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Abstract: Reliable estimations of parameter values and associated uncertainties are crucial for
crop model applications in agro-environmental research. However, estimating many parameters
simultaneously for different types of response variables is difficult. This becomes more complicated
for grapevines with different phenotypes between varieties and training systems. Our study aims
to evaluate how a standard least square approach can be used to calibrate a complex grapevine
model for simulating both the phenology (flowering and harvest date) and yield of four different
variety–training systems in the Douro Demarcated Region, northern Portugal. An objective function
is defined to search for the best-fit parameters that result in the minimum value of the unweighted
sum of the normalized Root Mean Squared Error (nRMSE) of the studied variables. Parameter
uncertainties are estimated as how a given parameter value can determine the total prediction
variability caused by variations in the other parameter combinations. The results indicate that
the best-estimated parameters show a satisfactory predictive performance, with a mean bias of
−2 to 4 days for phenology and −232 to 159 kg/ha for yield. The corresponding variance in the
observed data was generally well reproduced, except for one occasion. These parameters are a good
trade-off to achieve results close to the best possible fit of each response variable. No parameter
combinations can achieve minimum errors simultaneously for phenology and yield, where the best
fit to one variable can lead to a poor fit to another. The proposed parameter uncertainty analysis is
particularly useful to select the best-fit parameter values when several choices with equal performance
occur. A global sensitivity analysis is applied where the fruit-setting parameters are identified as
key determinants for yield simulations. Overall, the approach (including uncertainty analysis) is
relatively simple and straightforward without specific pre-conditions (e.g., model continuity), which
can be easily applied for other models and crops. However, a challenge has been identified, which
is associated with the appropriate assumption of the model errors, where a combination of various
calibration approaches might be essential to have a more robust parameter estimation.

Keywords: grapevine modelling; Mediterranean climate; parameter estimation; parameter uncertainty;
STICS; python platform
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1. Introduction

Process-based crop models have been frequently applied to simulate climate change
impacts and the potential adaptation options of the cropping system [1–3]. They are im-
portant tools to support agricultural policy development in anticipation of global climate
change. However, crop models have also been identified as an important source of un-
certainties in projecting climate impacts, which may hinder robust projections and the
identification of cause–effect relationships [3,4]. It is thus important to quantify, manage
and reduce these uncertainties to improve the reliability of impact projections and better
evaluate potential adaptation measures. One of the most important approaches, to consid-
erably reduce the uncertainties, is through adequate model calibration [1,4]. Climate impact
modelling studies should pay particular attention to how the model is calibrated, as the pro-
jected impacts can be significantly different when the model is differently calibrated [2,4,5].

Crop models are typically composed of various mathematical equations that are
mainly derived from field experimentations to describe crop development and growth, tak-
ing into account complex interactions among genotype, management and environment [2].
The application of models to different environments often requires model calibration, by
which some model parameters are adjusted to reflect the local conditions in order to ade-
quately address a relevant research issue [6]. However, the estimated parameter values
are largely affected by the approach used for the calibration. There is a large diversity
of calibration approaches, with different approaches having their own calibration steps
and statistical model of errors, thus resulting in different parameter values given the same
data [5,7,8]. The fundamental choice in employing a calibration approach depends on
whether we consider the simulated values as random variables or not [9–11]. A random
assumption explicitly considers uncertainties in the predictors, namely, the model struc-
ture, parameters and input variables, and thereby their random variability becomes an
important source of errors [9]. The random approach allows quantifying a specific source
of uncertainty, e.g., estimate the contributions of the model structure and parameter un-
certainties to the total prediction uncertainties [10]. Nonetheless, there are difficulties in
estimating the plausible prior distribution of the model structures, parameter vectors and
all relevant inputs, from which the appropriate sample sizes are drawn [10,11]. Treating the
predictor as fixed implies errors of simulated values using the currently observed data and
are indicative of the error distribution for future predictions [9,10]. It is often of interest to
treat the predictor as fixed to evaluate how a specific model with specific parameters and
known inputs performs [9,11].

To address the uncertainties, there are commonly two different approaches in statistics
based on regression methods: Bayesian and frequentist approaches [12]. A Bayesian
approach defines a prior distribution of parameters and estimates the posterior distribution
of the parameters and the variance of the model errors [7,13]. The frequentist method
is primarily based on the concept of repeated sampling. For the parameter estimations,
it typically requires defining a mathematical form of an objective function to identify
the parameters that can minimize some measures of errors between the observed and
simulated values [7,10]. One advantage of the frequentist method is it can avoid specifying
the detailed prior information of the parameters as subjective inputs [14], but is still
constrained by the imposed parameter values (lower and upper bounds) in many cases [7].
Most modelling groups tend to define an objective function to minimize the Sum of
Squared Errors (SSE) of the predictions [8]. The sum is commonly the unweighted sum
across different response variables and prediction interests, which essentially corresponds
to the ordinary least squares (OLS) criterion [7]. However, it is often not appropriate to
combine the prediction errors from variables of a different nature, such as phenology and
yield. In this case, the normalized Root Mean Squared Error (nRMSE) is appropriate as
it not only integrates the Mean Squared Error (MSE) component but also uses a relative
measure for the inter-comparison of the variables expressed in different units [15].

In practice, model calibration has been frequently undertaken using ad hoc or trial and
error approaches, which provide little information on parameter uncertainties. As a result,



Agronomy 2021, 11, 1659 3 of 24

there are currently no standard calibration protocols and a detailed calibration guideline
is often separately developed for each model [5,7,8]. In this study, we aim to calibrate
the soil–plant–atmosphere system model STICS, developed by INRAE, for simulating
grapevine (Vitis vinifera L.) phenology and yield. STICS is a generic model and adapted for
various plant species, including perennial plants, such as grapevine [16,17]. It has been pre-
viously applied to assess European-wide climate change impacts on grapevine phenology
and yield, providing critical information to support development of adaptation strategies
for European policymakers and viticulturists [18]. The Douro Demarcated Region (DDR),
known as the Douro/Port Wine Region, located in Trás-os-Montes e Alto Douro province,
northern Portugal, is one of the oldest winemaking regions in the world, known for its spe-
cialized production of Porto wines. The DDR has also been classified and included in the
world heritage list by UNESCO for its unique and heterogeneous mountain vineyards [19].
It is a valley spanning over an area of ~250,000 ha along the Douro river, of which 18% are
covered with steep hillside vineyards with a mean slope of 30% [20–22]. The distinctive
terroir characteristics (climate, soil and landscape) of the DDR have not been previously
considered in original parameterizations of STICS grapevine modules (mostly using data
in France). Beyond that, grape yield is conventionally very low in the DDR due to frequent
water and heat stresses over the ripening period [23,24]. Hence, it is necessary to examine
to what extent the model can be extrapolated to new and different situations.

STICS has been previously calibrated for simulating grapevine phenology and yield
using 2- and 3-year observed data in the DDR based on the trial-and-error approach [21],
thereby not considering the underlying parameter uncertainties. In this study, we follow a
frequentist method to combine prediction uncertainties from phenology (flowering and
harvest date) and yield. A large number of parameter combinations is tested herein,
using a new and different observational dataset (4 sites × 6 years). According to a recent
survey conducted within the crop modelling community, most calibration studies have
multiple calibration stages, which tended to firstly fit a model to the phenology data and
then to the remaining response variables [8]. This approach may ignore the effects of
the parameters estimated at each stage on the goodness-of-fit obtained in the preceding
stages [8,25]. In contrast, estimating the model parameters simultaneously for different
types of variables (e.g., phenology and yield) is generally very difficult. To our best
knowledge, the present study may represent the first attempt to apply an OLS criterion to
calibrate a complex process-based grapevine model.

In the present study, the objective function is defined as minimizing the unweighted
sum of the nRMSE (%) across three response variables: flowering date, harvest date and
yield at harvest. This objective function applies to four different variety–training system
combinations, which are common for vineyards across the DDR. We assume a fixed pre-
dictor, with a focus on the prediction of a specific situation (e.g., a known variety–training
system). Overall, we aim to achieve the following: (i) Assess whether the STICS grapevine
model can properly simulate grapevine phenology and yield under distinctive terroir
characteristics in the DDR using new datasets, after testing a large number of model pa-
rameter vectors/combinations (~700,000 per variety–training system). (ii) Search for the
best-fitted parameter vector for each variety–training system according to the defined
objective function and calibration data, also providing information on the parameter un-
certainties. The uncertainty information is further utilized to define a stable or unstable
parameter calibration. A variance-based sensitivity index is also calculated to evaluate
the relative importance of each parameter. (iii) Evaluate the overall goodness-of-fit of the
identified parameter vectors using various and different statistic metrics, as well as by
using additional observed data. In particular, it is important to examine if there is at least
one parameter vector per variety–training system that achieve the minimum predictions
errors for phenology and yield simultaneously.
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2. Materials and Methods
2.1. Observational Data
2.1.1. Field Measurements on Grapevine

The field data were collected in four experimental vineyard plots in the DDR by a
viticulture observatory network, coordinated by the Association for the Development of
Viticulture in the Douro Region (ADVID), Vila Real, Portugal. The geographical represen-
tation of these locations was already shown in Reis et al. [26]. In this study, there were
6-year consecutive measurements (2014–2019) available in each plot, relating to a particular
combination of two local widespread used (autochthonous) varieties: Touriga Franca (TF)
and Touriga Nacional (TN), arranged in two commonly applied training systems: single
(unilateral) and double (bilateral) cordon, both with spurs pruned (Table 1). To account
for the distinction between the training systems in the model, we have outlined several
relevant model parameters (Table 1). Representative parameter values (mostly identical)
were defined between single and double cordon according to a local expert’s technical
knowledge (except planting density was via direct measurements). These values were also
found to be consistent with the available published data (e.g., trunk height and inter-row
distance) [23,27]. However, the initial plant growth status, in terms of carbon and nitrogen
reserves, was estimated as a function of planting density and type of training system,
according to the method developed by Bates et al. [28]. For the growth parameters (Table 1),
the measurements were carried out over 20 randomly selected plants (replicates), for each
plot and year (Table S1). Accordingly, the annual yield (kg/ha) at harvest was calculated
as the median cluster number per vine × median cluster weight × planting density. Since
the harvestable cluster number per vine happened to be a direct model input parameter
(variety–training system specific), a locally representative value was defined by using
additional plot measurements (Table S1). The representative value was fixed (median of all
measurements) to describe the general characteristics for each variety–training system, e.g.,
the cluster number was generally lower in the single cordon than in the double cordon
(Table S1). For the phenology data (Table 1), day of year (DOY) for flowering was recorded
when 50% of the plant samples (5–10 vines) reached the flowering stage. A more detailed
description of flowering data can be found in Reis et al. [26]. The harvest DOY was de-
termined when most of the plants in the plots reached oenological maturations with the
desired quality (balanced berry compounds). In particular, the berry sugar concentration
was regularly measured between August and September to allow estimations of poten-
tial alcohol content (variability was discovered between years and sites), which shall not
exceed 14◦ to ensure local vine characteristics. Other factors, such as pests and diseases,
are regularly monitored. In case of occurrence, the necessary measures (e.g., fungicidal or
insecticidal agents) were taken to minimize their influence.

2.1.2. Weather and Soil Inputs

The required weather and soil inputs for the vineyard sites were both extracted from
gridded datasets, which were previously shown to be useful for reliable simulations of
STICS at both the field and regional level [29–32]. Recent versions were used to reflect
the data update and improvement. Specifically, the recent release of the E-OBS gridded
dataset, v21.0 e [33], as well as the ERA5-Land hourly reanalysis dataset [34] were utilized to
provide the required inputs of the meteorological variables at an enhanced spatial resolution
(0.1◦ × 0.1◦). The raw meteorological data were then processed into the model-required
format following common agrometeorological approaches [35], which are described in
detail in the Supplementary Material. The mean temperature and precipitation sum
during the grapevine growing season (April–October) were plotted for the four sites
for the period 2014–2019, showing a considerable inter-annual variability (including the
anomaly warm and dry year 2017) (Figure S1). Therefore, the data were obtained under a
broad range of weather conditions (very dry to wet). To account for complex local terrain
conditions, a regional topography dataset at a resolution of ~25 m was introduced to
supply site-specific information of the surface slope [36]. The use of gridded datasets for
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calibration, instead of in situ weather and soil measurements, was mainly due to the data
scarcity. In particular, the employed E-OBS dataset represented a high-quality, openly
accessible dataset, which was constructed using approximately 3700 and 9000 weather
station data points for temperature and precipitation, respectively [33]. On the other hand,
the advantage was to ensure consistency when the model was further implemented at a
regional scale using gridded data inputs. For instance, the estimated parameters can be
very different between a weather station and gridded weather data during calibration.
However, using gridded datasets as inputs would implicitly assume an expectation of
non-zero errors while trying to minimize the calibration errors. A multi-model study also
applied gridded weather and soil datasets as inputs to optimize their calibration errors and
obtained satisfactory results [37].

Table 1. Summary of the measured parameters in the four experimental vineyard plots from 2014 to 2019. The indicated
figures and the figures in the brackets (where applicable) are the mean and the coefficient variation (CV) of the 6-year
measurements in each plot, respectively. The yearly values for the measured cluster weight and cluster number per vine at
harvest are taken from the median of the measurements over 20 random replicates (vines) at each plot (refer to Table S1
for more details). Note the measured individual harvestable cluster weight (kg) is independent from the training system,
and mainly determined by variety. The training system parameters are mostly empirically determined according to a local
expert´s experience.

Vineyard Parameters

Plot S Plot D Plot O Plot M

Touriga Nacional
with a

Single Cordon

Touriga Nacional
with a

Double Cordon

Touriga Franca
with a

Single Cordon

Touriga Franca
with a

Double Cordon

Lat: 41.137◦ N
Lon: −7.262◦ W

Lat: 41.215◦ N
Lon: −7.538◦ W

Lat: 41.040◦ N
Lon: −7.037◦ W

Lat: 41.153◦ N
Lon: −7.623◦ W

Target
parameters

Flowering day (Julian day) 132 (6%) 139 (7%) 135 (4%) 140 (9%)

Harvest day (Julian day) 261 (3%) 262 (5%) 261 (6%) 261 (4%)

Yield (kg/ha) 5156 (37%) 6871 (27%) 5793 (11%) 5263 (24%)

Growth
parameters

Individual cluster weight
at harvest (kg) 0.109 (19%) 0.108 (23%) 0.180 (22%) 0.185 (20%)

Cluster number per vine at harvest 11 (27%) 19 (14%) 8 (18%) 10 (20%)

Training
system

parameters

Planting density (vines/ha) 4132 3344 4040 3030

Trunk height (m) 0.6 0.6 0.6 0.6

Inter-row distance (m) 2.2 2.2 2.2 2.2

Maximum canopy height
(include trunk height) (m) 1.6 1.6 1.6 1.6

Maximum canopy width (m) 0.5 0.6 0.5 0.6

Initial state
(assumed at
dormancy)

Initial plant
carbon (kg/ha) 3175 2801 3105 2538

Initial plant
nitrogen (kg/ha) 47.5 42.1 46.5 38.2

2.2. Brief Description of STICS Grapevine Modules

A brief description of the STICS (v9.1) modules concerning grapevine phenology
and yield formation is presented here, whilst more comprehensive presentations of the
model structure and formulations are available in Garcia de Cortazar Atauri [38] and
Brisson et al. [16]. The phenology phase between dormancy and budburst was simulated
using the BRIN model [39], whereas the subsequent stages, such as flowering, veraison
and fruit maturity, were simulated using the classic growing degree day model with the
base temperature of 10 ◦C [16]. Different temperature thresholds were also utilized for
simulating frost damage and heat shocks in several critical stages (e.g., fruit setting) [16].
The harvest decision can be based on berry water content, which is mainly related to plant
water status and the asynchronous nature of berry maturation, characterized by different
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berry phenology stages (fruit age classes) [40]. However, the simulation of berry water
content can be influenced by potential berry shriveling with high-temperature episodes.
The yield simulation also considered the asynchronous dynamic of fruit growth using a
boxcar train technique, which was mainly temperature-driven and integrated the abiotic
stress effects [16]. A more detailed description of the growth and yield formation modules
is available in the Supplementary Material.

2.3. Calibration Setup
2.3.1. Identification of the Calibrated Parameters

The calibration was performed for the output variables of flowering, harvest dates
and grapevine yield (kg/ha). We firstly specified a range for each parameter, according to
expert experience and knowledge, which generally covered a wide range of local conditions,
e.g., the potential dry berry weight parameter (Table 2). Secondly, the interval for each
parameter range was specified, taking into account a trade-off between computation
workloads and calibration demands. Here, we evenly sampled seven genotype-dependent
and two plant-dependent parameters with 5 and 3 different values, respectively, with a total
of 703,125 combinations tested for each site (Table 2). The selected genotype parameters
already represent the large majority of available variety-specific parameters. The remaining
ones (e.g., chilling requirement for dormancy break) were considered less relevant and
fixed according to the previous analysis by Fraga et al. [21]. For generic parameters, fruit-
age classes (nboite) ware chosen because it is closely related with parameters of fruit-setting
duration (stdrpnou), fruit growth dynamics (dureefruit, pgrainmaxi) and fruit water dynamics
(stdrpdes) [16], which are listed in Table 2. The threshold value of the source/sink ratio
(spfrmin) (Table 2) represents the sensitivity (increased sensitivity with a higher value) of
the fruit number formation to environmental stresses, indicating the limit below which
the fruit-setting (sink growth) process was constrained, e.g., the source provision from
photosynthesis assimilates did not satisfy the growth demand [16]. In the present study,
harvest date was simulated assuming the berry water content reached 77%, which can be
assimilated to a mean sugar concentration of ~21.0 ◦Brix (close to local wine characteristics)
using equations established by García de Cortázar-Atauri et al. [40]. All parameters had
either direct or indirect effects in simulating the yield and harvest date, whereas the
flowering date was affected by only one parameter (stlevdrp) (Table 2).

Table 2. List of tested STICS model parameters (description and value range) for calibration. Each genotype-dependent
parameter was tested with five different values while the two generic (plant-specific) parameters were tested with three
different values. In total, there are 703,125 parameter combinations (684,375 effective combinations) involved in the
model calibration.

STICS Codes Parameter
Abbreviations Description Units Min Max Interval

Genotype-dependent
parameters

stdrpnou FS Fruit setting thermal requirement degree day−1 50 350 75

afruitpot FN
Potential fruit number formation per

degree day−1 per cluster accumulated
during fruit setting

/ 0.5 2.5 0.5

dureefruit FF Fruit filling thermal requirement degree day−1 700 1500 200

pgrainmaxi FW Genetic potential dry fruit (berry) weight g 0.5 1.7 0.3

stamflax VG Thermal requirement between juvenile
onset and veraison onset degree day−1 600 1400 200

stlevdrp RG Thermal requirement between budbreak
onset and reproductive onset degree day−1 250 450 50

stdrpdes WD
Thermal requirement between

reproductive onset and fruit water
dynamic onset

degree day−1 100 300 50

Generic
or plant-dependent

parameters

nboite BN Box number or fruit age class / 5 15 5

spfrmin SS Source sink ratio threshold that affects
fruit setting / 0.25 0.75 0.25
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2.3.2. Establishment of the Unit of Simulation (USM) and Objective Function

The USM notion in STICS represented the basic simulation unit, where one USM
simulated a single crop growth cycle under a given soil, climate and management (i.e., single
site–season–treatment combination) [6,16]. Altogether, we had 4 sites × 6 seasonal measure-
ment combinations (24 USM), which was comparable to 27 combinations in a calibration
study for rice [10].

The prediction uncertainty was generally defined as the distribution of prediction
error around the observed value [11]. A convenient summary of the error distribution
can be based on common statistical metrics, such as MSE. In this study, we adopted one
of the frequentist methods, described in detail by Buis et al. [41] and Wallach et al. [25],
with user-specified weights to combine the different response variables with a non-zero
error expectation. However, modifications were made to the initial objective function by
replacing the MSE component with nRMSE (%), which was written in Equation (1) as

θ̂ = argmin
θ

∑
j

ωj

√√√√√∑i,k

[
Yijk − f jk(Xi; θ)

]2

nij
× 100

Yjmean

(1)

where Yijk is the observed value for a specific output variable j at the k-th measurement
date for the i-th USM (herein only one measurement per season for each variable); f jk(Xi; θ)
is the STICS model prediction, based on a given parameter vector θ out of the pre-defined
703,125 vectors; Xi represents all the input variables for the i-th USM;√

∑i,k[Yijk− f jk(Xi ;θ)]
2

nij
× 100

Yjmean
(nRMSE) summarizes the inter-annual variations in errors

for a single response variable j; nij is the number of USM where the response variable j was
measured (i.e., an equally 6-year measurement for both phenology and yield at each plot);
Yjmean is the mean observation for the response variable j; and ωj is the user-defined weight
for each response variable. The weight given to each variable determines the priority
given to the prediction accuracy of that response variable, i.e., a higher weight for a higher
priority [25]. We followed here an equal-weight approach (ωj = 1), thus giving equal
importance to phenology and yield.

As aforementioned, this was a multivariate objective function, enabling to combine
prediction uncertainties on phenology and yield in the same dimension expressed as
percentage errors (%) (lower value indicated less residue variance). The aim is to
look for the parameter vector (among tested vectors) that minimized the sum of
nRMSEflower + nRMSEharvest + nRMSEyield for each studied variety–training system. The
normalization by the mean observation, rather than the range, is widely used in crop
modelling communities [6,29,42], thus facilitating comparisons between studies. Furthermore,
in standard regression analysis, the MSE of the prediction already integrated the effects of
parameter uncertainties and variance in model error [10]. In this study, the total prediction
variability was caused by parameter variability, where the total variability included a fixed
contribution of the model error term. For a given subject (i.e., variety–training system), the
fixed model error term (for every calculated nRMSE) included the uncertainties from the
model structure (e.g., equations not exhaustively included all explanatory variables), input
variables (limited accuracy in gridded datasets), and the measurement errors.

2.3.3. Assumption of Error Distributions

The defined objective function was analogous to the single-stage OLS parameter
estimation [43]. The theory behind OLS is that all the model errors are independent with
equal variance [43]. However, we assumed that the errors between the different response
variables, measured at the same site in different years, could be correlated [10], along
with unequal variance, as the inter-annual variability likely differed between phenology
and yield. Yet the assumptions were unlikely constant, which can vary with the tested
parameter vectors (see results). A data transformation might be required before summing
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nRMSE over different variables, e.g., by decomposition of the variance–covariance matrix
of model errors to transform both the observed and simulated values [10]. To avoid such
complexity and possibly high computation workloads, we also searched for parameters
that separately minimized the nRMSE of each response variable, i.e., a univariate function.
The purpose is to compare if the parameter vector that minimized the sum of the nRMSE
can also minimize the nRMSE of each variable. In case not, it is of interest to see if they can
produce a trade-off to achieve a prediction accuracy close to the best possible fit of each
response variable.

2.3.4. Parameter Uncertainty and Sensitivity Analysis

For calibration, we have selected the most relevant parameters with pre-defined value
ranges, and then searched for the best-fitted parameter vector with the defined objective
function. This approach is generally consistent with the existing framework of model
calibration [7]. Additionally, a simple and straightforward analysis was carried out to
evaluate how individual parameter values can determine the total prediction variabilities.
This was achieved by simply fixing a given parameter value and plotting the distribution
of the nRMSE over the remaining parameter combinations (Figures S2–S5). From this
distribution, the lowest possible nRMSE, achieved within values of a given parameter,
as well as the corresponding nRMSE ranges (spread) can be assessed (Figures S2–S5).
Subsequently, we investigated for each parameter if a particular value that resulted in the
lowest nRMSE could simultaneously lead to the smallest uncertainty range (denoted as
stable calibration), or lowest nRMSE but with the largest uncertainty range (denoted as
unstable calibration). This approach provided information on the overall performance of
a parameter value given the model, rather than only focusing on if it could minimize the
errors. However, we still stick to the parameter values that can minimize the sum of the
nRMSE, since we intended to minimize the prediction uncertainties for a specific situation
(i.e., variety–training system). The unstable calibration (or stable calibration) just provided
extra information on whether (or not) a calibrated parameter, obtained by minimizing
the sum of nRMSE, was meanwhile susceptible to the influence from other parameters.
This would be useful when there were multiple best-fit parameter values, where the stable
calibrated values shall be preferentially selected.

A global sensitivity analysis was performed to evaluate the relative importance of
each parameter in terms of its effect on the total variance of prediction uncertainty [44].
For each variety–training system, a variance-based sensitivity index was calculated based
on the distribution of the nRMSE (among all tested parameter vectors), rather than the
distribution of the direct simulation output. Thus, it reflected the parameter sensitivity to
both environmental conditions and observational data. The index was calculated as the
ratio of the variance in the expected nRMSE of a given parameter (i.e., the variance across
the different mean nRMSE values obtained by a range of values within a given parameter)
to total variance of the nRMSE due to variations in all parameters. The index corresponded
to the main effect index of each parameter, as indicated by Sexton et al. [44], representing
the expected reduction in total variance if a given parameter was known beforehand.

2.4. Evaluations of Calibrated Parameters
2.4.1. Goodness-Of-Fit of the Estimated Parameters

Since no single measure could comprehensively assess the model performance alone,
it was essential to use additional statistic metrics, on top of the nRMSE, to better examine
how well the calibrated model (with the best-selected parameters) can reproduce the obser-
vations [10]. The simulations were generally considered excellent, with an nRMSE below
10%; good when the nRMSE was between 10% and 20%; fair between 20% and 30%; and
poor if it was greater than 30% [42]. However, these criteria can be applied for yield simula-
tions but not for phenology. For instance, a 13% nRMSE in flowering date could correspond
to a mean prediction bias of −18 days (see results), which indeed was a poor performance.
Thus, three complementary statistical metrics were proposed: Mean Biased Errors (MBE),
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Mean Absolute Errors (MAE) and Ratio of Standard Deviations (Rsd). MBE measured the
average bias (under- or overestimation) of the model, while MAE indicated the average
magnitude of the absolute errors [15]; the Rsd (ratio of simulated to observed SD) allowed
to estimate the model capacity to reproduce the observed data variability [6].

2.4.2. Evaluations Using Additional Published Data

Independent evaluations of the calibrated model were carried out using additional pub-
lished data (both phenology and yield), which were assessed using the same goodness-of-fit
metrics. The data was obtained from a vineyard plot within the DDR (different from
the calibration sites), but comprising only the double-cordon training system between
the two varieties and over a 2- or 3-year period [21]. Additionally, since these data were
previously used for calibration of the same model but with a trial-and-error approach [21],
it offered an opportunity to compare if the parameters resulting from a systematic cal-
ibration approach can lead to a better prediction performance or not. Therefore, the
calibration procedures illustrated in Section 2.3 were repeated for the evaluation data to
allow comparison with those from Fraga et al. [21].

2.5. Data Process and Software Environment

Both observed and simulated data were processed and analyzed in the Python (v3.8)
environment, mainly based on the Numpy (v1.18.5) and Panda (v1.0.5) libraries. The
boxplots for the distribution of the nRMSE and related bar plots, as well as the parallel
coordinate plots were all produced using Matplotlib (v3.2.2). The iterations across all
of the tested parameter vectors were developed and configured to run in parallel with
multiple processors, according to the Message Passing Interface (MPI, v3.0.3) for the
Python package. An individual iteration was made possible thanks to the convenient
JavaStics (v1.4.1) command-line tool that enabled running a different USM per parameter
vector. The parallel implementation was accomplished at the High-Performance Cluster at
PIK (HPC@PIK) in a Linux environment.

3. Results and Discussion
3.1. General Assessment of Testing Parameters
3.1.1. Total Spread of Prediction Uncertainties

There is considerable spread of the nRMSE (21–315%) for the yield simulations among
the tested parameter vectors (684,375) for different variety–training systems, whereas the
spread for the phenology variables (1% to ~20%) is relatively small (Figure 1a). As a result,
the variable combining phenology and yield (i.e., objective function) tends to have a large
spread, mostly due to the yield variability (Figure 1a). However, the smaller spread for
phenology can be mostly attributed to the inherently lower sensitivity of the nRMSE to
phenology variations expressed in DOY (the denominator is a much larger value than the
numerator). For phenology predictions, all the parameters result in an nRMSE below 20%,
with median values varying from 4% to 8% (Figure 1b). In contrast, the median nRMSE
for yield ranges from 51% to 106% (Figure 1a). Nonetheless, considering an nRMSE
below 30%, not rated as a poor performance for yield simulations [42], there is still a
reasonable amount of parameter vectors (330 to 5442) available for each variety–training
system (Figure 1b). In this case, the median and min nRMSE is 28–29% and 21–25%,
respectively, along with a smaller spread across the variety–training system (Figure 1b).
Overall, these findings suggest the model can adapt to distinctive terroir characteristics
in the DDR to simulate grapevine phenology and yield, despite most of the parameter
combinations not having a good predictive skill for yield. Indeed, for process-based
models such as STICS, one of the inherent limitations of yield simulation is the difficulty
to adequately take into account the in-field variability [45]. Considerable spatial (in-plot)
variability is observed for the measured cluster number/vine at harvest (Table S1), where
we prescribe the model with a fixed representative value per variety–training system. As
such, the discrepancy between the observed and simulated yield can be mostly explained
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by the fact that the former is based on the actual measured cluster number/vine (varied
yearly). Nevertheless, this is essential for practical applications in future studies given
the difficulty to measure this parameter, as the cluster number/vine not only depends on
the variety–training system but is also affected by viticulture practices (e.g., pruning and
cluster removal) and latent bud fertility [38]. The large in-field variability is associated
with complex topography conditions in the DDR, where the steep vineyard slope can
result in heterogeneous crop water availability [20,21]. Hence, to reduce model structure
uncertainties, further improvements, e.g., via introducing an additional runoff process [46],
may be needed to account for more detailed characteristics of the mountainous viticulture
in the DDR.
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Figure 1. Spread of the STICS model prediction uncertainties (nRMSE, %) for each variety–training system on flower and
harvest DOY, yield (kg/ha) and the objective function (combined phenology and yield), respectively. Spread over (a) all the
tested parameter vectors (684,375 effective combinations); and (b) selected parameter vectors resulting in an nRMSE (%)
below 30% (dash line), where the figures in the brackets indicate the corresponding number of available vectors. Refer to
Figure S2 for the boxplot definition. TN: Touriga Nacional; TF: Touriga Franca (TF).

3.1.2. Error Dependence and Homoscedasticity Test

There is generally a large variability in the error correlation (no to significant) between
the variables among all the parameter vectors, while the error variance between flowering
and harvest DOY also vary with the parameters (but an unequal variance is constantly
found between phenology and yield) (Figure S6 with detailed descriptions). This suggests
that a constant assumption of model errors, without considering possible parameter-
induced variations, can be incorrect. Moreover, a common method to correct error correla-
tion and heteroscedasticity is to do OLS only after a transformation to independent errors
with homoscedasticity, which essentially corresponds to the generalized least squares
(GLS) method [10]. However, Wallach et al. [10] also demonstrated the GLS method can
result in larger parameter uncertainties than the OLS method. Liu et al. [14] simply use a
one-stage OLS method to achieve a satisfactory parameter estimation despite having error
dependence between sites.
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3.2. Calibration Results
3.2.1. Calibrated Parameters and Associated Uncertainties

Based on the distribution of the nRMSE under each parameter value (Figures S2–S5),
we presented its minimum (Figure 2) and range values (Figure 3) based on the objective
function. Parameters minimizing the sum of the nRMSE show a slightly better performance
for TN (31.0% and 29.5%) than for TF (33.9% and 38.2%) between the single- and double-
cordon systems (Figure 2). These minimum values are identical throughout the parameters,
serving as the criteria to choose the parameter values with the best possible fit. For instance,
FF1500 is preferably chosen rather than FF900 for TN with the double-cordon system
(Figure 2b). On the other hand, the overall prediction variability can be reduced if certain
parameter values are used; e.g., FN0.5 rather than FN2.5 can reduce the spread of the
nRMSE from 240% to 92% (Figure 3a). Comparatively, the total variability is smaller for TF
with the single-cordon system (Figure 3c), also reflected in Figure 1a, which may be due to
its relatively small variation in yield data (Table 1). The parameters can thus be selected to
potentially have less dispersion (“noise”) in the predictions. However, in most cases, the
parameter values that minimize the spread do not simultaneously minimize the nRMSE
(Figures 2 and 3).

A list of calibrated parameters for each variety–training system, along with the
denoted stable or unstable calibration (Section 2.3.4), is presented in Table 3. Note that when
a given parameter is neither stable nor unstable according to the proposed definitions, its
uncertainty information can be directly referred to in Figure 3. A fairly common situation in
crop model calibration is the difficulty to choose the optimal parameter combination when
there are several choices with equally good performance [8]. Our study herein presents a
new method to characterize the parameter uncertainty, e.g., different from the methods to
quantify the uncertainties with standard deviation [10,14]. This approach can allow one
to choose the best-fitted parameters when multiple choices with equal performance occur.
For instance, all SS values simulate equally for TN with a single-cordon system, but SS0.75
(stable calibration) is preferably chosen for its role in reducing the spread of nRMSE caused
by uncertainties in the other parameters (Table 3 and Figure 3a). The same applies to WD,
where unstable calibrated values can be excluded (Table 3 and Figure 3b,c). Admittedly,
this approach relies on the prior information of the parameters and sometimes it can be very
vague [14]. We combined the expert knowledge of the model with information from local
viticulturists to pre-define the parameter value range. Sexton et al. [44] defines the prior
range of values for 10 parameters using the APSIM-Sugar model for a global sensitivity
analysis. A more sophisticated method, such as the phenotyping of genotype-dependent
parameter ranges, might be necessary to better represent the genotypic variability [47].
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Figure 2. Minimum value of the STICS model prediction uncertainties (nRMSE, %) based on the combined variable
(i.e., objective function) under each parameter value (fix a given parameter value and test the remaining combinations).
(a) Touriga Nacional (TN) with the single-cordon training system; (b) Touriga Nacional (TN) with the double-cordon training
system; (c) Touriga Franca (TF) with the single-cordon training system; (d) Touriga Franca (TF) with the double-cordon
training system. The parameter abbreviations are denoted for each subplot (see Table 2 for detailed parameter descriptions).
The associated boxplots are shown in Figures S2–S5. The calibrated parameters are BN: Box number; FF: Fruit filling thermal
requirement; FS: Fruit setting thermal requirement; FN: Fruit number formation potential per degree day−1 per cluster;
FW: Fruit (berry) weight potential; RG: Thermal requirement between budbreak and reproductive onset; SS: Source sink
ratio threshold; VG: Thermal requirement between juvenile onset and veraison onset; WD: Thermal requirement between
reproductive onset and fruit water dynamic onset.
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Figure 3. Range of STICS model prediction uncertainties (nRMSE, %) based on the combined variable (i.e., objective
function) under each parameter value (fix a given parameter value and test the remaining combinations). (a) Touriga
Nacional (TN) with the single-cordon training system; (b) Touriga Nacional (TN) with the double-cordon training system;
(c) Touriga Franca (TF) with the single-cordon training system; (d) Touriga Franca (TF) with the double-cordon training
system. The range (spread) is calculated as four times the inter-quartile range (the associated boxplots are shown in
Figures S2–S5).
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Table 3. List of parameters that respectively minimize the sum of the nRMSE based on the multivariate objective function (combined phenology and yield), and the nRMSE for phenology
and yield separately based on the univariate function. Since RG is the only parameter that affects flowering date, a possible difference in values that minimize the nRMSE between the
flowering and harvest date is indicated (F: flowering date; H: harvest date). The parameters with the proposed stable calibration are highlighted in bold, whereas the unstable calibrated
parameters are underlined (see Section 2.3.4 for details).

Grapevine
Parameter

Abbreviation

Touriga Nacional
with a Single Cordon

Touriga Nacional
with a Double Cordon

Touriga Franca
with a Single Cordon

Touriga Franca
with a Double Cordon

To Minimize To Minimize To Minimize To Minimize

Objective
Function Phenology Yield Objective

Function Phenology Yield Objective
Function Phenology Yield Objective

Function Phenology Yield

FS 200 275 50 125 50 125 350 275 125 125 350 50

FN 0.5 2.5 2.5 1.0 0.5 1.0 1.5 2.5 2.5 1.5 2.5 1.0

FF 700 700 700 1500 700 1500 1500 700 1500 1300 700 1500

FW 0.5 1.1 0.5 0.5 0.5 0.5 0.5 1.7 1.1 0.5 1.7 1.4

VG 800, 1000 800 1000 600 600, 800 600 600 1000, 1200 600 600 600 600

RG 250 300 (F) 450 (H) 450 300 300 (F) 250 (H) 450 300 300 (F) 450 (H) 450 300 300 (F) 400 (H) 450

WD 300 100 100–300 250, 300 300 150–300 150, 200 100 150–300 300 100 150–300

BN 5 5 5 15 15 10 15 5 15 10 5 15

SS 0.25, 0.5, 0.75 0.75 0.25 0.25 0.25, 0.5, 0.75 0.25 0.25 0.75 0.25 0.75 0.75 0.5
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3.2.2. Sensitivity Analysis and Interpretation of Calibrated Parameters

Flowering date simulation, as explained before, is only determined by one testing
parameter (RG) (Figure 4a), which is involved in the GDD model [16]. For harvest date,
BN, FS, FF, RG and WD are generally the most sensitive parameters, despite different sen-
sitive magnitudes between plots (Figure 4b). This is as expected, since BN defines the berry
growth stages and WD initializes the fruit water dynamic, while the other three parameters
directly relate to the thermal requirements from budburst to maturity (Table 2) [16]. For
yield simulations, FS is generally the most sensitive parameter, followed by FN, FW or RG,
respectively (Figure 4c). These parameters were known to play important roles in yield
simulations, in which FS, identified as the most influential parameter, acted synchronously
with FN, BN and the cluster number to determine total fruit number [16]. It hints toward
the model tending to put more emphasis on fruit number rather than fruit weight (mostly
controlled by FW) as the yield determinant in the DDR. For the combined variable, the
relatively sensitive parameters are the same as those for yield (Figure 4d), since the sum of
the nRMSE mostly come from yield simulations. Note that a very low sensitivity index
(close to zero for VG and SS) does not indicate no effects for the parameter (Figure 4b,c), but
rather a relatively low sensitivity [44]. For instance, harvest DOY and yield simulations are
different between values of VG and SS (Figures S7–S10). VG mainly defines the length of
the LAI growth period (stops after veraison). Under a similar Mediterranean environment,
it was found that an inaccurate estimation of LAI before veraison in STICS might not signifi-
cantly affect the final yield estimations [48]. The limited influence of SS is probably because
the fruit-setting phase generally takes place in a less warm and dry period (middle-May to
middle-June). Increased SS sensitivity is possible if higher RG values beyond the current
range are tested, i.e., shift the fruit-setting stage into an unfavorable period. Sensitive
parameters for phenology and yield can also be reflected from the calculated spread of the
nRMSE for each variable (Figures S7–S10). Less sensitive parameters seem to have more
uncertainties in estimating the best-fit values, as different values are prone to having the
same results, e.g., VG, WD and SS in Table 3.

Calibration, found by simply fitting the model to field data, though adapting the model
to a specific target population, can lead to estimated parameters that lack physiological
meaning [47]. The fixed harvestable cluster number/vine with a representative value
(Table S1), to some extent, is at the expense of meaningful values for other parameters
in order to improve the model fit to the observed data. This can essentially explain the
absence of a difference in the potential dry berry weight (0.5 g) between the two varieties.
However, it is also possible, as the difference was only observed for fresh berry weight
(dominated by water content) [49]. Besides, this parameter was previously set to 0.66 g
for the Cabernet Sauvignon variety (higher productivity than current varieties) in a dry
Mediterranean environment [48]. Yet, reasonable parameter values are still found for FN
(Table 3), where it is recognized that variety TF displays a higher fruit growth potential
than TN [21,49].

RG is calibrated to nearly the same values as those by Fraga et al. [21] in the DDR, and
slightly lower values are obtained for VG. However, FS and FF are defined with higher
values than the previous case [21], perhaps to compensate for the low FW values. The
remaining parameters are mostly difficult to link to the observed data (WD, BN and SS), as
is common for crop models [8]. Furthermore, there is a need to have more detailed seasonal
measurements for other growth variables, e.g., LAI, aerial biomass and yield components,
to enable studying the model processes individually where each process is associated with
only a few participatory parameters to calibrate.
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Figure 4. The variance-based sensitivity index is calculated for each variety–training system combination based on the
variance of the total prediction uncertainty (nRMSE, %) over the response variable of (a) flowering date; (b) harvest date;
(c) yield; (d) combined variable (i.e., objective function). The index denotes the main effect index, which can rank the
relative importance of each parameter in terms of its individual effect on the total variance of the prediction uncertainty
(nRMSE, %). Parameter abbreviations are labelled on the x-axis with detailed parameter descriptions in Table 2.

3.2.3. Comparison between Multivariate and Univariate Function

Once the parameters have been estimated, it is essential to evaluate the calibrated
model performance using various goodness-of-fit measures. Firstly, the results consistently
indicate that the parameters minimizing the nRMSE for phenology and yield are different
(more details are available in Figures S7–S10). Thus, different parameters are identified
between the multivariate and univariate function for all variety–training systems (Table 3).
It is simply because there is no such a parameter vector θ that achieves the minimum
prediction errors for phenology and yield simultaneously. This is indeed a common
situation for a complex model such as STICS when the model does not fully describe the
dependence on the explanatory variable and has a non-zero expectation of errors [25,41].
The evaluation results further indicate that the estimated parameters from the multivariate
objective function generally perform much better than those from the univariate function
(Table 4). The former results in a negligible MBE and good results for the MAE: the
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MBE is −2 to 4 days for phenology and −232 to 159 kg/ha for yield, while the MAE
is 3 to 6 days (except 10, 12 days for harvest DOY under TF) and 1168 to 1417 kg/ha
(Table 4). The variance in the observed data is generally well reproduced: the average
Rsd is 0.99, varying from 0.6 to 1.5, except for TF with a single cordon (overestimate the
inter-annual variability for flowering DOY and yield) (Table 4). Overall, the calibrated
model achieves a satisfactory performance, while the performance is better for TN than
for TF for the two training systems. The results are comparable to a STICS evaluation
study (adapted for Cabernet Sauvignon and Aranel) carried out in similar Mediterranean
climates (e.g., seasonal rainfall <350 mm): the bias for phenology is no more than 6 days
and 500–2600 kg/ha for yield [48]. However, the difference is that the grapevine yield
of the DDR is much lower (4–9 t/ha) than that of the study (10–17 t/ha) [48]. Therefore,
our study contributes to demonstrate the model’s usefulness for simulating grapevine
phenology and yield under a low production environment.

In contrast, parameters minimizing the prediction errors for yield have a significant
bias for phenology (e.g., MBE for flowering DOY varies from −16 to −22), and vice versa
(nRMSE for yield varies from 56% to 198%) (Table 4). Thus, we should not rely on the
parameters identified from the univariate function unless the model is exclusively used for
simulating a single response variable. On the other hand, the estimated parameters from
the objective function achieve results close to the best possible fit of each response variable:
near-minimum errors for harvest DOY and yield but with minimized errors for flowering
DOY (Table 4). The difference from the obtained minimum nRMSE is 0–4% for harvest
DOY and 3–6% for yield, while such a difference for MAE is 0–9 days and 122–188 kg/ha,
respectively (Table 4). The difference from the best obtained Rsd is 0.1–0.5 for harvest
DOY and 0–0.4 for yield (Table 4). These results are in line with Wallach et al. [25], which
suggest that the best fit to one response variable can lead to a poor fit to the other variables,
while a good compromise is to have the parameter-fitting simulations close to the optimum
of each variable. Compared to previous studies, we have adopted a similar statistical
model of errors, but a very different numeric method to implement [14,25,41]. For example,
Liu et al. [14] apply the Gauss–Newton algorithm in a frequentist approach to search for
the parameters that minimize the SSE over two phenology phases. Such a gradient-based
minimization method, though with a stringent convergence test, requires the simulated
values to be a continuous function of the estimated parameters, which is very difficult to
apply to crop models with multiple discontinuities and non-linearities [8,25].

Overall, our method is relatively simple and straightforward without specific require-
ments (e.g., model continuity or multiple starting points for parameter estimations), which
allow rapidly testing a large number of parameter combinations for different response
variables (<24 h for 684,375 combinations), thanks to the parallel feature of the algorithm.
However, it is important to highlight that the estimated parameter vector might not be the
optimal choice given the data, but rather the best-fitted one from the pre-defined parameter
value range (assumed to be a large parameter sample drawn from its population). A possi-
ble remedy is to repeat the same objective function with an updated range of parameter
values with a smaller interval around the estimated values. This can be repeated several
times to continuously reduce the errors until no improvements are observed. However,
this should be done only if the goodness-of-fit results are not satisfactory. Herein, we only
had one repeat for TF with the single-cordon system, which reduced the minimum sum of
the nRSME from 34% to 30% (not shown).
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Table 4. Summary of various goodness-of-fit measures on the parameter combinations identified from the multivariate objective function, which is highlighted in bold, and from the
univariate function that minimize the nRMSE for flowering date, harvest date and yield separately (highlighted in italic). MBE denotes Mean Biased Error; MAE denotes Mean Absolute
Errors; RMSE denotes Root Mean Squared Errors; Rsd denotes the ratio of standard deviation of simulations to that of the observations.

Goodness-Of-Fit
Statistics for the
Study Variables

Touriga Nacional
with a Single Cordon

Touriga Nacional
with a Double Cordon

Touriga Franca with
a Single Cordon

Touriga Franca with
a Double Cordon

Objective
Function

Univariate Function Objective
Function

Univariate Function Objective
Function

Univariate Function Objective
Function

Univariate Function
Flower Harvest Yield Flower Harvest Yield Flower Harvest Yield Flower Harvest Yield

Flower
Date

MBE 4 −3 −22 −22 1 1 8 −18 1 1 −16 −16 2 2 −11 −18
MAE 4 4 22 22 4 4 8 18 4 4 16 16 4 4 11 18
RMSE 6 5 22 22 4 4 10 18 6 6 17 17 4 4 12 18

nRMSE 4% 4% 16% 16% 3% 3% 7% 13% 5% 5% 12% 12% 3% 3% 8% 13%
Rsd 1.5 1.5 1.3 1.3 1.2 1.2 1.3 1.1 1.7 1.7 1.6 1.6 0.9 0.9 0.9 0.9

Harvest
Date

MBE −2 14 −2 5 −1 −4 1 −2 −1 21 2 −4 −2 4 −2 2
MAE 6 14 3 6 3 5 3 4 10 21 5 9 12 11 3 8
RMSE 6 16 4 8 4 6 3 5 10 25 6 11 12 11 4 10

nRMSE 2% 6% 1% 3% 1% 2% 1% 2% 4% 10% 2% 4% 5% 4% 1% 4%
Rsd 1.4 1.8 0.9 1.6 0.8 0.8 0.9 0.8 0.6 1.1 0.8 0.6 1.4 1.4 0.9 1.0

Yield
(kg/ha)

MBE −232 −8317 −3865 236 −16 4853 4533 209 104 −4382 −1301 −158 159 −9265 −6612 258
MAE 1168 8317 3865 980 1417 4853 4533 1249 1294 4382 2822 1117 1226 9265 6612 1104
RMSE 1255 8720 4808 1060 1718 5290 4941 1544 1478 4984 3217 1258 1611 10435 8159 1315

nRMSE 24% 169% 93% 21% 25% 77% 72% 22% 26% 86% 56% 22% 31% 198% 155% 25%
Rsd 0.7 1.8 1.9 1.1 0.7 0.3 0.3 0.7 1.8 3.8 4.5 1.5 0.7 3.8 3.7 0.6
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3.3. Variations in the Best-Performing Parameters among Variety–Training Systems

It is crucial to check whether the model adapts substantially different from one
variety–training system to another (e.g., the best-predicted parameters for one system
show poor performance for others), as the identified parameters can simply be the result of
a random choice. The analysis reveals that these best-fit parameter vectors (except for TF
with the single-cordon system) (Table 3) tend to converge for the other variety–training
systems, i.e., the prediction performance (nRMSE) generally falls within a common narrow
range (Figure 5a). This can also be seen for predictions on flowering DOY, where the
calibrated RG values are almost identical (either 300 or 250) across the variety–training
system (Table 3). Moreover, apart from TF with a single cordon, the 5% best-performing pa-
rameter vectors (in terms of nRMSE) for one variety–training system are generally within
the 15% best-performing vectors for another one (Figure 5b). This illustrates that the
model’s potential adaptation skill is similar across variety–training systems, by which only
a certain fraction of the parameter combinations is relevant for local phenology and yield
simulations (from which the best-fit values are estimated). Regarding the exception of TF
with a single-cordon system, we speculate it might be associated with the very different
inter-annual variability in the observed yield (Table 1). This can be due to data measur-
ing problems or special practices applied (e.g., supplemental irrigation in dry years), but
without detailed records.
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3.4. Evaluations Using Additional Data

The calibrated model shows particularly satisfactory performance for yield predic-
tions using additional evaluation datasets (Table 5). The performance is better than that
in the calibration datasets (but probably not comparable given different sample sizes)
(Tables 4 and 5), which is slightly better than in a previous study where STICS is differently
calibrated [21]. This reveals the importance of establishing a searching algorithm that
approximates the best-fit parameter values, particularly in situations where the majority of
the parameter combinations do not predict well (Figure 1a). The adequate yield-predictive
skills in the DDR can be explained by appropriate simulations of plant water-stress con-
ditions during the warm and dry season [21]. STICS is especially good at simulating
total soil water content with an nRMSE of 10% over a wide range of agro-environmental
conditions [6]. However, the calibrated parameters do not simultaneously provide good
simulations on phenology, particularly for harvest DOY (Table 5). A fixed harvest crite-
rion of expected alcohol content at 12.5◦ (converted from Brix value) was used to model
its actual variability (10–14◦) in observations during calibration. It is advantageous to
demonstrate its representativeness and avoid specific inputs each time. The simulation is
overall fair for the calibration data (though modest errors for TF) (Table 4), whereas poor
predictions for the evaluation data can be possibly explained by limitations in simulating
the measured berry alcohol content [21]. Indeed, using one specific criterion to model the
harvest date is insufficient as it is determined by many quality parameters (e.g., sugar, acid,
phenolic and aromatic compounds) in accordance with the expected wine style. Besides,
external factors, such as logistic issue and workforce availability, can also affect the results.
On the other hand, it is known that a better fit to the calibration data does not necessarily
indicate better predictions for new situations [10,41]. Nevertheless, further model improve-
ment should consider the various criteria of harvest decision-making for winegrowers
(e.g., using a sugar/acid ratio).

Table 5. Evaluations of the selected parameter vectors identified from the objective function (listed in Table 3) using
additional, independent observations. Observational data were obtained from an experimental vineyard (Lat: 41.15◦ N,
Lon: −7.75◦ W) in the Douro Demarcated Region between 2012 and 2014 for Touriga Nacional (double-cordon system) and
between 2012 and 2013 for Touriga Franca (double-cordon system) (Fraga et al., 2015). MBE denotes Mean Biased Error;
MAE denotes Mean Absolute Errors; RMSE denotes Root Mean Squared Errors; Rsd denotes the ratio of standard deviation
of simulations to that of the observations.

Evaluation Statistics of Studied Variables Touriga Nacional with a
Double Cordon

Touriga Franca
with a Double Cordon

Flowering Date

MBE (days) 10 3

MAE (days) 10 3

RMSE (days) 11 3

nRMSE (%) 7% 2%

Rsd 1.7 1.5

Harvest Date

MBE (days) 0 −15

MAE (days) 11 15

RMSE (days) 12 17

nRMSE (%) 4% 6%

Rsd 1.3 0.9

Yield

MBE (kg/ha) −466 619

MAE (kg/ha) 1196 619

RMSE (kg/ha) 1208 730

nRMSE (%) 16% 11%

Rsd 1.0 0.6
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Lastly, when the same calibration procedure is applied to the evaluation data, it is again
demonstrated that for even a smaller size data sample, there is no parameter vector (θ) that
can simultaneously minimize the prediction errors for phenology and yield (Table S2). The
estimated parameters from the objective function can minimize the nRMSE for flowering
DOY and yield (only TN), but not for harvest DOY (Table S2). Similar to the calibration
data, the parameters with a minimum nRMSE for harvest DOY and yield are quite different
for the evaluation data (Table S2). Indeed, harvest timings are more dependent on the
desired grape quality rather than yield, for which the fruit water dynamic was independent
of fruit dry mass simulations in STICS [16]. Nevertheless, the calibrated parameters show
a considerable improvement in prediction accuracy (particularly for yield) compared to
those previously estimated by the trial-and-error approach (Table S3).

4. Conclusions

Parameter estimations and their associated uncertainties are important for crop model
applications in various fields, e.g., climate impact assessment. The employed calibration
approach defines an objective function with a statistical model of errors to look for the
best-fit parameter values from pre-defined ranges, which achieve the minimum values of
the unweighted sum of the nRMSE across the phenology variables (flowering and harvest
DOY) and grape yield at four vineyards in the DDR from 2014 to 2019. It is consistently
found that there is no parameter vector that can simultaneously achieve the minimum
prediction errors for phenology and yield across the different variety–training systems.
However, the identified parameters can achieve results close to the best-possible fit of
each variable with an overall satisfactory performance, where the MBE is negligible with
−2 to 4 days for phenology and −232 to 159 kg/ha for yield. However, the variance
in the observed data is not well reproduced for TF with a single cordon, suggesting the
need for further improvements. The calibrated model is satisfactorily evaluated for yield
simulations using additional data, but not for harvest date, highlighting the need for the
model to have various harvest-criteria simulations.

The parameter uncertainties are characterized as to how a given parameter value can
determine the total prediction variability caused by the uncertainties of other parameter
combinations. Accordingly, unstable or stable calibrations are proposed, depending on
if an estimated parameter value is susceptible to the influence of other parameters. This
is particularly useful for selecting the best-fit parameter values when there are several
choices with equally good performance. A global sensitivity analysis is applied to evaluate
the relative importance of each parameter, which highlights the important role of the
fruit-setting parameters as key determinants for yield simulations. These parameters are
of particular interests to explore the response of specific plant traits (setting fruits) under
climate change scenarios. Parameter sensitivity can also be obtained from a parameter
uncertainty analysis, where the less-sensitive parameters tend to have more uncertain-
ties in estimating the best-fit values. Overall, the approach is straightforward with a
simple algorithm to implement, which is primarily based on testing a large number of
parameter combinations. It is generally consistent with the existing framework for crop
model calibration, which can be easily adapted for other models and crops. However,
the major challenge to fit simulations using different types of response variables lies in
the difficulty to have an appropriate assumption of the model errors. We demonstrate its
complexity, since the assumption is also dependent on the testing parameters beyond if
the measurements were made in the same plot. The present method might be combined
with other approaches (e.g., Bayesian) and with more detailed seasonal measurements, to
enable more comprehensive evaluations of the estimated parameters, thus contributing to
a better understanding of the modelling system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11081659/s1. Table S1: Summary of the yearly measured cluster number per
vine and individual cluster weight at harvest in four experimental vineyard plots from 2014 to 2019.
Table S2: List of parameters that respectively minimize the sum of the nRMSE (%) based on the
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multivariate objective function and minimize the nRMSE for flowering and harvest date and yield
separately (univariate function). Table S3: Goodness-of-fit comparison of the selected parameter
vectors that minimize the sum of nRMSE (%) based on the objective function with parameter
vectors previously selected with a trial-and-error approach. Figure S1: Mean temperature (◦C) and
precipitation sum (mm) during the growing season (between April and October) between 2013 and
2019 in the studied experimental vineyard plots. Figures S2–S5: Spread of prediction uncertainties
(nRMSE, %) on phenology, yield and the combined variable (i.e., objective function) under individual
parameter values for the four variety–training systems. Figure S6: Boxplots of error (observation-
simulation) correlations between the studied variables and the Levene’s test on homoscedasticity.
Figures S7–S10: Minimum and range values (spread) of the STICS model prediction uncertainties
(nRMSE, %) under individual parameter values for phenology and yield separately over the four
variety–training systems.
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