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Abstract: A new scheme to determine irrigation depths using a two-point of predicted cumulative
transpiration over irrigation interval is presented. Rather than maximizing water use efficiency, this
scheme aims to maximize net income. The volumetric water price is considered to give farmers
an incentive to save irrigation water. A field experiment for soybeans was carried out in the Arid
Land Research Center, Tottori University, Japan in 2019. The total irrigation amount yield and net
income by the proposed scheme were compared to those by a tensiometer-operated automated
irrigation. The scheme could save irrigation water by 16% with a yield increment of 20%; resulting
in a 22% increase in net income compared to the automated irrigation. The model simulated the
volumetric water content in the effective root zone of the plant in fair agreement. These results indicate
the effectiveness of the proposed scheme that may replace an automated irrigation system even
considering uncertainty in weather forecast to determine irrigation depth and secure investment costs.
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1. Introduction

Irrigation is a vital practice for enhancing the global agricultural production under population
growth and climatic change. Not only for arid and semi-arid regions, it is sometimes used in humid
and sub-humid regions to replenish the reduction of soil water during drought spells in order to
maintain yield [1]. Recently, water scarcity is getting serious as it threatens the future of world
food production as more than 40% of the world’s population lives in areas experiencing high water
stress [2]. Therefore, irrigation under such conditions will have to be managed most efficiently to
achieve maximum productivity from limited water.

In order to improve water productivity (WP), both irrigation amount and irrigation timing must
be carefully determined considering weather, crop, and soil characteristics. This process is called
irrigation scheduling (IS). The development of soil water monitoring technologies has provided better
irrigation management. Using such technologies, automated irrigation systems have been developed.
Several studies emphasize the effectiveness of such systems on water productivity [3–5]. However,
these systems require high investments and cannot consider rain until next irrigation. Another attempt
to improve WP is deficit irrigation (DI) which may be defined as the application of irrigation below
crop water requirements [6]. Numerous studies have shown the benefits of DI on improving WP [7,8].
However, DI is not necessarily beneficial as it is quite difficult to know in prior the optimum percentage
of ET deficit which differs from one combination of soil, crop, and climate to another. In addition,
DI may be valid only under situations of very severe water scarcity or very expensive water prices as
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WP is generally defined as yield or income divided by the total amount of irrigation. Some researchers
reported that they obtained no significant reduction in yield under deficit irrigation. Those works
should be regarded as reevaluation of crop water requirement rather than deficit irrigation studies.

Computer simulation models may be used for optimization of IS. Roy et al. [9] used the
HYDRUS-2D model for water flow simulation and DSSAT model for crop simulation with a
multi-objective optimization to improve water use efficiency and maximize corn production.
Fu et al. [10] used the Soil and Water Assessment Tool (SWAT) software to simulate 16 IS for
corn and soybeans in each growth stage based on a combination of effective rainfall, crop water needs,
and the sensitive index of crop water production function. In a comparison study between full and
deficit irrigation, Adeboye et al. [11] used the AquaCrop model to predict yield, WP, evapotranspiration,
soil water content, canopy cover, and crop biomass. One of the benefits of the use of numerical model
is that they allow prediction of water flow and crop response in coming days in addition to estimating
current status. To predict water flow, we need weather conditions in those days.

Quantitative weather forecast is now freely accessible online and can be used as an input for
simulation models to predict future crop water requirements. Lorite et al. [12] used both short-term
and long-term weather forecast to determine reference evapotranspiration for maize crop in Spain.
Similar averaged values of IS and yield simulation based on forecasted and measured data could
manifest the effectiveness of weather forecast for better IS. Still, forecasting evapotranspiration only is
not enough to optimize irrigation depth. In other words, optimization of irrigation should meet the
motivation of farmers’ work. They apply water to maximize net income, not necessarily yield nor WP,
which is the subtraction of total cost from total income. In other words, there would be no motivation
for a farmer to save water unless water is priced for each cubic meter.

da Conceição et al. [13] attempted to determine an economically optimum irrigation depth using
a polynomial production function based on regression analysis between yield and irrigation depth.
They targeted to obtain irrigation depth at gross income rather than net income. They even did not
consider weather forecast, but instead used the simple indirect method of [14]. Considering weather
forecasts, the genetic algorithm was utilized to solve the couple simulation optimization: Deterministic
and stochastic, to determine optimal irrigation depth and maximize seasonal net income [15,16].

In a unique study, an economical irrigation depth corresponding to maximum net income at each
irrigation interval, not the entire cropping season, was determined based on a nonlinear relationship
between cumulative transpiration and irrigation depth considering weather forecast [17,18]. Their
method is somewhat time consuming because it requires three runs of heavy two-dimensional
simulation of water flow in a soil. In this study, we present a faster scheme to determine economically
optimum irrigation depth assuming a trapezoidal relationship between irrigation depth and cumulative
transpiration. Therefore, the objectives of this study were: (1) To determine economical irrigation
depths using two predicted points of cumulative transpiration; (2) to check the effectiveness of the
proposed scheme compared to an automated irrigation system.

2. Materials and Methods

2.1. Determination of an Economical Irrigation Depth

The optimal irrigation depth is determined through two major steps. First, net income, In

($ ha−1), is calculated on the assumption that cumulative transpiration at each irrigation interval can
be estimated as:

In = Pcετiki − PwW −Cot, (1)

where Pc is the producer’s price of crop ($ kg−1 DM), ε is transpiration productivity of the crop
(produced dry matter (kg ha−1) divided by cumulative transpiration (kg ha−1)), τi is cumulative
transpiration between two irrigation events (1 mm = 10,000 kg ha−1), ki is the income correction factor,
used to avoid underestimation of In due to smaller τi values in the initial growth stage compared to
later growth stages; Pw is the price of water ($ kg−1), W is the irrigation depth (1 mm = 10,000 kg ha−1),
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and Cot is other costs (e.g., fertilizers, labors, etc.) ($ ha−1). The first term represents the gross income
and second and third terms are costs.

Second, τi is linearly described as a function of W:

τi =

∫
Trdt = atW + τ0, W <

τmax − τ0

at
(2a)

τi = τmax, W ≥
τmax − τ0

at
(2b)

where Tr is the transpiration rate (cm s−1), at is a fitting parameter, and τ0 is τ when W equals zero.
Hence, optimal irrigation depth corresponding to maximum In is obtained when the first derivative
of Equation (1) with regard to W becomes zero. Unlike the nonlinear function as presented by
Fujimaki et al. [17] and Abd El Baki et al. [18], it is constant either positive or negative as:

dIn

dW
= atPcεki − Pw, W <

τmax − τ0

at
(3a)

dIn

dW
= −Pw, W ≥

τmax − τ0

at
(3b)

Therefore, when the right-hand side of Equation (3a) is negative, maximum net income is attained
when water is not applied:

W = 0 when atPcεki − Pw < 0 (4)

Otherwise, maximum net income is attained at the intersection point between the linear function
Equation (2a) and τ0 is constant Equation (2b), because beyond that point, the slope is always negative.

W =
τmax − τ0

at
when atPcεki − Pw ≥ 0 (5)

This scheme assumes cumulative transpiration linearly increases with irrigation depth and when
it reaches the maximal value which is given by potential transpiration, it becomes constant. Therefore,
optimal irrigation depth is determined at the point below in which both transpiration and yield
decrease. Parameters τ0 and at are determined from two trials at W = 0 and another W. The second W
is set at the half of τ0 plus cumulative reference ET until next irrigation. The scheme presented by
Fujimaki et al. [17] and Abd El Baki et al. [18] assumed a nonlinear relationship between cumulative
transpiration and irrigation depth; thereby optimal irrigation depth is determined at a point which
gives somewhat lower transpiration and yield than potential values. While the original scheme requires
three runs to determine parameter values of τ(W) function, the new scheme requires only two which
saves time for running simulation by one-third.

2.2. The Numerical Model

The proposed scheme has been embedded into a numerical model, WASH_2D, which solves
equations governing the two-dimensional movement of water, solutes, and heat in soils by the finite
difference method. This model can partition evapotranspiration into evaporation and transpiration.
Transpiration rate, Tr (cm s−1), was calculated by integrating the water uptake rate, S (cm s−1), over the
calculated plant root zone:

Tr = Lx
−1

∫ Lx

0

∫ Lz

0
S dxdz (6)

where Lx and Lz are width and depth of the calculated plant root zone. The values of S were given by
the macroscopic root water uptake model [19] as:

S = Tpβαw, (7)
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where Tp, β, and αw are potential transpiration (cm s−1), reduction coefficient, and normalized root
density distribution, respectively. The Tp was calculated as follows:

Tp = Epkcb, (8)

where Ep is reference evapotranspiration (cm s−1), calculated by the Penman-Monteith Equation [20]
and kcb is basal crop coefficient, which was expressed as a function of cumulative transpiration as:

kcb = akc[1− exp(bkcτ)] + ckc − dkcτ
ekc , (9)

where akc, bkc, ckc, dkc, and ekc are fitting parameters. The βwas described as:

β = 0.75(brt + 1)drt
−brt−1(drt − z + zr0)

brt grt
(
1− x2grt

−2
)
, (10)

where brt is a fitting parameter; drt and grt are the depth and width of the plant root zone (cm),
respectively; z and zr0 are the soil depth and the depth below which roots exist (cm), respectively; and
x is the horizontal distance from the plant (cm). The drt is also expressed as a function of τ as:

drt = adrt[1− exp(bdrtτ)] + cdrt, (11)

where adrt, bdrt, and cdrt are fitting parameters. Using kcb and drt parameters as functions of τ instead
of days after sowing, the plant growth may be more dynamically responded to drought or salinity
stresses through the model. The additive form of the αw used by the WASH-2D model is a function of
drought potential, ψ (cm) and osmotic potential, ψo (cm):

αw =
1

1 +
(
ψ
ψ50

+
ψo
ψo50

)p (12)

where ψ50, ψo50, and p are fitting parameters [21]. Further detailed information regarding the model
aspects can be found in [17].

2.3. Implementation of Numerical Simulation for the Proposed Scheme

The determination procedure (Figure 1) starts with updating of the initial condition using a numerical
simulation that uses observed weather and irrigation records, and cumulative transpiration at the end of
the last run (step 1). Then, by utilizing the results of step 1 in addition to quantitative weather forecast
data downloaded from the internet until the next irrigation event, optimal irrigation depth corresponding
to maximum net income is determined (step 2). This cycle continues until the final irrigation.
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the proposed scheme (two steps were performed to determine irrigation depths: Update and
optimization runs).
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2.4. Field Experiment

A field experiment was carried out at Arid Land Research Center, Tottori, Japan, in 2019. Two
treatments were established: (1) Proposed scheme (treatment S), and (2) automated irrigation based
on suction monitoring (treatment A). Four replicates were set for each treatment, each replicate was
5 m long and 16 m wide. A drip irrigation system with lateral tubes and emitters spaced at 60 cm
and 20 cm, respectively, was installed. In case of the proposed scheme, irrigation interval was set at
two-days until August 5 as the available water of sand soil is just 0.05, the plant starts to wilt after two
days of irrigation under fine weather, and one-day until the end of irrigation. The automated irrigation
system was controlled using three tensiometers at the depth of 20 cm and the trigger value of suction
was 40 cm, slightly higher than suction at the field capacity.

Weather data (temperature, wind speed, precipitation, etc.) was collected from a weather station
installed in the field while quantitative weather forecast data was downloaded from the website of
Yahoo! Japan [22]. The soil was sand with hydraulic properties as shown in Figure 2. To check the
accuracy of simulation for volumetric water content, 5TE sensors (METER Inc., USA) were installed at
five observation points (x, y): (0, 5), (0, 15), (0, 45) (15, 5), and (30, 5), where x is the horizontal distance
from drip tube and z is the soil depth in cm units. Calibration function of the 5TE sensor is shown in
Figure 3.
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Figure 2. Soil hydraulic properties for sandy soil, Tottori, Japan.

Local Japanese variety of soybean (Glycine max (L.), Fukujishi) was sown on 17 June. The spacing
between each plant was 20 cm along the drip tube. The producer price in Japan was set as 3.25
($ kg−1 FW of shell beans), which was converted into 13.3 ($ kg−1 DM of shell beans). Water price and
transpiration productivity were set for numerical simulations at 0.003 and 0.0002 ($ kg−1), respectively.
Note that the price of water was similarly set to the one used in Israel [23].

Parameters of crop response function were set according to those reported by Yanagawa
and Fujimaki [24] and simply used for numerical simulations. Parameter values of the crop
coefficient function were derived from fittings to those reported by Allen et al. [20], when average
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evapotranspiration during initial, development, mid, and late stages are 3, 4, 5, 5 mm/d, respectively
(Figure 4). Other crop parameters were listed in Table 1.Agronomy 2020, 10, x FOR PEER REVIEW 6 of 14 
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the growing season (parameters of the proposed function was acquired by the fitting to Kcb values
reported by (Allen et al., 1998)).
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Table 1. Parameter values of plant growth and stress response function used for the
numerical simulation.

Parameter Remark

brt grt zr0 Equation (10)
0.12 30 2
adrt bdrt cdrt Equation (11)
40 −0.4 5
ψ50 ψo50, p Equation (12)
−100 −3000 3

Liquid fertilizer (N = 10%, P2O5 = 4%, K2O = 8%) was applied from 25 July until the end of
irrigation with a total N rate of 45 kg ha−1. The N is the most determining element for the plant growth,
thus the fate of N held by liquid fertilizer was simulated for the entire growing season. Granular
fertilizers were also applied occasionally: CaCl2, (NH4)2SO4, and PK40 (P = 20% and K = 20%) in
total rates were 15.4, 45, and 110 kg ha−1, respectively. Both leaf area index (LAI) and above ground
biomass (AGB) were measured four times throughout the growing season. Fresh soybean is popular in
Japan and our variety is bred for such use; therefore, it was harvested before maturity on 2 September.
The yield was statistically analyzed using a randomized complete block design by dividing each
plot per treatment into two replicates. The yield as dry seeds were estimated using an oven whose
temperature was set at 70 ◦C. Thereby, each treatment will have four replicates in total. We used
MS-Excel 2016 to evaluate significant differences between the two treatments.

3. Results

3.1. Leaf Area Index and Biomass

Both LAI and AGB were almost the same until 10 August for both treatments (Figure 5). At the
harvest time, treatment S had higher LAI and AGB values than those of treatment A. This might be
partly due to higher nutrients uptake for treatment S than treatment A (Figure 6). Especially, nitrogen
is the determining element for soybeans growth which is often utilized in the form of NO3.
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(the proposed scheme denotes as treatment S and automated irrigation denotes as treatment A).

According to Figure 6, the uptake of NO3 was higher for treatment S due to less NO3 leaching
than treatment S. This would be expected as most of the liquid fertilizer was injected at the beginning
of irrigation in the automatic irrigation system. The fate of other essential nutrients, potassium, and
phosphate ions may also be quite similar. Difficulty in the application of liquid fertilizer at constant
concentration may be one of the drawback of automated irrigation systems. LAI values under the two
treatments were lower than normal growth in which LAI should be higher than 3.5 by developing a
stage to the full pod [25]. This might be due to (1) high losses of nutrients through deep leaching below
the plant root zone in sandy soil; and (2) some defoliation was occurred by the insect after 20 August,
slightly leading to reduction in leaf dry weight.

3.2. Soil Water Content

To check the validity of the model in terms of water flow simulation, we compared observed
and simulated water contents in two selected points: (0, 5) and (30, 0), as shown in Figure 7. At just
below the drip tube (0, 5), the model could estimate VWC after both irrigation and rainfall events
with a RMSE of 0.021. In the other observation point (30, 5), where the sensor was in the middle of
two adjacent laterals at the depth of 5 cm, the RMSE between observed and simulated VWC values
was 0.019. As the soil was sand, water predominantly moves downward rather than horizontally.
Therefore, irrigation water cannot reach the surface layer of middle and wet only by rainfall. In general,
the model can simulate VWC in fair accuracy in accordance with previous studies [17,18,26,27].

3.3. Example of Determination Optimal Irrigation Depth at Maximal Yield

As shown in Section 2, the proposed scheme uses two predicted points of cumulative transpiration
to determine irrigation depth which can be faster than the three-point scheme (Figure 8). On 30 July,
the two-point scheme gave 6.7 mm as an optimal irrigation depth which corresponds to both maximum
transpiration and maximum net income. On the other hand, the three-point scheme proposed by
Fujimaki et al. [17] and Abd El Baki et al. [18] determined the close value of irrigation depth at 6.9 mm
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which gave maximal net income. The optimal irrigation depths for other irrigation days under either
one or two irrigation intervals determined by both schemes were close (Figure 9).Agronomy 2020, 10, x FOR PEER REVIEW 9 of 14 
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3.4. Net Income and Yield Assessment

The total net income between the two experimental treatments is shown in Figure 10. Total net
income increased by 22% for treatment S when the yield was based on the dry pod shell. This was
due to both yield increment and water saving by 20% and 16%, compared to treatment A. Some yield
parameters were statistically analyzed to check the impact of the proposed scheme on soybean crop
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production (Table 2). Fresh pod shell yield of treatment S was significantly higher than treatment A.
This may due to greater nutrients uptake which led to a larger transfer of nitrogen from leaves to seeds
during the seed filling stage [28]. On the other hand, there were no significant difference for dry seeds,
crop height, LAI, and AGB between the two treatments. Although small LAI were attained for both
treatments, total fresh pod shell yield was not largely affected in accordance with previous studies in
which losses of leaf area values due to the weather or insect did not largely affect soybean yield [29,30].Agronomy 2020, 10, x FOR PEER REVIEW 10 of 14 
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Table 2. Statistical analysis for some growth parameters of soybeans.

Treatment Mass Grain Yield Crop Height AGB LAI

g cm g
Treatment A 47.3 ± 2.2 35.9 ± 0.4 9.2 ± 1.3 1.4 ± 0.2
Treatment S 57.8 ± 2.7 * 37.4 ± 2.3 13.2 ± 1.7 1.9 ± 0.2

Means in each column followed by * indicates significant difference (p≤ 0.05) and (± SE) indicates to the standard error.

3.5. Accuracy of Weather Forecast

The accuracy of weather forecast plays a great role on the performance of the proposed scheme.
The accuracy of most weather factors (e.g., temperature, relative humidity, etc.) are fine, except for
rainfall. We compared actual rainfall values with forecasted ones to check the accuracy as shown
in Figure 11. We set daily effective rainfall as 20 mm in this comparison. The RMSE was 7.8 mm.
The largest error occurred on 28 August when the actual and foretasted rain were 17 and 72 mm,
respectively. Note that any value of rainfall greater than 20 mm was set as 20 mm which is effective
rain for the soil. As the holding capacity of sandy soil is low, the short-term weather forecast was used.
This might have reduced the negative impact of weather forecast. Even under inaccuracy of weather
forecast, the proposed scheme may play a positive role to enhance net income.
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3.6. Advantages of the Proposed Scheme over Other Methods

Even if net income were not significantly different, as we discussed in the introduction,
the determination of irrigation depth to maximize net income during each irrigation interval using
WASH_2D can save the cost of soil moisture sensors or tensiometers required for the automated
irrigation system. It can consider the forecasts of rainfall and immune from malfunctions. Another
potential advantage of the proposed scheme using WASH-2D is that it can also consider salinity stress,
as well as drought stress. Further studies are required for evaluating whether the proposed scheme
using WASH-2D can also mitigate salinity stress.
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Compared with originally presented three-point scheme proposed by Fujimaki et al. [17], the newly
proposed two-point scheme can cut computation time by one-third. The two-point scheme took less
than one minute (48 s) on the Intel Core i3-8130U CPU for the two-day interval in this study.

4. Conclusions

The proposed scheme using two predicted points of irrigation depth and cumulative transpiration
was developed. In this study, the scheme was validated for soybeans grown in a sand field by
comparing the automated irrigation system based on suction monitoring. The scheme could save
irrigation water by 16%. As water was priced and yield increased by 20%, the total net income increased
by 22% compared to the automated irrigation system. The scheme also had a positive impact on
nutrients saving, which might have led to higher yield than the automated irrigation system. The
model simulated water flow in fair accuracy. The proposed scheme could be a beneficial tool to enhance
net income.
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