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Abstract: Efficient land and water management require the accurate selection of suitable crops that
are compatible with soil and crop water requirements (CWR) in a given area. In this study, twenty soil
profiles are collected to represent the soils of the study area. Physical and chemical properties of soil,
in addition to irrigation water quality, provided data are utilized by the Agriculture Land Evaluation
System for Arid and semi-arid regions (ALES-Arid) to determine crop suitability. University of
Idaho Ref-ET software is used to calculate CWR from weather data while the Surface Energy Balance
Algorithms for Land Model (SEBAL) is utilized to estimate CWR from remote sensing data. The
obtained results show that seasonal weather-based CWR of the most suitable field crops (S1 and S2
classes) ranges from 804 to 1625 mm for wheat and berssem, respectively, and ranges from 778 to
993 mm in the vegetable crops potato and watermelon, respectively, under surface irrigation. Mean
daily satellite-based CWR are predicted based on SEBAL ranges between 4.79 and 3.62 mm in Toshka
and Abu Simbel areas respectively. This study provides a new approach for coupling ALES-Arid,
Ref-ET and SEBAL models to facilitate the selection of suitable crops and offers an excellent source
for predicting CWR in arid environments. The findings of this research will help in managing the
future marginal land reclamation projects in arid and semi-arid areas of the world.

Keywords: crop suitability; remote sensing; ALES-Arid; SEBAL; landsat

1. Introduction

Arid and semi-arid zones represent more than one-third of the land area of the
world [1], and are characterized by a long dry season as well as sporadic precipitation [2].
Generally, drylands have been used for livestock production, but recently they are increas-
ingly being used for crop production [3–5]. Egypt lies primarily in arid and semi-arid
regions and faces increasing food and water demand. As a result, it struggles to meet its
basic food and water needs, due to the continuous increase in population. Increasing crop
production without depleting water and land resources in addition to efficient manage-
ment are significant challenges. The Lake Nasser area in the Aswan governorate of Egypt
(22◦–24′ N and 31◦–33.5′ E) is a good representative for arid and semi-arid environments
(Figure 1).

Land suitability is defined as the fitness of a given type of land for specified use,
and such suitability can be determined through analytical methods [6–8]. Selecting of a
suitable crop is considered an important factor of sustainable agriculture relying on land
suitability assessment and also involves assessment of water requirement [9]. Selecting
suitable crops for a given area also plays a vital role in efficient water management of
time [10,11]. The broad objective of sustainable agriculture is to balance the available
land resources with crop requirements, paying particular attention to the optimization of
resources used to achieve sustained productivity over a long period [12,13]. Under good
management policies in arid regions, the deciding real and exact land resources suitability
for specific crop production could likely be more effective and suitable [14].
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management policies in arid regions, the deciding real and exact land resources suitability 
for specific crop production could likely be more effective and suitable [14].  

Several land evaluation models have been developed to provide a quantified proce-
dure to match land with various actual and proposed uses. For instance, Automated Land 
Evaluation System (ALES) [6]), Microcomputer-based Mediterranean Land Evaluation In-
formation System (MicroLEIS [15]), Land Evaluation system for Central Ethiopia (LEV-
CET [16,17]), Applied System of Land Evaluation and Agricultural Land Evaluation Sys-
tem for arid and semi-arid regions (ASEL/ALES-Arid: [18]), and Agriculture Land Suita-
bility Evaluator (ALSE [19]). However, there is no single or unified land evaluation mod-
elling approach [20,21]. ALESarid-GIS is the updated version of ALES-Arid developed to 
assess the agricultural land capability and crop suitability in the Geographic Information 
System (GIS) environment [22]. ALESarid-GIS provides a reasonable solution balancing 
accuracy, ease of application, and moderate data demand, so its usage has been preferred 
in evaluating soils for specific crop production in several studies: for instance, in Wahab, 
et al. [23], Darwish and Abdel Kawy [24], Abd El-Kawy, et al. [25], and Mahmoud, et al. 
[26]. However, little attention has been paid to estimate the CWR of suitable crops, which 
is defined by land evaluation for a given area.  

 
Figure 1. Lake Nasser area, Aswan governorate, Egypt. 
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Figure 1. Lake Nasser area, Aswan governorate, Egypt.

Several land evaluation models have been developed to provide a quantified pro-
cedure to match land with various actual and proposed uses. For instance, Automated
Land Evaluation System (ALES) [6]), Microcomputer-based Mediterranean Land Evalua-
tion Information System (MicroLEIS [15]), Land Evaluation system for Central Ethiopia
(LEV-CET [16,17]), Applied System of Land Evaluation and Agricultural Land Evaluation
System for arid and semi-arid regions (ASEL/ALES-Arid: [18]), and Agriculture Land
Suitability Evaluator (ALSE [19]). However, there is no single or unified land evaluation
modelling approach [20,21]. ALESarid-GIS is the updated version of ALES-Arid developed
to assess the agricultural land capability and crop suitability in the Geographic Information
System (GIS) environment [22]. ALESarid-GIS provides a reasonable solution balancing
accuracy, ease of application, and moderate data demand, so its usage has been preferred
in evaluating soils for specific crop production in several studies: for instance, in Wahab,
et al. [23], Darwish and Abdel Kawy [24], Abd El-Kawy, et al. [25], and Mahmoud, et al. [26].
However, little attention has been paid to estimate the CWR of suitable crops, which is
defined by land evaluation for a given area.
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Actual evapotranspiration (ETa) is a crucial input to calculate CWR. It can be estimated
quite accurately using the aid of weighing lysimeters [27], Eddy correlation [28], and the
Bowen ratio [29]. These methods offer potent alternatives for measuring land surface
evapotranspiration with high accuracy for a homogeneous area. However, their practical
use over large areas is limited due to the number of sites needed to provide point values
of evapotranspiration for a specific location. Moreover, it cannot be easily extrapolated to
produce accurate maps over a landscape or region. Traditionally, ETa has been estimated
by multiplying weather-based reference evapotranspiration (ETr) with crop coefficients
(Kc). This method is commonly flawed for multiple reasons. For instance: ETr is a function
of weather data alone. Kc values for the same crop showed a significant variation among
locations due to differences in crop growth stage, crop variety, soil properties, irrigation
method and frequency, climate, and crop management practices. It also does not consider
the soil moisture stress level. Furthermore, ETa estimated using this procedure is relatively
accurate with an error of ±20% if done well, compared to lysimeters data. Moreover, the
accuracy of this methodology is restricted to climatic data, which are not always reliable in
many parts of the world [30–32]. However, the role of this method cannot be denied for
management and planning purposes—for example, in estimating CWR of the proposed
suitable crops for current or newly developed areas.

Therefore, these limitations have encouraged using remotely sensed data to estimate
ETa over huge areas. Nowadays, satellite images provide an excellent method for mapping
spatial and temporal ETa above the canopy for an entire satellite image. Hence, the estima-
tion of ETa based on remotely sensed data has become a desirable and adequate tool in
water resources planning and management [33–36]. Several remote sensing models have
been developed to estimate ETa from satellite images particularly at the field/human scale:
for instance, the Surface Energy Balance Algorithms for Land Model (SEBAL [37]), Surface
Energy Balance System (SEBS [38]), Mapping EvapoTranspiration at High Resolution with
Internalized Calibration (METRIC: [30], operational Simplified Surface Energy Balance
(SSEBop [39]), and The Atmosphere-Land Exchange Inverse (ALEXI [40]); for more models
of remotely sensed ETa see [41–44]. Among these models, SEBAL requires the least amount
of inputs with acceptable accuracy. Thus, it has excellent potential for use in develop-
ing countries where water management policies are generally inadequate, and ground
information is scarce. Moreover, SEBAL has been tested in many countries, especially in
arid–semi-arid regions under several different irrigation conditions [45–50].

It is for the abovementioned reasons; this study aims to combine ALESarid, Ref-ET,
and SEBAL models as a new and comprehensive approach to improve the selection of
suitable crops for available land and water resources, which could be considered the
novelty of the current work. This study could be used as a rapid assessment tool to help
decision-makers and land managers to prioritize suitable crops based on land and water
resources. Section 2 describes the materials and methods. Section 3 presents and discusses
the results using data for the area around Lake Naser, Upper Egypt. Conclusions are
provided in Section 4.

2. Materials and Methods
2.1. Soil and Water Sampling and Analyses

Twenty representative soil profiles were selected and geo-referenced using the Global
Positioning System (GPS) in the study area (Figure 1) around Lake Nasser, Aswan gover-
norate, Egypt (22◦–24′ N and 31◦–33.5′ E). Soil samples were collected and analyzed in
the Laboratories of the Natural Resources Department, Faculty of African Postgraduate
Studies, Cairo University in Giza, Egypt, during 2014–2017. Soil physical, chemical, and
fertility properties were assessed. Moreover, irrigation water samples representing different
soil profiles at 10 cm below the water surface were collected to determine the irrigation
water properties. Soil samples were air-dried, ground gently, and sieved through a 2 mm
sieve to obtain the fine soil particles. Data of water and soil samples were compiled in
ALESarid-GIS system. Physical soil properties (including clay (%), available water (%),



Agronomy 2021, 11, 260 4 of 18

hydraulic conductivity (Ks, m/hr), soil depth (cm) and groundwater depth), and chemical
soil properties (including soil pH, electrical conductivity (EC, dS/m), cations exchange
capacity (CEC, meq/100 g soil), exchangeable sodium percentage (ESP, %), total carbonate
(%) and gypsum content (%)) were assessed following USDA [51]. Soil fertility properties
(including organic matter (OM, %) and available NPK (ppm)) in addition to irrigation
water quality parameters (pH, EC (dS/m), sodium adsorption ratio (SAR), sodium and
chloride (meq/L) and boron (B, ppm) were also measured.

2.2. Crop Suitability Using ALESarid-GIS

Soil and water data have been used in the ALESarid-GIS system to assess crop suit-
ability [22]. The evaluation is based on crop suitability affected by the environmental
characteristics at the site, such as physical, chemical, and fertility characteristics of the soil,
irrigation water quality, and climatic conditions that represent the main factors affecting
agricultural soil suitability and productivity in arid and semi-arid regions. Input data of
this model are soil physical properties (e.g., soil texture, soil depth, available water and soil
permeability), soil chemical properties (e.g., soil salinity, soil alkalinity, calcium carbonate
content, gypsum content, cation exchange capacity, and soil reaction), soil fertility proper-
ties (e.g., organic matter, available forms of N, P and K), irrigation water characteristics
and qualities (e.g., water salinity and toxicity), and finally climate data (e.g., mean summer
and winter temperature). Firstly, the model calculates the weighted average value (AV) for
each soil property related to a particular soil profile, Equation (1).

AV =
∑n

i=1(vi × ti)

T
(1)

where: vi is the soil property value relating to soil horizon i; t is the soil horizon thickness
(cm), n is the number of horizons within a soil profile, and T is the total soil profile depth
(cm). Then, based on the match between the weighted average values of soil parameters
and suggested ratings that coded within the model, the land suitability indices and classes
for crops were calculated according to the match between the standard crop requirements,
which are internally coded data within the model, and various soil parameter levels in
the studied area. Finally, the land suitability class was determined by assigning each
land suitability index to the confined categories (Table 1). Ismail, Bahnassy and Abd El-
Kawy [18] and Abd El-Kawy, Ismail, Rod and Suliman [22] have provided a more detailed
description of this model. It is worth noting that ALES-Arid was designed for the arid and
semi-arid area. However, for studies in different areas, other land evaluation models can
be used (e.g., ALES, MicroLEIS, LEV-CET, and ALSE).

Table 1. Land suitability classes, description and ranges used by ALESarid-GIS.

Class Description Rating (%)

S1 Highly suitable 80–100
S2 Moderately suitable 60–80
S3 Marginally suitable 40–60
S4 Conditionally suitable 20–40

NS1 Potentially suitable 10–20
NS2 Actually unsuitable <10

2.3. Climatic and Remote Sensing Data

Weather data for 2014 were obtained from Abu Simbel weather station located in
22◦21′36′ ′ N, 31◦36′36′ ′ E with an elevation of 192 m. Data collected were daily mini-
mum and maximum air temperatures, relative humidity, and wind speed. Multi-temporal
Landsat-8 images (path 175, row 44) were acquired from earthexplorer.usgs.gov between
20 February and 21 December 2014. Landsat-8 data was provided at the 16-day temporal
resolution, 16-bit radiometric resolution, 30 m spatial resolution, LIT processing level (geo-

earthexplorer.usgs.gov
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metric and terrain correction) and free cloud. Satellite image processing was implemented
using the geospatial data abstraction library, gdal, [52] in Python programming language.

2.4. Weather-Based CWR Using Ref-ET

Daily reference evapotranspiration (ETr) was calculated using the University of Idaho
Ref-ET software [53,54] as Equation (2).

ETr =
0.408(Rn − G) + γ Cn

Ta+273.15 + u2(es − ea)

∆ + γ(1 + Cdu2)
(2)

where ETr is the alfalfa reference evapotranspiration [mm/day]; Rn is the net radiation at
the crop surface [MJ/m2 day]; G is the soil heat flux density at the soil surface [MJ/m2

day]; Ta is the mean daily or hourly air temperature at 1.5–2.5 m height [C]; u2 is the mean
daily wind speed at 2 m height [m/s]; es is the saturation vapor pressure at 1.5–2.5 m
height [KPa]; ea is the actual vapour pressure at 1.5–2.5 m height [KPa]; ∆ is the slope of
the saturation vapor pressure-temperature curve [KPa/C]; γ is the psychometric constant
[KPa/C]; Cn is the numerator constant that changes with reference type and calculation
time step; Cd is the denominator constant that changes with reference type and calculation
time step; 0.408 coefficient [m2 mm/MJ]. Cumulative ETa and CWR [55] were estimated by
Equations (3) and (4) respectively.

ETa Cumulative−WB =
n

∑
i=1

ETr Kcr (3)

CWRWB = ETa Cumulative−WB / Irrigation efficiency (4)

where ETa Cumulative is the weather-based cumulative ETa [mm] from the day i through the
day n; ETr is the reference ET [mm] for the day i from Equation (2); Kcr is the alfalfa-based
single crop coefficient [dimensionlessfor the day i, irrigation efficiency ranging between 0
and 1, and CWRWB is the weather-based crop water requirement [mm].

2.5. Satellite-Based CWR Using SEBAL

Extensive SEBAL formulation is available in its original literature [37,56–58], so here
we introduce a short description of the SEBAL model. Landsat-8 data converted from
digital numbers to reflectance and radiance to calculate vegetation indices, surface albedo,
and surface temperatures following [59]. It is worth noting that the SEBAL Calibrated using
Inverse Modeling of Extreme Conditions (CIMIC) approach is used to generate image-date
specific sensible heat flux (H) map where CIMIC effectively minimizes systematic biases in
Rn, G, Ts, and Z0m [37]. ETa is predicted from the residual amount of energy remaining
from the energy balance that includes all major sources (Rn) and consumers (G, H and LE)
of energy as Equation (5):

Rn −G−H− LE = 0 (5)

where Rn is the net radiation, H is the sensible heat, G is the soil heat flux, LE is the
latent heat flux. All are instantaneous values in [W/m2]. Net radiation was calculated as
Equation (6):

Rn = (1− α)RS↓ + RL↓ − RL↑ − (1− ε0)RL↓ (6)

where α is the surface albedo [dimensionless]; RS↓ is the incoming short-wave radiation
[W/m2]; RL↓ is the incoming longwave radiation [W/m2]; RL↑ is the outgoing longwave
radiation [W/m2]; ε0 is the broad-band surface emissivity [dimensionless]. Soil heat flux
calculated as Equation (7):

G =
(
((Ts− 273.15)/α)

(
0.0038α+ 0.0074α2

)(
1− 0.98NDVI4

))
Rn (7)
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where Ts is the surface temperature [K]; NDVI is the Normalized Differences Vegetation
Index [dimensionless].

Momentum roughness length was calculated as Equation (8):

Z0m = exp[(a NDVI/α) + b] (8)

where Z0m is the momentum roughness length [m]; a and b are regression constants derived
from a plot of initial ln(Z0m) vs NDVI/α [56]. These two parameters should be defined by
the SEBAL operator, thus, they play an important role in the model performance. Sensible
heat flux calculated as Equation (9):

H = ρa CP(dT/rah) (9)

where ρa is the air density [Kg/m3]; CP is the specific heat [J/Kg × K]; rah is the aero-
dynamic resistance for heat transport [s/m]. The relationship between the temperature
differences and remotely sensed surface temperature is very close as Equation (10):

dT = a Ts + b (10)

where dT is the temperature differences between two heights at 0.1 m and 2 m above the
canopy [K]; a [−], b[K] are the calibration coefficients derived using the cold and hot pixels
site and time-specific candidates. It should be highlighted that cold and hot pixels location
are operator-specific, which means a SEBAL operator has to define these two locations for
each image carefully as described, in detail, in SEBAL literature.

Once the instantaneous net radiation, soil heat flux, and sensible heat flux were
determined, the instantaneous latent heat flux was estimated at the moment of satellite
overpass on a pixel-by-pixel level, then converted to an equivalent amount of water depth.
The instantaneous evaporative fraction was calculated as Equation (11):

Λ = LE/Rn −G (11)

Evaporative fraction expresses the ratio of actual to crop evaporative demand when
atmospheric moisture conditions are in equilibrium with soil moisture conditions [60]. Stud-
ies have shown that the evaporative fraction remains constant throughout the day [61,62].
Therefore, daily ETa was calculated from the energy balance equation as Equation (12):

ETa24 = 86400 Λ (Rn24 −G24)/λ (12)

where: Λ is the evaporative fraction [dimensionless]; Rn24 is the daily net radiation calcu-
lated on a daily time step [W/m2]; G24 is the daily soil heat flux [W/m2]; λ is the latent
heat of vaporization [J/kg]; 86400 is a time conversion from seconds to days. The daily ETa
for the entire image area changes in proportion to the change in the daily ETr on the index
weather site [30,63]. Thereby, Cumulative ETa calculated as Equation (13):

ETa Cumulative−RS =
n

∑
i=1

(ETa24)i × (Km)i (13)

Km = (ETr cumulative /ETri) (14)

where ETa Cumulative−RS is the remotely sensed cumulative ETa [mm] from the day i
through the day n; ETa24 is the daily ETa [mm] for day i; ETrF24 is the daily ETr frac-
tion [mm] for day i; Km is multiplier [dimensionless] for each period to convert ETa for
the day of the image into ETa for the period; ETr Cumulative is the cumulative reference ET
[mm] for the period; ETri is the reference ET [mm] for day i. Finally, remote sensing CWR
can be estimated as Equation (15):

CWRRS = ETa Cumulative−RS (15)
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where ETa Cumulative−RS is the remotely sensed cumulative ETa [mm] from the day i
through the day n; and CWRRS is the remote sensing CWR [mm].

3. Results and Discussion
3.1. Soil and Irrigation Water Properties

Soil analysis indicated low clay content, low water availability, and high hydraulic
conductivity (Table 2). Most of the investigated soil could be considered as alkaline and
non-saline with low CEC. These results are in agreement with those obtained by previous
studies [64–66]. In accordance with Khalifa [64], and Abbas, El-Husseiny, Mohamed and
Abuzaid [65], soil OM content was very low, and the available NPK values were not
sufficient. The difference in soil properties may be due to the variability of topography
and parent rocks. Taghizadeh-Mehrjardi, et al. [67] assessed land suitability in Kurdistan
province in Iran for crop production and conclude that the differences in soil characteristics
were due to variability in topography, climate, and parent material. Additionally, they
considered topography and climate data as the essential auxiliary data for predicting land
suitability class.

Table 2. Soil depth (SD), clay content average (%), available water (AW, %), hydraulic conductivity (Ks, m/hr), total carbonates (TC,
%), gypsum content (GC, %), exchangeable sodium percentage (ESP, %), soil pH, cations exchangeable capacity (CEC, meq/100 g soil)
electrical conductivity (EC, dS/m), organic matter (OM, %) and available nitrogen (N, ppm), phosphorous (P, ppm) and potassium
(K, ppm).

ID SD Clay AW Ks TC GC ESP pH CEC EC OM N P K

1 85 0.72 2.48 0.63 2.21 0.08 13.96 7.82 3.32 2.09 0.04 0.11 0.28 2.12
2 90 8.10 2.80 0.22 1.70 0.07 12.20 8.11 6.30 1.20 0.03 0.13 0.23 1.90
3 90 8.12 2.64 0.22 1.86 0.06 11.63 8.12 6.41 1.25 0.04 0.11 0.33 1.88
4 95 7.93 2.80 0.23 1.83 0.05 14.43 8.05 6.17 1.27 0.04 0.10 0.40 2.80
5 95 5.55 2.61 0.37 1.05 0.06 5.34 7.74 5.64 0.90 0.05 0.14 0.52 2.89
6 90 1.00 2.63 0.62 2.50 0.07 14.07 7.76 3.80 2.32 0.03 0.07 0.23 1.47
7 70 7.93 3.03 0.23 1.63 0.05 11.81 7.63 6.39 2.45 0.01 0.04 0.13 0.77
8 90 5.95 2.50 0.34 1.10 0.08 5.25 7.67 5.15 0.79 0.04 0.05 0.30 2.05
9 95 5.64 2.11 0.36 0.99 0.07 4.88 7.72 5.06 0.94 0.04 0.04 0.31 1.60

10 90 5.05 1.90 0.39 1.05 0.07 4.80 7.60 4.95 0.89 0.05 0.06 0.25 1.90
11 90 1.50 2.70 0.59 3.80 0.07 20.10 7.95 3.05 2.87 0.05 0.15 0.65 3.05
12 85 6.94 2.94 0.29 1.75 0.06 14.06 8.08 5.44 0.64 0.04 0.12 0.48 2.35
13 90 5.60 2.00 0.36 1.10 0.06 4.80 7.61 4.55 3.45 0.05 0.15 0.55 2.60
14 95 1.64 2.54 0.58 3.81 0.07 4.99 7.86 2.99 2.81 0.06 0.15 0.66 2.21
15 80 0.78 1.51 0.63 2.29 0.07 12.28 7.88 2.60 1.27 0.03 0.04 0.19 2.18
16 50 1.72 2.54 0.58 3.44 0.06 11.14 8.66 2.82 1.97 0.04 0.14 0.36 3.04
17 85 6.44 3.32 0.32 1.71 0.06 12.82 8.08 5.51 0.62 0.04 0.10 0.37 1.56
18 90 6.80 3.24 0.30 1.71 0.07 13.83 7.68 5.59 3.06 0.06 0.18 0.62 4.00
19 95 6.94 3.37 0.29 1.58 0.07 13.76 7.59 5.85 3.47 0.04 0.05 0.14 1.37
20 60 11.00 2.95 0.06 4.60 0.07 12.05 7.89 7.00 4.72 0.06 0.10 0.55 2.45

Min 50.00 0.72 1.51 0.06 0.99 0.05 4.80 7.59 2.60 0.62 0.01 0.04 0.13 0.77
Max 95.00 11.00 3.37 0.63 4.60 0.08 20.10 8.66 7.00 4.72 0.06 0.18 0.66 4.00

Mean 85.50 5.27 2.63 0.38 2.09 0.07 10.91 7.88 4.93 1.95 0.04 0.10 0.38 2.21
SD 11.82 2.94 0.47 0.16 1.02 0.01 4.25 0.25 1.34 1.13 0.01 0.04 0.16 0.71
CV
(%) 13.83 55.73 17.68 42.95 48.79 12.12 38.98 3.21 27.09 57.95 27.77 42.29 43.49 32.16

Irrigation water properties for all collected samples were similar among different
sectors (Table 3). This result was expected as irrigation water came from the same source
(Lake Nasser), which has high-quality irrigation water for the proposed crops according
to FAO [68] and El-Mahdy, et al. [69], who indicated the suitability of Lake Naser wa-
ter for drinking and irrigation. These findings also are found to be in agreement with
previous work of Fayed, et al. [70]. They tested the chemical properties of Lake Nasser
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water and found that the concentration of elements in Lake Nasser water was within the
permissible limits.

Table 3. Irrigation water properties in the study area.

Samples EC
(dS/m) pH SAR Na+

(meq/L)
Cl−1

(meq/L)
B−1

(ppm)

1 0.20 8.38 3.92 3.30 1.20 0.02
2 0.20 8.53 4.28 3.37 1.00 0.13
3 0.24 7.79 3.31 3.13 1.20 0.08
4 0.24 7.32 3.54 3.19 1.20 0.04
5 0.21 7.37 3.67 3.13 1.00 0.11
6 0.19 7.67 3.16 2.85 1.20 0.11
7 0.22 7.67 3.16 2.92 2.20 0.07
8 0.71 6.85 2.99 4.31 1.80 0.03

Min 0.19 6.85 2.99 2.85 1.00 0.02
Max 0.71 8.53 4.28 4.31 2.20 0.13

Mean 0.27 7.70 3.50 3.27 1.35 0.08
SD 0.16 0.52 0.41 0.43 0.40 0.04

CV (%) 59.48 6.71 11.70 13.00 29.40 53.04

3.2. Crop Suitability Assessment Using ALESarid-GIS

Crop suitability is divided into five classes: S1, S2, S3, S4, and NS2, indicating highly
suitable, moderately suitable, marginally suitable, conditionally suitable and unsuitable,
respectively. Table 4 previews land suitability for 28 field crops in the study area. Since
the total number of soil profiles are 20 profiles and each soil profile covers a different area,
crop suitability class (%) is calculated as n of soil profiles in each class divided by the
total number of soil profiles. For instance, wheat crop classified as S1 (highly suitable) for
four soil profiles (2, 3, 4, and 20), thus, wheat is highly suitable for 20% of the study area.
Based on S1 and S2 classes of suitability, alfalfa and sorghum were the highest suitable
crops (95%), followed by onion, wheat and barley (90%), sugar beet (80%), sugarcane,
peppers, and watermelons (70%), and pear (50%). Some crops were found to be completely
unsuitable such as date palm, fig, olives, grapes, citrus, tomatoes, cabbage, peas, peanuts,
and rice (Table 4). According to Aswan governorate statistical guide [71], most of these
crops are actually planted in the study area indicating the validity of ALESarid estimates.
At the same time, there are other crops not included in ALESarid database but cultivated in
the study area (i.e., eggplant, courgettes, garlic, okra, spinach, corchorus, hibiscus, henna,
sesame and fenugreek). Similar findings were reported by Hassan, et al. [72], who studies
land suitability for wheat, maize, potatoes, sugar beet, alfalfa, peach, citrus, and olive in
Hala’ib and Shalateen regions, South-Eastern of the study area.

3.3. Weather-Based CWR

Monthly reference evapotranspiration (ETr) increased from January to July, then
gradually decreased to reach its minimum in December (Figure 2). Monthly ETr was 5.79,
10.94, and 4.80 mm/day in January, July, and December, respectively. There was a positive
association between the change in ETr and the change in air temperature. The difference
in ETr was negatively associated with the change in humidity. Data collected from the
nearest weather station agreed with our findings. Crop water requirements (CWR) were
calculated based on 60%, 75%, and 85% efficiency for surface, sprinkler and drip irrigation
respectively [73]. Crop coefficient (Kc) values, planting date and harvesting date were
obtained from the previous studies [74–77].
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Table 4. Land suitability for 28 field crops around Lake Nasser, Aswan, Egypt, determined during 2014–2017.

Crop
Soil Profiles

Classes %

S1 S2 S3 S4 NS2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Wheat/Barley 20 70 10 0 0
Faba bean 0 55 45 0 0
Sugarbeet 5 75 20 0 0
Sunflower 0 35 65 0 0

Rice 0 0 0 0 100
Maize/Soybean 0 50 50 0 0

Peanut/Cabbage/Peas/Tomato 0 0 100 0 0
Cotton 0 60 40 0 0

Sugarcane 0 70 25 5 0
Onion 15 75 10 0 0
Potato 0 5 95 0 0

Peppers/Watermelon 0 70 30 0 0
Alfalfa/Sorghum 50 45 5 0 0
Citrus/Grape/Fig 0 0 55 10 35

Banana 0 20 45 0 35
Olives 0 0 65 0 35
Apple 0 25 40 0 35
Pear 0 50 15 0 35

Date Palm 0 0 65 0 35

S1 (green), S2 (blue), S3 (orange), S4 (yellow) and NS2 (red) indicate highly suitable, moderately suitable, marginally suitable, conditionally suitable, and unsuitable, respectively.
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Figure 2. Monthly reference evapotranspiration (ETr; mm/day) based on daily time step climatic data from Abu Simbel
weather station (22◦21’36” N, 31◦36’36” E) for 2014.

Land suitability level for 28 field crops around Lake Nasser in Aswan, Egypt, deter-
mined during 2014–2017 was graphically presented in Table 4. Crop water requirements
for summer field crops ranged from 820 to 3406 mm for sunflower and sugarcane, while it
ranged for winter crops from 658 to 1625 mm for faba bean and berssem (5 cuts), respec-
tively (Table 5).

Table 5. Crop water requirements for field crops, vegetable crops, and fruit trees under different irrigation systems.

Surface Sprinkler Drip

Crop Days Planting
Date

Harvesting
Date ETa (mm) CWR (mm)

Summer field crops

Sunflower 90 01/05/2014 30/07/2014 492 820 656 579
Sorghum 120 15/05/2014 12/09/2014 675 1126 900

Maize 120 15/04/2014 13/08/2014 680 1133 906 799
Peanut 120 15/04/2014 13/08/2014 697 1162 930 820

Sugarcane 365 01/02/2014 01/02/2015 2044 3406 2725 2405
Soybean 123 01/05/2014 01/09/2014 641 1069 855 755

Winter field crops

Wheat 165 01/11/2014 15/04/2015 482 804 643
Barley 150 15/10/2014 14/03/2015 482 803 643

Berssem 240 15/09/2014 13/05/2015 975 1625 1300
Faba bean 122 01/11/2014 03/03/2015 395 658 527 465

Onion 151 01/10/2014 01/03/2015 485 808 646 570

Annual field crops

Alfalfa 365 01/01/2014 01/01/2015 2025 3374 2699 2382
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Table 5. Cont.

Surface Sprinkler Drip

Crop Days Planting
Date

Harvesting
Date ETa (mm) CWR (mm)

Summer vegetable crops

Watermelon 122 01/03/2014 01/07/2014 596 993 794 701
Peppers 153 01/04/2014 01/09/2014 793 1321 1057 933
Cabbage 153 15/04/2014 15/09/2014 783 1305 1044 921
Tomato 150 15/01/2014 14/06/2014 678 1130 904 797
Potato 120 01/02/2014 01/06/2014 544 907 726 640

Winter vegetable crops

Cabbage 151 15/10/2014 15/03/2015 483 806 644 569
Tomato 151 15/09/2014 13/02/2015 529 882 705 622
Potato 123 01/10/2014 01/02/2015 389 648 518 457

Peppers 150 01/10/2014 28/02/2015 481 801 641 566
Peas 150 15/09/2014 12/02/2015 490 816 653 576

Deciduous fruit trees

Grape 275 01/3/2014 01/12/2014 933 1555 1244 1098
Fig 275 01/3/2014 01/12/2014 948 1579 1263 1115

Evergreen fruit trees

Date Palm 365 01/01/2014 01/01/2015 1119 1865 1492 1316
Olives 365 01/01/2014 01/01/2015 1119 1865 1492 1316
Citrus 365 01/01/2014 01/01/2015 1548 2581 2065 1822

Banana 365 01/01/2014 01/01/2015 2022 3369 2695 2378

Summer and winter vegetable crop harvests varied significantly for the same crop.
For a summer harvest, CWR ranged from 907 to 1321 mm, and for winter harvest ranged
from 648 to 882 mm in potato and tomato, respectively (Table 5). Crop water requirements
for deciduous fruit trees varied from 1555 to 1579 mm for grape and fig, respectively,
and ranged from 1865 to 3369 mm in the evergreen fruit trees date palm and banana,
respectively. These findings can be confirmed by the study of Mahmoud and El-Bably [78].
Precise predictions of CWR depend on accurate crop ET assessment, accessible satellite
images source and precise forecasting of meteorological data [79].

3.4. Weather-Based CWR of Suitable Crops

Crop suitability that represented by S1 and S2 classes along with their CWR (Table 6)
indicated that the range of CWR for the most suitable field crops is between 804 and 1625
mm for wheat and berssem (5 cuts), respectively. Vegetable crops CWR ranged from 778
to 993 mm for potato and watermelon, respectively. For banana trees, CWR was 3369
mm under surface irrigation. ALESarid-GIS output based on soil and water properties
indicated that sugar beet, cotton, apple, and pear are the most suitable crops. However,
based on the physiological demand of these crops, they cannot grow in the study area
because of other factors, such as climatic conditions. At the same time, date palm that
was proven as unsuitable (S3) is successfully cultivated in the study area. In arid regions,
a suitable cropping pattern for an area could be decided based on both the actual and
potential status of the area defined by land suitability indices for different crops [14] while
Abd El-Hady and Abdelaty [80] indicated that crops soil suitability is mainly determined
by soil properties, crop rooting depth, and crops salinity tolerance. However, this study
highly recommends integrating CWR of the most suitable crops for a region to ensure a
real match between these crops and water availability for irrigation.
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Table 6. Crop water requirements (CWR) of the most suitable crops under the surface, sprinkler, and
drip irrigation systems.

Surface Sprinkler Drip

Crop S1% S2% CWR [mm]

Field crops

Faba bean 55 658 527 465
Wheat 20 70 804 643
Barley 20 70 803 643

Sunflower 35 820 656 579
Maize 50 1133 906 799

Sugarbeet 5 75
Soybean 50 1069 855 755
Onion 15 75 808 646 570

Berssem 50 45 1625 1300
Alfalfa 50 45 3374 2699
Cotton 60 -

Vegetable crops

Potato 5 778 622 549
Watermelon 70 993 794 701

Fruit trees

Apple 25
Pear 50

Banana 20 3369 2695 2378

3.5. Actual CWR Using SEBAL

Calculations of ETa based on remotely sensed data and SEBAL approach were done
with sprinkler and surface irrigation systems in Toshka and Abu Simbel locations, respec-
tively (Figure 3). Those two locations were selected to investigate the applicability of
remote sensing data with the SEBAL model in CWR estimation, given that they represent
two different irrigation and management systems and cover most of the study area. The
essential elements in SEBAL are the sensible heat flux and the momentum roughness
length calculation, which depend upon the operator, time, and site-specific parameters;
coefficients a and b in Equations (8) and (10). These coefficients are defined for each day-
image and presented in Table A1. Paula, et al. [81] assured that the atmospheric stability
conditions ensure reasonable estimates of ETa.

From Figure 3, ETa spatial variations between Toshka and Abu Simbel locations can be
attributed to the differences in the land and water management in each location where more
water is consumed at Toshka location because of the well-managed agriculture system (e.g.,
sprinkler irrigation) compared with that at Abu Simbel location (flood irrigation). Figure 4
presents daily ETa at cold pixels, mean daily ETa at Toshka and Abu Simbel locations, as
well as weather-based ETr calculated based on weather data from the Abu Simbel weather
station. Daily ETa at cold pixels represents a well-watered vegetation condition that has
a minimum surface temperature (Ts) above the canopy with maximum vegetation cover
(NDVI) and surface albedo (α). In this situation, the temperature difference (dT) is minimal
or zero and this leads to sensible heat flux (H) that has become minimal or zero too. Latent
heat flux (LE) and the evaporative fraction (Λ) becomes a maximal rate due to all the
available energy consumed in the latent heat flux [30,37]. Thus, these cold pixel values
refer to well-managed fields. Compared to the temporal change in daily ETa at cold pixels
versus mean daily ETa at Toshka and Abu Simbel locations: (1) The mean daily ETa at
Abu Simbel location is always lower than at Toshka location, and (2) the mean daily ETa
at Toshka location is very close to daily ETa at cold pixels confirming the results that
obtained in Figure 3 and Table 7. Remotely sensed CWR of each cultivated crop could
be achieved by using a crop type map. Unfortunately, this map is not available for this
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study to precisely compare between weather-based and remote sensing-based CWR, which
is highly recommended in future studies. However, daily ETr from Figure 4 and Table 7
is higher than ETa by about 50% with SD and CV reaching 2.4 and 26.92% respectively,
thus indicating, in general, a higher estimation of weather-based CWR (Table 4; Table 5).
Therefore, the calculation of ETa using satellite data and SEBAL model is useful for guiding
the daily operation of water management in the arid region [82]. Moreover, Sun, et al. [83]
demonstrated the considerable potential of the SEBAL model for estimation of spatial ETa
with little ground-based weather data over large areas at the field scale. These findings
also can be confirmed by the mean NDVI spatial variation maps (Figure 5). The maximum
NDVI values were clustered over Toshka at 0.80 (mean = 0.33; CV = 40%) while at Abu
Simbel it was at 0.73 (mean = 0.27; CV = 42%). Both ETa and NDVI spatial variation
maps are completely agreed with each other where lower ETa (NDVI) with higher CV
value mapped over Abo Simbel and higher ETa (NDVI) with lower CV value clustered
over Toshka.Agronomy 2020, 10, x FOR PEER REVIEW 14 of 19 
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Table 7. Minimum, maximum, mean, standard deviation (SD) and coefficient of variation (CV) of
daily ETa at cold pixels, mean daily ETa at Toshka and Abu Simbel locations and weather-based ETr.

ETa (mm) ETr

Cold Pixels Toshka Abu Simbel

Minimum 2.81 2.40 2.74 4.49
Maximum 5.74 6.56 4.77 13.40

Mean 4.73 4.79 3.62 8.90
SD 0.88 1.08 0.69 2.40

CV (%) 18.53 22.67 19.16 26.92
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3.6. Study Llimitations and Innovation

The study area has only one weather station used for calculating weather-based
CWR and in SEBAL calibration. Thus, it is considered one of the limitations of this
study. In addition, a crop map was not available for this study, which plays an important
role in linking the proposed CWR using climate data and the actual CWR using remote
sensing data. Therefore, we highly recommend this point in future studies. Despite that,
the innovation of the study is integrating ALESarid-GIS, Ref-ET, and SEBAL models for
selecting crop suitability and assessing its water requirements using weather and remote
sensing data in a given area. Besides, we highly encourage to add some crops which are
planted in the study area, but not included in ALESarid database (i.e., eggplant, courgettes,
garlic, okra, spinach, corchorus, hibiscus, henna, sesame and fenugreek).
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4. Conclusions

Crop type and water management must be compatible with land and water resources.
When selecting cropping systems, several factors related to soil properties and water quality
have to be considered, along with other climatic factors that may affect the physiological
performance of each individual crop differently. ALESarid-GIS facilitates the selection of
suitable crops to improve the estimation of irrigation crop water requirements based on
crop suitability. Remote sensing techniques and the SEBAL model offer a great tool that
can be used for estimating the ETa and support land and water management, especially
in arid and semiarid regions of the world. Our results reveal that: (1) The highly suitable
crops are alfalfa and sorghum (95%) followed by onion, wheat and barley (90%), sugar beet
(80%), sugarcane, peppers and watermelons (70%), and pear (50%); (2) their weather-based
CWR ranges from 804 to 1625 mm for wheat and berssem (5 cuts), respectively; and (3)
satellite-based CWR spatial distribution for Toshka pivots irrigation system ranges between
10 and 1702 mm/year (mean = 821 mm/year), while this finding for Abu Simbel flood
irrigation system it ranges from 16 to 1338 mm/year (mean = 557 mm/year). The findings
of the present research may help decision-makers to plan and manage the future marginal
land reclamation projects in Egypt and arid and semi-arid areas of the world. The concept
of the current study can be applied to other sites of a similar subject.
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Appendix A

Table A1. Coefficient parameters (a and b) of momentum roughness length (Z0m) and temperature
differences (dT).

DOY
Z0m=exp[(a × NDVI/α)+b] dT = (a × Ts) + b

a b a b

51 5.02 −6.45 0.36 −107.5
83 4.99 −6.44 0.30 −88.91

131 5.13 −6.47 0.17 −50.55
147 5.11 −6.44 0.15 −45.36
163 5.05 −6.43 0.16 −48.33
179 4.88 −6.38 0.13 −40.58
195 5.06 −6.42 0.26 −79.56
211 5.07 −6.45 0.17 −51.52
227 4.88 −6.38 0.18 −55.86
243 5.02 −6.42 0.25 −76.85
259 4.99 −6.42 0.20 −62.17
275 4.94 −6.41 0.25 −73.90
291 4.78 −6.35 0.22 −66.47
307 4.98 −6.42 0.25 −76.29
339 5.25 −6.52 0.31 −92.15
355 4.96 −6.43 0.49 −142.51

Min. 4.78 −6.52 0.13 −142.51
Max. 5.25 −6.35 0.49 −40.58
Mean 5.01 −6.43 0.24 −72.41

SD 0.11 0.04 0.09 25.68
CV (%) 2.14 −0.57 37.21 −35.46

Note DOY, day of the year; Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of determina-
tion.
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