binding factor (PGSC0003DMG400003316,
chr04:67630128–67632587).

The greatest number of SNPs were located on chr10 within the region from 49 Mb to 58
Mb, and several genes associated with sucrose cleavage, synthesis, metabolism and starch storage
are located within the 50 to 60 Mb region of chr10 [16]. These include three invertase inhibitors,
a sucrose-phosphatase, a cell-wall invertase, a fructose-1,6-biphosphatase, and two patatin genes.
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Figure 2. Results of a GWAS for ‘off-the-field’ fry color (OTF) in 2017 population—genome-wide (left)
and zoomed in on chromosome 10 (right). Red line shows the QTL significance threshold (Bonferronni
correction, level = 0.05).

Table 3. Genome-wide association study of fry color off-the-field in 2017 population. SNP significantly
associated with fry-color (Bonferronni correction, level = 0.05); SNPs are sorted by chromosome
and position.

Chrom bp −log10(p)

chr04 67971220 6.23
chr04 68008112 5.91
chr10 49770199 6.15
chr10 53208176 5.87
chr10 54783863 8.33
chr10 54800561 7.93
chr10 54966754 9.69
chr10 55285966 9.69
chr10 55358563 6.09
chr10 55639153 8.06
chr10 55889244 8.55
chr10 55921128 6.47
chr10 56255214 8.13
chr10 56255215 8.13
chr10 56372149 8.13
chr10 56514796 7.21
chr10 56514804 7.21
chr10 56748248 8.13
chr10 56903243 8.13
chr10 57498778 7.01
chr10 57627246 8.56
chr10 57699003 7.28
chr10 57778018 7.51
chr10 57780687 6.01
chr10 57837337 6.27
chr10 58032412 8.13
chr10 58082084 8.13
chr10 58263956 6.76
chr10 58263973 6.76
chr10 58305552 8.13
chr10 58403467 8.13
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2.3. Using Genome-Wide Variants to Predict Fry Color

We developed genomic prediction models with data from each of the three years, and used these
to predict fry color ‘off-the-field’ and fry color after long-term storage at 4.5 ◦C in the remaining
years. We also used the three models to predict fry color ‘off-the-field’ in a test panel made up of
advanced breeding lines from multiple years at later stages of the Teagasc breeding program. The mean
predictive ability ranged between 0.11 and 0.77 for fry color ‘off-the-field’, and between 0.24 and 0.66
for fry color after long-term storage at 4.5 ◦C (Table 4).

Table 4. Predictive ability for fry color ‘off-the-field’ and after long-term storage at 4.5 ◦C using various
combinations of training and testing sets and four statistical models (bias is shown in brackets).

Train Set Test Set Markers rrBLUP BayesA Bayesian Lasso Random Forest

off-the-field

2015 2016 26,045 0.26 (0.43) 0.25 (0.45) 0.26 (0.49) 0.11 (0.30)
2015 2017 38,041 0.75 (1.05) 0.75 (1.13) 0.75 (1.17) 0.68 (1.38)
2017 2015 38,041 0.77 (1.29) 0.77 (1.38) 0.77 (1.40) 0.72 (1.73)
2017 2016 28,655 0.48 (1.05) 0.44 (1.03) 0.46 (1.06) 0.45 (1.24)
2016 2017 28,655 0.56 (3.26) 0.55 (3.16) 0.48 (2.94) 0.32 (1.54)
2016 2015 26,045 0.49 (2.59) 0.49 (2.44) 0.50 (2.88) 0.43 (2.10)
2015 Test panel 35,242 0.67 (0.77) 0.67 (0.86) 0.67 (0.82) 0.60 (1.10)
2016 Test panel 26,869 0.48 (2.31) 0.47 (2.38) 0.46 (2.30) 0.39 (1.72)
2017 Test panel 38,582 0.66 (0.70) 0.68 (0.79) 0.68 (0.87) 0.64 (1.11)

low-temperature-storage

2015 2016 29,421 0.36 (0.70) 0.34 (0.75) 0.34 (0.76) 0.26 (0.82)
2015 2017 38,041 0.65 (1.03) 0.65 (1.12) 0.66 (1.22) 0.61 (1.55)
2017 2015 38,041 0.62 (1.14) 0.65 (1.33) 0.66 (1.39) 0.64 (2.02)
2017 2016 32,315 0.29 (0.64) 0.29 (0.71) 0.29 (0.76) 0.24 (0.91)
2016 2017 32,315 0.50 (5.49) 0.47 (1.45) 0.47 (1.45) 0.44 (2.39)
2016 2015 29,421 0.61 (8.96) 0.52 (2.22) 0.52 (2.08) 0.46 (3.42)

Our ability to predict ‘off-the-field’ fry color was greater than our ability to predict fry color after
long-term storage at 4.5 ◦C, likely reflecting the additional complexity of the trait and in keeping with
our ability to detect QTL for the former but not the latter. There was little difference in predictive ability
across the different models evaluated, with the exception of the models developed using Random
Forest, which resulted in lower predictive ability in all cases.

The predictive ability dropped when 2016 data was used as either training or test panel. It can
be seen from the Genomic Relationship Matrix (GRM) (Figure 3) that the lines from 2016 set have a
low relationship to the other populations, which likely explains the poorer predictive ability when
2016 was used as either a training or testing set. Conversely, we can see many high intensity genomic
relationship values between lines in 2015 and 2017, which likely explains the greater predictive ability
when these are used as training and testing sets.
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Figure 3. Heatmap of the Genomic Relationship Matrix (GRM). Lines belonging to the test panel are
shown in red, lines from 2015 are shown in green, lines from 2016 are shown in blue, and lines from
2017 are shown in grey.

2.4. Using Selected Variants to Predict Fry Color

We also developed predictive models using a subset of SNPs identified in the GWAS. Using
the significant GWAS SNPs identified in the 2017 lines (31 SNPs), we were able to predict fry color
‘off-the-field’ in the 2015 population with a predictive ability of 0.45 and no bias.

In addition to using the GWAS to select subsets of SNPs for prediction, we performed variable
selection using the variable importance measures from Random Forest. This was done with the 2015
and 2017 data sets and for both fry color ‘off-the-field’ and after long-term storage at 4.5 ◦C. In all cases
the top 25 variables were widely spread across chromosomes (Figure 4), and the two SNPs identified
on chr04 with the GWAS in the 2017 data set were in the top 25 ranked SNPs identified using variable
importance measures.
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Figure 4. Variable (SNPs) importance measures calculated for fry color ‘off-the-field’ in 2015 (A) and
2017 (C), and after long-term storage at 4.5 ◦C in 2015 (B) and 2017 (D). The x-axis indicates the increase
of the Mean Squared Error (MSE) when the SNP is randomly permuted. The top 25 variables are shown.

These SNPs were located at 67.97 and 68.00 Mb and are proximal to a tuber-specific and
sucrose-responsive element binding factor (PGSC0003DMG400003316, chr04:67630128), and an
Alpha-amylase (PGSC0003DMG400007974, chr04:68255931) involved in starch degradation. The SNP
on chr01 at 75.29 Mb that ranked high in importance in the 2015 data set is near three sugar transporters
at 76.16–76.23 Mb; furthermore markers associated with fry color have been found on chr01 at 43.8
cM [8] and QTL have been identified in linkage mapping studies [9]. A number of SNPs in the top 25
in both data sets and for both traits were located on chr09 and markers associated with fry color have
been identified in association panels on chr09 [8]. One SNP at 51.35 Mb identified as the second most
important variable for fry color after long-term storage at 4.5 ◦C in 2015 data set was proximal to a
gene involved in sugar transport (Sugar transporter, PGSC0003DMG400003848, chr09:51364561).

We used the variable importance measures to select increasing numbers of ranked SNPs to develop
genomic selection models for prediction in the data set that was left out of both variable selection and
model training. The predictive ability was higher with selected SNPs compared to a random SNPs at
lower SNP numbers; however, the difference disappeared as we increased SNP number (Table 5).



Agronomy 2020, 10, 90 9 of 16

Table 5. Predictive ability for fry color ‘off-the-field’ and after long-term storage at 4.5 ◦C using selected
or random markers (bias is shown in brackets). Selected markers were identified in the training
population (either 2015 or 2017) using variable importance measures in Random Forest. In the case of
randomly selected SNPs the predictive ability is the mean of 100 iterations of random SNP selection.

10 25 50 100 500 5000

off-the-field

2015 to 2017 Selected 0.59 (0.96) 0.62 (1.05) 0.62 (0.96) 0.65 (0.99) 0.68 (1.11) 0.72 (1.18)
Random 0.27 (0.69) 0.38 (0.74) 0.46 (0.77) 0.55 (0.85) 0.67 (0.94) 0.74 (1.03)

2017 to 2015 Selected 0.50 (0.69) 0.59 (0.81) 0.60 (0.79) 0.67 (0.84) 0.69 (0.90) 0.74 (1.03)
Random 0.32 (1.06) 0.43 (1.06) 0.50 (1.03) 0.57 (1.04) 0.67 (1.09) 0.76 (1.24)

low-temperature-storage

2015 to 2017 Selected 0.50 (0.85) 0.49 (0.77) 0.51 (0.76) 0.50 (0.79) 0.59 (0.83) 0.66 (0.99)
Random 0.24 (0.70) 0.31 (0.70) 0.38 (0.74) 0.45 (0.83) 0.57 (0.93) 0.62 (0.98)

2017 to 2015 Selected 0.51 (1.20) 0.54 (1.12) 0.49 (1.02) 0.53 (1.17) 0.55 (1.06) 0.61 (1.05)
Random 0.26 (1.15) 0.36 (1.06) 0.45 (1.11) 0.50 (1.10) 0.58 (1.13) 0.62 (1.13)

3. Discussion

In this study, we present the results of a simple empirical evaluation of predicting fry color with
DNA-based markers. Markers were generated using a genotyping-by-sequencing approach following
genome complexity reduction with the restriction enzyme ApeKI. Predictive abilities were assessed
as a function of statistical algorithm and marker density. We also present the results of a GWAS to
identify QTL for fry color and low-temperature sweetening.

We did not observe any great difference between statistical algorithms in terms of predictive ability,
which is in agreement with other studies [3,7,19]; with the exception that models developed with
Random Forest had lower predictive ability. Predictive abilities were promising for both ‘off-the-field’
fry color and fry color after long-term storage at low-temperature. This is in general agreement with a
recent study on genomic prediction of chipping quality in potato [7]. Our predictive ability was high
(0.77) for ‘off-the-field’ fry color when training with the 2017 data set and predicting in 2015 data set.
Similarly, when training with the 2015 data set and predicting in the 2017 data set, the predictive ability
was 0.75. The predictive ability varied across training and test population combinations with the lowest
predictive abilities observed when 2016 was used as either a training or testing set. This reflects the
lower relationship between lines in 2016 and other data sets used. The lower levels of relatedness of the
2016 material was most likely due to the presence of entries from a parallel experimental program for
pyramiding and multiplexing disease resistance loci in that year. This resulted in a different parental
profile and lower rate of selection in this material. This is similar to previous studies in plants [20,21]
and predictions across breeds in animals [22,23], and emphasises the importance of a good relationship
between training set and selection candidates.

Our GWAS failed to identify QTL for resistance to low-temperature sweetening but did identify
QTL for fry color ‘off-the-field’ in the 2017 data set. Two SNPs on chro04 at 67.97 and 68.00 Mb
were associated with fry color. In particular the SNP at 67.97 Mb is proximal to a tuber-specific and
sucrose-responsive element binding factor. These two SNPs were also identified with the variable
importance measures in the 2017 data set. Previous studies have identified QTL for fry color in two
association panels on chromosome four [8]. Our strongest QTL signal was on chr10 where a large cluster
of associated SNPs was identified between 49 and 59 Mb, peaking at 55.28 Mb. Other genome-wide
association studies looking at fry color have been carried out. A QTL for fry color has previously been
detected at 57.6 Mb in a panel of varieties characterized by several Dutch breeding companies [8].
Another GWAS in a diversity panel did not identify QTL for processing quality [24] although the
authors concluded that more lines and higher marker density were required. A recent study [7] also
identified a cluster of SNPs associated with fry color on chromosome 10 in the region between 50 and
60 Mb, and our study now reproduces those findings in a different population; indicating that this may
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be an important region for fry color in potato. In future, genotyping approaches that enable distinction
among the three heterozygous states, and support multi-allelic haplotype analysis may increase our
power to detect marker-trait associations.

We selected all markers significantly associated with fry color in 2017 data set (31 SNPs) and used
these to develop genomic selection models to predict fry color in 2015 data set, which resulted in a
predictive ability (0.45), substantially lower than predictive ability with entire marker set. The majority
of markers in this subset are within the 10 Mb region on chr10. We also identified and ranked variables
using variable importance measures and selected increasing number for development of prediction
models. In this case the marker subset is spread out across chromosomes. While predictive ability was
lower than using entire marker set, it was higher than randomly selected markers at lower marker
number. As we increase the marker number the difference between markers selected via variable
importance measures and random selection reduced. Using the top 10 ranked SNPs our predictive
ability for both traits ranged between 0.50 and 0.59 depending on which year was used as a training
set. The ability to generate predictions with smaller sets of molecular markers is essential if we are to
implement DNA-based selection strategies in classical potato phenotypic selection schemes.

Various strategies to improve breeding in potato using pedigree [2] and/or marker-assisted
selection strategies [1] have been proposed. In some cases these require significant alterations to
breeding schemes, including the classical phenotypic selection scheme outlined. One of the downsides
of these schemes is that our ability to phenotype and make accurate selections in early years is very
low. There is an opportunity to practice DNA-based selection in these early years, provided low cost
DNA evaluations can be carried out. Within our breeding program, marker-assisted selection using
low cost diagnostic markers for disease resistance is already carried out on 1000’s of entries in single
plot trials. Using genome-wide markers for selection in early stages of these schemes when numbers
are large is currently not feasible; however, if we can identify smaller sets of markers that together
have good predictive ability then there are opportunities to develop inexpensive marker systems [25]
and practice marker-assisted selection for both simple (e.g., disease resistance) and more complex
(e.g., processing) traits at high selection intensities. In particular, we envisage being able to develop a
genotyping platform based on amplicon sequencing that is (i) inexpensive, (ii) multi-allelic, and (iii)
adaptable (markers can easily be added or removed from the assay). An example of such an approach
is outlined (Figure 5), which has the advantage of being flexible to enable inclusion of new loci and/or
estimating the effects of new alleles as new material is introduced to the initial crossing schemes.
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Figure 5. Pathway to implementation of marker-assisted selection in potato breeding. An initial
reference population representing the breeding material is both genotyped and phenotyped for target
traits. These data can be used to identify markers linked to traits and develop prediction models.
Markers linked to QTL for complex traits and markers diagnostic for disease resistance can be used in
development of an inexpensive genotyping assay for deployment on selection candidates.

4. Conclusions

Experimental results presented in this manuscript provide further support for the implementation
of genomic prediction in potato breeding, and further evidence for a major QTL on chromosome 10
for fry color. Furthermore, our results provide evidence that it is possible to identify informative
SNPs for processing characteristics, and that these SNPs have predictive abilities approaching those of
genome-wide marker sets.

5. Materials and Methods

5.1. Phenotyping Training and Test Panels

The training populations consisted of lines collected from the breeding program over a period
of three years (2015–2017). Lines were evaluated in 20-tuber plots and each line was phenotyped in
a single year. In 2015 the tubers were harvested on the 7th October 2015 and collected for storage
and subsequent fry analysis. Tubers from each plot were divided into six batches of ten tubers for
drying and storage at either 4.5 ◦C or 8 ◦C (with chlorpropham treatment for sprout suppression),
and removed for phenotyping at various time-points (Table 1). Four tubers (from the same plot) were
selected from each entry at each time point and fried to evaluate crisp color. Tubers were sliced with a
Hobert slicer to generate crisps with a thickness of 1.25 mm, and were deep fried for three minutes at
175 ◦C. Crisp color was then measured using a HunterLab Labscan XE Spectrophotometer (400–700 nm)
in an upward configuration through a transparent petri-dish. Hunter L values were recorded, which
indicates the level of lightness or darkness of crisps. Sample preparation and presentation were kept
consistent across years to avoid variation due to sample preparation/presentation. The arithmetic mean
of the four samples from each entry was calculated and used in subsequent analysis. In subsequent
years (2016–2017) we focused phenotyping on samples collected off-the-field and those stored at 4.5 ◦C
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for ca. seven months. Again, the arithmetic mean of four tubers from each entry was calculated and
used in subsequent analysis (https://doi.org/10.6084/m9.figshare.11298941).

The testing panel consisted of 56 lines with data on fry color ‘off-the-field’, which was collected
as part of the breeding program over a six year period (2012–2017) with up to five locations per
year and three replicate plots per location. Fry color was evaluated using a HunterLab Labscan XE
Spectrophotometer, and not all 67 lines were evaluated together in a common field site, making it a
highly unbalanced data set. BLUPs for fry color of each line were calculated using line as a random
effect and year, location and the interaction as fixed effects.

5.2. Genotyping Training and Testing Panels

Leaf material was harvested from each entry and freeze dried for 48 h prior to tissue disruption on
a bead mill and DNA isolation. DNA was isolated using a modified version of the CTAB protocol [26],
and pellets were dissolved in 100 µL of TE 0.1 mM EDTA and treated with RNAse A for removal of
RNA contamination. DNA samples were transferred to 96-well plates, quantified using a PicoGreen
Quant-It ds-DNA assay, and all samples diluted to 20 ng/µL. The Genotyping-By-Sequencing (GBS)
protocol followed that of [27]. Briefly, DNA from each sample was digested with the restriction enzyme
ApeKI that has a 5 bp recognition site. Digested DNA was ligated to adaptors containing one of 96
unique DNA barcodes and up to 96 samples were then pooled to generate a single library. Each library
was amplified via PCR, quantified, and evaluated on a BioAnalyser prior to sequencing. Each library
was sequenced on 2–3 lanes of an Illumina HiSeq 2500 to generate single-end (SE) reads of 100 bp.

Sequence data from the same library was concatenated and adaptor contamination was removed
with Scythe [28] with a prior contamination rate set to 0.40. Sickle [29] was used to trim reads when
the average quality score in a sliding window (of 20 bp) fell below a phred score of 20, and reads
shorter than 40 bp were discarded. The reads were demultiplexed using Sabre [30] allowing a single
mismatch, data output per sample was determined, and reads from each sample were aligned to the
Solanum tuberosum reference genome [16] using BWA aln with default parameters [31]. The Genome
Analysis Tool Kit (GATK) [32] was used to identify putative SNPs in the population, and only SNPs
with a read map score of 30 were retained for further analysis. We used an approach developed in
alfalfa for calling genotypes from GBS data in autotetraploids [18], where distinguishing between
three heterozygous states is difficult with low read depth. Briefly, no attempt was made to distinguish
between the three different heterozygous states present in an autotetraploid (ABBB, AABB, AAAB),
a minimum of 11 reads were required to confirm a homozygote, and a minimum of two reads per
allele and a minimum allele frequency for alternative allele of 0.10 were required to call a heterozygote.
The minor allele frequency (MAF) was calculated based on these genotype calls and SNPs with a MAF
≥2.5% and with ≤15% missing genotype data were retained for further analysis. Sequence data have
been submitted to NCBI under BioProject PRJNA566151.

5.3. GWAS to Identify QTL Associated with Fry Color

A GWAS was carried out separately on data from each year with the R package GWASpoly [24].
All heterozygous genotypes were treated as having the same effect (diploidized additive), and kinship
was calculated using the realized relationship matrix (see QQ-Plot; Figure 6). The genome-wide false
discovery rate was controlled using Bonferroni method (level = 0.05).

https://doi.org/10.6084/m9.figshare.11298941
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Figure 6. QQ-Plot for ‘off-the-field’ fry color in 2017 population.

5.4. Genomic Prediction of Fry Color

We used four statistical algorithms for genomic prediction, ridge regression best linear unbiased
predictor (rrBLUP) [33], Bayes A [34], Bayesian Lasso [35] and Random Forest [36]. rrBLUP was used to
estimate marker effects in the R package rrBLUP [33], the two Bayesian approaches were implemented
in the R package BGLR [37] with the following parameters: number of iterations = 5000, burn-in =
500 and thinning = 5. Random forest was implemented with the R package Random Forest (setting
the number of variables at each split to 1/3 of the total variables, and using a terminal node size of
five and minimum of 500 trees per forest). Predictive ability was calculated as the Pearson correlation
coefficient between observed and predicted values.

Genomic prediction models were developed for each year and evaluated in other years. Predictive
models developed for fry color ‘off-the-field’ in each year (2015–2017) were also evaluated in a test
panel consisting of 56 lines.

We also selected markers from the GWAS to use in genomic prediction. The GWAS was carried
out in the training population as described above and selected markers were used to build prediction
models with the training population. These prediction models were then used for prediction in the
testing population. Variable importance measures were carried out in Random Forest using the mean
decrease in accuracy as the importance measure.
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