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Abstract: Purpose—knowing in advance vineyard yield is a critical success factor so growers and
winemakers can achieve the best balance between vegetative and reproductive growth. It is also
essential for planning and regulatory purposes at the regional level. Estimation errors are mainly
due to the high inter-annual and spatial variability and inadequate or poor performance sampling
methods; therefore, improved applied methodologies are needed at different spatial scales. This paper
aims to identify the alternatives to traditional estimation methods. Design/methodology/approach—
this study consists of a systematic literature review of academic articles indexed on four databases
collected based on multiple query strings conducted on title, abstract, and keywords. The articles were
reviewed based on the research topic, methodology, data requirements, practical application, and
scale using PRISMA as a guideline. Findings—the methodological approaches for yield estimation
based on indirect methods are primarily applicable at a small scale and can provide better estimates
than the traditional manual sampling. Nevertheless, most of these approaches are still in the research
domain and lack practical applicability in real vineyards by the actual farmers. They mainly depend
on computer vision and image processing algorithms, data-driven models based on vegetation
indices and pollen data, and on relating climate, soil, vegetation, and crop management variables that
can support dynamic crop simulation models. Research limitations—this work is based on academic
articles published before June 2021. Therefore, scientific outputs published after this date are not
included. Originality/value—this study contributes to perceiving the approaches for estimating
vineyard yield and identifying research gaps for future developments, and supporting a future
research agenda on this topic. To the best of the authors’ knowledge, it is the first systematic literature
review fully dedicated to vineyard yield estimation, prediction, and forecasting methods.

Keywords: vineyard; yield; estimation; prediction; forecasting; systematic literature review

1. Introduction

With yield being considered a quality grape and wine indicator [1–5], it is crucial to
obtain an early estimation of the quantity of grapes per area unit. Knowing in advance
vineyard yield is a key issue so that growers and winemakers can achieve the best bal-
ance between vegetative and reproductive growth, make more informed decisions as to
thinning, irrigation, and nutrient management, schedule harvest, optimize winemaking
operations, program crop insurance, and grape picking workforce demand, and help fraud
detection [6–8].

The traditional methods [9] are considered destructive, labor-demanding, and time-
consuming [4], with low accuracy [10] primarily due to operator errors [11] and sparse sam-
pling (when compared to the inherent spatial variability in a production vineyard [5,12]).
These are supported by manual sampling, where yield is estimated by sampling clusters
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weight and the number of clusters per vine, historical data, and extrapolation considering
the number of vines in a plot. The main efforts towards improved yield models applied to
the vineyard, considered one of the most complex phenotypic traits in viticulture [13], are
in most cases focused on image analysis for grape detection at field level, with a significant
drawback derived from cluster occlusion [14,15].

The growing adoption of Precision Agriculture (PA) practices, closely related with the
ongoing advances in Geospatial Technologies (GT), Remote Sensing (RS), Proximal Sensing
(PS), Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), Big Data Analytics (BDA)
and Artificial Intelligence (AI) [16–19], are fueling the particular application in Precision
Viticulture (PV) [20] where the importance of the wine industry drives the development of
innovative methods and technologies to cope with the heterogeneity within vineyards that
results from high inter-annual and spatial variability derived from the effects of soil and
climate conditions, grapevine variety, biotic and abiotic stresses, vineyard management
practices, among others [18,21]. However, despite being a hot topic in research over recent
years, it still lacks solutions that can transfer the acquired knowledge and methods to the
field and provide tools for wine-growers decision support.

Models based on statistically significant relationships between predictors and grapevine
parameters are increasingly being overtaken by crop models that can dynamically simu-
late and integrate into different time frames, plant traits, and other variables regarding
management, soil, and climate data [22]. This is particularly relevant, as grape production
for wine is closely related to climate variables characterized in the past years by high
inter-annual variability with direct adverse effects for wine producers that tend to be
amplified by future climate changes’ perceived scenarios [23–26]. Nowadays, zoning the
wine production areas, especially in denomination areas, is increasingly becoming more
critical for the identification and characterization of homogenous areas that are the basis
of regulatory measures over wine [8], to allow marketing strategies regarding controlled
origins [27], and also regarding climate changes that require decisions at a regional level
concerning adaptability of different varieties and mitigation management options in one of
the most important crops in Europe [28]. PV must apply at the field level and at a larger
scale, where the spatial variability may reveal general trends of variation not perceived at
more minor scales [29].

The purpose of this present paper is three-fold: first, to perceive the research ap-
proaches for predicting yield in vineyards for wine production that can serve as an alterna-
tive to traditional estimation methods; second, to characterize the different new approaches
identifying and comparing their applicability under field conditions, scalability concerning
the objective, accuracy, advantages and shortcomings, and third, to identify research gaps
for future developments and support a future research agenda on this topic. To achieve
this goal, a systematic literature review was conducted using the PRISMA statement as a
guideline [30].

2. Methodology

To identify the relevant scientific work already published on vineyard yield estima-
tion, prediction, and forecasting, the authors carried out a systematic literature review
of academic articles indexed on the Scopus, Web of Science, ScienceDirect, IEEE, MDPI,
and PubMed databases, using the Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) statement as a guideline [30]. Other databases such as Google
Scholar and ResearchGate were not considered because a preliminary study undertaken by
the authors showed that they would only contribute to a significant increase in duplicate
articles.

Depending on the approach, the terminology behind knowing as far in advance as
possible the quantity of grapes that will be harvested can be referred to as (1) estimation—
when the goal is to find the most suitable parameter that best describes a multivariate
distribution of a historical dataset, (2) as prediction—when a dataset is used to compute
random values of the unseen data, and (3) as forecasting—when a temporal dimension in
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a prediction problem is explicitly added. In the present review, the authors adopted the
broader term of yield estimation, although the other terms were considered keywords in
the search criteria.

The authors adopted a search criteria query string conducted on the title, abstract, and
keywords, using all the combinations of the following keywords: “yield” OR “production”
AND “estimation” OR “prediction” OR “forecasting” AND “vineyard” OR “grapevine”.
Only peer-reviewed journals, conference articles, and book chapters were considered for
screening.

As the goal is to perceive alternatives to the traditional manual sampling method of
determining in advance the vineyard yield, those were excluded from the final data set.

A total of 455 articles published between 1981 and 2021 were found. These articles
were reviewed firstly based on title and abstract meeting the search criteria with the
inclusion of the indicated keywords, resulting in 239 articles that were retrieved from the
respective databases. Further reading resulted in the final 82 records included in the review
that verify the research criteria for including scientific studies for vineyard yield estimation,
prediction, and forecasting. (Figure 1).

Figure 1. Systematic review procedure for article selection.

The final record data set was categorized based on ten different methodological ap-
proaches identified for yield estimation in the screening phase that fall into a broader group
of indirect estimation models derived mainly from dynamic or crop simulation models
and data-driven models. Those were subdivided according to what can be considered
more specific approaches: A—data-driven models based on computer vision and image
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processing; B—data-driven models based on vegetation indices; C—data-driven models
based on pollen; D—crop simulation models; E—data-driven models based on trellis
tension; F—data-driven models based on laser data processing; G—data-driven models
based on radar data processing; H—data-driven models based on RF data processing;
I—data-driven models based on ultrasonic signal processing; J—other data-driven models.
Data regarding the year, journal distribution, data sources, test environment, applicabil-
ity scale, and related variables used in estimation and accuracy were evaluated for each
methodological approach. The abbreviations and acronyms used are listed on Table 1.

Table 1. List of abbreviations and acronyms.

Abbreviation/Acronym Meaning

AI Artificial Intelligence
BDA Big Data Analytics
BN Berry number

CEC Cation Exchange Capacity
CIVC Comité Interprofessionel du Vin de Champagne
DSS Decision Support System

FMCW Frequency-Modulated Continuous-Wave
GDD Growing Degree Day

GNDVI Green Normalized Difference Vegetation Index
GT Geo-spatial Technologies
IoT Internet of Things
LA Leaf Area
LAI Leaf Area Index

LiDAR Light Detection And Ranging
MLR Multiple Linear Regression
MTVI Modified Triangular Vegetation Index
NDVI Normalized Difference Vegetation Index

PA Precision Agriculture
PLSR Partial Least Squares Regression

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PS Proximal Sensing
PV Precision Viticulture

ReLU Rectified Linear Unit
RF Radio Frequency

RFR Random Forest Regression
RGB Red Green Blue

RGB-D Red Green Blue-Depth
RPI Regional Pollen Index
RS Remote Sensing

SAR Synthetic Aperture Radar
SPOT Satellite Pour l’Observation de la Terre
STICS Simulateur mulTIdisciplinaire pour les Cultures Standard
Tanh Hyperbolic Tangent function
TTM Trellis Tension Monitor
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UTV Utility Terrain Vehicle
WI Water Index

WRELM Weighted Regularized Extreme Learning Machine
WRELM-TanhRe TanhRe-based Weighted Regularized Extreme Learning Machine

3. Results and Discussion

Looking at the scientific peer-reviewed journal distributions (Figure 2) it is interesting
to see the vast scope of this topic in the researcher’s community with publications in 38
different journals, most of them with diverse subjects and scopes, ranging from agronomy
to robotics, climate, and sensors. The top six cover 45% of the total papers published, with
the remaining 39 (55%) published in 32 different journals.
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Figure 2. Distribution according to scientific peer-reviewed journals (top 6 highlighted).

For an overall perception of the ten different methodological approaches identified
for yield estimation, they are represented in Figure 3, created with Circos [31].

Figure 3. Representation of the included records, by research methodology and year of publication.
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On the right side of the semicircle, we can see the methodologies (from A to J), and on
the left side, the years of the publications (from 1987 to 2021-not considering years in which
there are no identified records). The included records are arranged circularly in segments
and joined with scaled and colored thickness ribbons to relate the year of publication with
the different methodological approaches quantitatively. The relationship between both
appears in the inner circle. The thickness and the color represent the percentage of the
relationship. Taking the year 2020 as an example, we can see that a universe of 18 records
was included in the present review. From those, 11 (61% of the year 2020 records) are
related to A (data-driven models based on image processing algorithms), representing 22%
of the 50 records on data-driven models based on image processing algorithms. Visually
we can see that since 2009, there has been a continuous production of articles on this topic,
with an increasing interest in research since 2018 with a peak in 2020 (for 2021, the data only
covers five months). Regarding methodological approaches, the focus of the researchers
dealing with this complex topic is on data-driven models based on image processing
algorithms (A) (61%), followed by data-driven models based on vegetation indices (B) (9%)
and data-driven models based on pollen (C) (9%).

Crop yield estimation has a high degree of complexity. It involves, in most cases, the
characterization of driving factors related to climate, plant, and crop management [32]
that directly influence the number of clusters per vine, berries per cluster, and berry
weight, as the three yield components [12], explaining 60%, 30% and 10% of the yield
respectively [24,33].The different general methodological approaches used for vineyard
yield estimation can be divided firstly regarding the scale (in-field level vs. regional level),
and secondly, by direct (based on manual sampling) or indirect methods (statistical models,
regression models, proximal/remote sensing, and dynamic or crop simulation models)
that depend primarily on image identification and/or related climate, soil, vegetation,
and crop management variables [32,34,35] that can also support crop simulation models,
data-driven [23] and mechanistic growth models [36].

The standard or traditional methods retrieve limited data and produce a static predic-
tion in a multi-step process of determining average number of clusters per vine, number of
berries per cluster, and weight per cluster or berry with the growth overall 10% error greatly
dependent on adequate staffing and extensive historical databases of cluster weights and
yields [37]

Computer vision and image processing are leading the alternative methods and are
one of the most utilized techniques for attempting an early yield estimation. Still, differ-
ent approaches such as Synthetic Aperture Radar (SAR), low frequency ultrasound [38],
RF Signals [39], counting number of flowers [40–47], Boolean model application [48],
shoot count [49], shoot biomass [50,51], frequency-modulated continuous-wave (FMCW)
radar [52,53], detection of specular spherical reflection peaks [54], the combination of
RGB and multispectral imagery [55] along with derived occlusion ratios, are alternative
methods.

Whatever the indirect method used, they all allow a fast and non-invasive alternative
to manual sampling. They allow identifying single berries in images, even taken from
a simple device such as a smartphone [56–58] and then using different methods such as
convolutional neural networks [1,59], cellular automata [60], or even sensors capable of
collecting phenotypic traits of grape bunches, that are known to be related with grapevine
yield [14,61], to estimate yields.

Approaches such as non-productive canopy detection using green pixel thresholding
in video frames, local thresholding and Self-Organizing-Maps on aerial imagery [62],
light detection and ranging (LiDAR) for vineyard reconstruction [63], and map pruning
wood [64] do not allow direct estimation of the yield but instead provide data layers to
relate or use directly or as a correction coefficient in other methodologies, as they can show
a relationship to yield.

Indices have been experiencing exponential growth in research related to produc-
tive and vegetative parameters in vineyards [65,66]. Derived from satellite imagery,
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UAVs [65,67], Unmanned Ground Vehicles (UGVs), or those mounted on tractors and
Utility Terrain Vehicles (UTVs)[68], Normalized Difference Vegetation Index (NDVI)[11],
Leaf Area Index (LAI) [5,68] and Water Index (WI) (with added importance in rainfed
vineyards where water deficits play a significant role) [69], are predictors of spatial yield
variability using passive and/or active sensors.

Other indirect methods include Bayesian growth models [70], weather-based mod-
els [71], models based on a combination of variables (meteorological, phenological and
phytopathological) [6,72], dynamic crop models such as the “Simulateur mulTIdisciplinaire
pour les Cultures Standard” (STICS) [73,74], crop biometric maps [75], and the continuous
measurement of the tension in the horizontal (cordon) support wire of the trellis [37,76,77],
also used to determine the best moment of hand sampling for yield estimation [78].

Predicting yield at a larger scale makes more sense now than ever as inter-annual
variations attributed to climate change are entering a complex equation where quality,
sustainability, efficiency, commercial and marketing strategies, regulations, insurances,
stock management, and quotas are all related to yield forecasting [24]. However, at a
regional level, there are few examples of yield forecasting. Those can be divided mainly
into climate-based models estimating grape and wine production [23,79–81], pollen-based
models [24,82–84], a combination of one or both with phenological and phytopathological
variables [6,8], STICS models [74], and models based on correlations with indices such as
NDVI, LAI, and NDWI [85].

Harvest estimation is a problem to which machine learning, computer vision, and
image processing can be applied using one or a combination of techniques [86–88]. In
proximal sensing methods, detection, segmentation, and counting of either individual
grapes or bunches are complex in most image-based methodologies [38,59,89], especially in
non-disturbed canopies where occlusion [15,90], illumination, colors, and contrast [91,92]
are challenging and in most cases are only demonstrated conceptually at a small scale [89].

Along with Data Science, Artificial Intelligence, and Deep Learning, vineyard yield
estimation can be applied at larger scales, not only through image analysis algorithms but
also by identifying relevant predictive variables using data associated with climate, yield,
phenology, fertilization, soil, maturation [23,40] and diseases [93], by making use of a grow-
ing number of remote sensing [85] and phenotyping platforms that allow quantitatively
assessing plant traits in which yield falls [94,95].

3.1. A-Data-Driven Models Based on Computer Vision and Image Processing (n = 50)

Table 2 shows the summary of the records included in the systematic review regarding
the use of computer vision and image processing techniques for yield estimation based on
image, recorded mainly with still or mounted standard Red, Green, and Blue (RGB) and
RGB-Depth Sensor (D) cameras, for the most under field conditions with a local application
scale. The main goal is to extract variables from the images that can be related to the actual
yield, such as the number of berries, bunch/cluster area, leaf area, number of flowers,
stems, and branches. This can be accomplished with various computer vision, machine
learning, and deep learning approaches.

Table 2. Summary of records included in the systematic review (data-driven Models based on computer vision and image
processing).

Reference Data Sources Test Environment Scale Related Variables Estimation

[10] Digital still RGB
camera Field/Laboratory local

Cluster Weight, Berry
Number per Cluster,

Berry Size, Berry
Weight

0.76 < R2 < 0.96 (for all
variables)

[4] Digital still RGB
camera Laboratory-based local Berry number, Berry

weight, Bunch Weight
0.65 < R2 < 0.97 (for

cluster weight)
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Table 2. Cont.

Reference Data Sources Test Environment Scale Related Variables Estimation

[96] Bumblebee2 stereo
camera Laboratory-based local

Cluster volume and
compactness, berry
number, size, and

weight

0.71 < R2 < 0.82 (for all
variables)

[97] All-terrain vehicle
(ATV) + RGB camera In-field local Berry number 0.74 < R2 < 0.78 RMSE

(for yield)

[40] All-terrain vehicle
(ATV) + RGB camera In-field local Number of flowers R2 > 0.70 (for yield)

[12] All-terrain vehicle
(ATV) + RGB camera In-field local

Berry detection,
number of berries,
cluster area, cluster

weight

0.41 < R2 < 0.75 (for
yield)

[49]
Video with

Commercial Camera
(Go Pro)

In-field local Number of grapevine
shoots

86.83% (for shoot
detection) and 1.18% <

error < 36.02% (for
yield)

[51]
RGB-D camera

(Microsoft Kinect V2
sensor)

In-field local Branch volume R2 = 0.87 (for yield)

[98] Digital still RGB
camera In-field local Leaf area R2 = 0.73 (for yield)

[46] Handheld RGB
camera In-field local Number of flowers,

berry weight
0.49 < R2 < 0.91 (for

yield)

[99] RGB camera In-field local
Leaf occlusion, yield,
bunch number and

bunch weight

0.42 < R2 < 0.87 (for
yield)

[56] Smartphone camera In-field local Bunch area 0.51 < R2 < 0.54 (for
yield)

[57] Smartphone RGB
camera In-field local Number of berries per

bunch
91% (for berries per

bunch)

[41] Digital still RGB
camera Laboratory-based local Number of

inflorescences
R2 > 0.80 (for number

of inflorescences)

[100]
All-terrain vehicle

(ATV) + Stereo
camera

In-field local Berry size, volume,
and weight

0.76 < R2 < 0.96 (for
berry weight)

[89] Digital still RGB
camera In-field local Bunch area 87 to 90% (for bunch

detection)

[55] RGB + Multipectral
camera In-field local

% of leaves, stems,
branches, fruits and

background

precision: 89.7% (for
fruits), 57.2% (for
stems), 87.6% (for
leaves), 5.4% (for

branches)

[54]
RGB camera at night

under artificial
lighting

In-field local Berry number Average error = −14%
(for number of berries)

[1]
Phenoliner-Field

phenotyping
platform

In-field local Berry number 87% < berry
identification < 94%
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Table 2. Cont.

Reference Data Sources Test Environment Scale Related Variables Estimation

[47] Single-lens reflex
(SLR) camera In-field local

Number of
inflorescences and

single flowers

Precision <70.7% (for
flower extraction)

[101] UAV + RGB camera In-field local Grape cluster area 0.75 < R2 < 0.82 (for
harvest weight)

[90] Smartphone camera In-field local Berry number average test error <5%
(for berry number)

[59] Digital still RGB
camera In-field local Grape detection F1-score < 0,91 (for

instance segmentation)

[42] Handheld RGB
camera In-field local Number of flowers 0.86 < R2 < 0.99 (for

number of flowers)

[102]

RGB-D camera
mounted on a
mobile robotic

platform

In-field local Cluster Size 2.8–3.5 cm average
error (for cluster size)

[94]
Intel RealSense

RGB-D R200
imaging system

In-field local
Canopy volume,

bunch detection and
counting

maximum accuracy of
91.52% (for detected

fruits)

[103]
2-D RGB and 3-D

RGB-D (Kinect
sensor)

Field/Laboratory local Bunch area and
volume

R2 = 0.89 (yield with
RGB) R2 = 0.95 (yield

with RGB-D)

[104] Microsoft Kinect™
RGB-depth Laboratory-based local

Bunch volume trough
3D bunch

reconstruction

10% < error < 15% (for
bunch volume)

[105]
High resolution RGB

images (20 MP)
taken with a UAV

In-field local Cluster number and
size R2 = 0.82 (for yield)

[106]

robot with SICK
S300 Expert laser
scanner + GoPro

Hero 4

Field/Laboratory local Berry number 0.55 < R2 < 0.62 (for
yield)

[7]
RGB camera + Stereo
Camera mounted on

UTV
In-field local Grapes number 3% < error < 4% (for

yield)

[107]
Smartphone (BQ
Aquaris E5) RGB

camera
In-field local

Berry number per
cluster and cluster

weight

0.75 < R2 < 0.83 (for
berry numbers per

cluster)

[62]
Multispectral Aerial
Image + RGB camera

(GoPro)
In-field local Non-Productive vina

canopy

0.77 < precision (row)
< 0.97 (for

non-productive
canopy)

[48]

Cluster images,
manually acquired
vine images, and

vine images
captured on-the-go

using a quad.

In-field local Number of berries in
cluster images

0.50 < R2 < 0.87 (for
yield)
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Table 2. Cont.

Reference Data Sources Test Environment Scale Related Variables Estimation

[91] RGB images Field/Laboratory local
Grape berries

recognition and grape
bunch detection

Grapes bunches
detection = 88.61%;

Single berries >99%.

[44] RGB camera Field/Laboratory local Number of flowers accuracy of 84.3% (for
flower estimation)

[108] Stereo camera In-field local
Dense 3D model of a
vineyard and count

grapes

R2 = 0.99 (for grape
count)

[61] 2D images from
grape bunches Laboratory-based local

Three-dimensional
grape bunch

reconstruction

−0,4% < average
percentage error

<41.1% (for overall
Rachis reconstruction

performance)

[13]

Track-driven vehicle
consisting of a

camera system, a
real-time-kinematic

GPS system
(PHENObot)

In-field local
Quantity of grape

bunches, berries, and
the berry diameter

Average precision:
97.8% (berry yield)

[109]

Multi-view image
datasets from grapes

using close-range
photogrammetry

Laboratory-based local

Physical and
morphological

parameters from 3D
grape models

Close-range
photogrammetry can
be applied to generate

3D grape models
parameters such as
volume of the grape
can be derived from
these digital models

[92]

RGB high-resolution
images obtained

with artificial
illumination at night

In-field local
Grape-cluster image
analysis parameters
(area and volume)

Error = 16% (for grape
cluster area) −16.7%

8for grape cluster
volume

−0,3%(average)

[110] RGB images In-field local

3d grapevine point
cloud, volume, mass

and number of berries
per bunch

R2 = 0.75 (for bunch
weight)

[111] RGB camera Field/Laboratory local Bunch volume 0.70 < R2 < 0.91 (for
yield)

[112] RGB images with
smartphone camera In-field local

3D bunch
reconstruction based

on a single image

0.82 < R2 < 0.95 (for
berry number) 0.85 <
R2 < 0.92 (for bunch

weight)

[58]
RGB images with

smartphone camera
APP (vitisBerry)

Laboratory-based local Berry counting on
cluster images

Recall = 0.8762–0.9082
Precision =

0.9392–0.9508

[43]
RGB images with

smartphone camera
APP (vitisFlower)

Laboratory-based local
Number of Grapevine

Flowers per
Inflorescence

84% of flowers in the
captures were found,

with a precision
exceeding 94%
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Table 2. Cont.

Reference Data Sources Test Environment Scale Related Variables Estimation

[15]
Robot with RGB-D
Kinect v2 camera
and RGB camera

Field/Laboratory local

Number of spurs,
shoots, inflorescences,

bunches, berries.
Bunch volume, max

length, and perimeter

0.29 < R2 < 0.99
(between bunch
weight and other
bunch attributes)

[113]
Sideways-facing

camera and lighting
on UTV

In-field local Detect and count
grape berries

Predict yield of
individual vineyard

rows to within 9.8% of
actual crop weight

[114] RGB images In-field local

Automatically count
‘fruit’ pixels and the

total number of pixels
for each image

0.85 < R2 < 0.99 (for
fruit pixels/total

image pixels vs fruit
weight)

[67]

High-resolution RGB
images, acquired

through an
unmanned aerial

vehicle (UAV)

In-field local Number of clusters
and size High accuracy in yield

From the retrieved results, we can say that computer vision and image processing
are the most utilized techniques for attempting an early yield estimation alternatively to
traditional sampling methods. The application of this type of methodology mimics for
the most the manual sampling, removing the time-consuming and labor demanding tasks
of collecting destructive samples from designated smart points that are weighted and
used in extrapolation models adjusted with historical data and empirical knowledge from
the viticulturist. The process can be divided into the actual data collection—preferably
conducted under field conditions—and the interpretation of the data collected—analyzing
the features collected—resulting in a yield estimation.

The images can be acquired using a still camera [4,10,96] in a laboratory or under
field conditions, and also by other optical or multispectral proximal sensors, on-the-go
using ATVs [12,40,97], other terrestrial autonomous vehicles [7,48] including autonomous
robot systems [15,102,106], UAVs [101,105] that cope with the limitations of ground vehi-
cles regarding field conditions (slopes and soil) or in a more simple way on foot with a
smartphone [57].

Acquiring on-the-go without user intervention represents considerable expectable
improvements regarding traditional methods, as it allows the limit to monitor the entire
plot autonomously, creating estimation maps at earlier stages that can be updated regularly
until harvest, permitting in some cases viticultural practices that can rectify key parameters
and facilitate selective harvest [97]. Also, data collection can be made simultaneous with
other agronomic operations, reducing acquisitions costs. The data collected can be used
to determine multiple parameters directly correlated with yield and cultural practices
assessment, vineyard status [10], and quality [96].

The more challenging aspect of the approach is to transform the data collected into
an actual yield estimation. The more common approach is to identify automatically
individual grapes or clusters for size determination e.g., [10,15,100,113] or other vine
structures [115], along with 3D reconstruction [13,57,96,104,108–110] to estimate the actual
yield. This requires for the most, in the model development phase, training and validation
supported by manually assessing cluster weight and berry number per cluster after the
image acquisition. The shortcoming related to the traditional approach is that the models
are mostly variety dependent, and a commercial solution needs to cope with all the different
varieties in a vineyard. According to Millan et al. [46], this can be resolved using a base
model for identifying flower number per inflorescence that has theoretical potential to be
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variety-independent. However, according to the same author, the number of flowers per
inflorescence alone is insufficient for correct yield estimation and needs to be combined
with the fruit set rate and/or the average berry weight. The single variety-independent
linear model is also referred to by Aquino et al. [42] but reported by Liu et al. [44] as
not feasible unless a similarity in both structure and development stage occurs. Different
authors, in fact, report flower number as an important explanatory variable for estimating
yield [40,43,44] that can give a very early estimative, although not often used in traditional
manual approaches as it tends to amplify the already referred-to shortcomings for cluster
sampling.

Another aspect that needs to be pointed out is that a considerable part of the studies
was made under laboratory conditions, and the results must be validated under field
conditions that are typically very challenging. Also, the ones made “under field conditions”
have in some cases more similarities with controlled environments with the vineyard
adapted to the methodology and the purposed goal, e.g., counting berry number, instead
of the other way around.

One major disadvantage is that 2-D or even stereo images do not bring measurement
data in the depth of the scene [53], and image analysis algorithms are very dependent on
occlusion [98,99], which can constitute self-occlusions: berries hidden behind berries within
the same grape cluster, cluster-occlusions: berries hidden behind other grape clusters, and
vine-occlusions: berries hidden behind the leaves and shoots of the vine [7]. Furthermore,
environmental dynamics such as leaf movements due to wind and changing illumination
conditions are challenging when working under field conditions [108]. This led some
researchers to conduct image acquisition at night time [12], allowing them to isolate vines
under evaluation from those in the adjacent row [97] (more relevant in more defoliated
vineyards). Occlusion problems can also be in part resolved by detecting the specular
reflection peaks from the spherical surface of the grapes from high-resolution images taken
under artificial lighting at night [54], or by using a Boolean model to assess berry number
that can estimate partially hidden berries from images collected on-the-go at 7 km/h [48].

Regarding yield explanatory variables, it is unclear which provide better accuracy,
as the estimation errors presented vary in the same intervals for different variables. The
accuracy seems to be more dependent on the methodological approach used for data
collection and the robustness of the algorithms used to derive yield. Comparing the
estimation to traditional methods with 0.58 < R2 < 0.75 [9], this approach can provide better
but also worse results.

An issue pointed out by some authors [12] is that management practices (e.g., trellis,
leaf-pulling, shoot/cluster thinning and shoot positioning) can directly impact data acqui-
sition, mainly affecting the relation between what is measured and the predicted yield.
It means that the choice of methodology must be aligned with the winegrower’s type of
management.

One important answer to give is how early we can get an accurate yield estimation.
Aquino et al. [97] and Palacios et al. [40] suggested that it is possible to accurately predict
yield by monitoring vines at phenological stages between full flowering and cluster-closure
(near four months preharvest at the earliest), taking into consideration that a global multi-
varietal model requires training large datasets to be operationalized with success. Liu
et al. [49] go further, using video images to detect shoots, allowing for a five months earlier
yield estimation that also removes the necessity for prior training using an unsupervised
feature selection algorithm combined with unsupervised learning. However, as the author
points out, the approach relies heavily on an accurate estimate of the bunch to shoot ratio
(time-consuming and prone to selection bias).

Although not often discussed, as all of the different approaches are conducted at a
small scale the use of data-driven models based on computer vision and image processing
at larger scales poses a problem regarding computational power [13,89], which must
be addressed to cope with the same limitation already identified in traditional methods
regarding poor sampling. Rose et al. [13] proposed a pipeline for yield parameter estimation
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using 3D data for future automated, high-throughput, large-data phenotyping tasks in the
field.

From the list of methods in Table 2, none are referenced as being used by winegrowers
under field conditions in commercial vineyards, even the ones that resulted in APPs,
despite the potential still lack the knowledge transfer jump required to help winegrowers.

3.2. B-Data-Driven Models Based on Vegetation Indices (n = 7)

Table 3 shows the summary of the records included in the systematic review regarding
the use of data-driven models based on vegetation indices. Remote and proximal sensing
are used to measure plant reflected light in different portions of the spectrum, allowing
the development of various vegetation indices that can provide useful information on
plant structure and conditions [116] in a form of mathematical expressions that produces
values regarding crop growth, vigor, and several other vegetation properties. There are
519 different indices reported in the Index Database [117]. The more recently used in
agriculture for yield are listed by Sishodia [16] and reported as better indicators for full
cover crops (e.g., horticulture and cereal) than for discontinuous crops (e.g., olives and
vineyards) where, in addition to soil effects, the spectral measurement describes only a
part of the canopy, mostly the top [65], although regarding soil the impact tends to be low
as the vineyard critical growing stage (were indices/yield correlations tend to increase)
occurs when cover crops are in most cases, senescent [5]. For vineyard yield estimation,
the records found refer mainly to NDVI and LAI. [5,16].

Table 3. Summary of records included in the systematic review (data-driven models based on vegetation indices).

Reference Data Sources Test Environment Scale Related Variables Estimation

[87]
Vegetation indices

derived from canopy
spectra

In-field local
Vegetation indices

derived from canopy
spectra

0.52 < R2 < 0.68 (for
berry yield and quality

parameters)

[80]

Corine Land Cover
map, wine statistics,
monthly means of
climate variables

and NDVI

Simulated Regional tmax, tmin, tavg, prec,
NDVI

0.62 < R < 0.90 (for
wine production)

[65] UAV multispectral
camera In-field local

NDVI, Canopy
Geometry-Based

Indices
R2 < 0.85 (for yield)

[5] Satellite-based
(NDVI) and (LAI) In-field Regional NDVI, LAI

0.66 < R < 0.83 (for
NDVI and Yield) and

0.66 < R < 0.83 (for LAI
and Yield)

[11] Multispectral
airborne imagery In-field local

NDVI, berry weight at
harvest, bunch

number per vine, and
berry number per

bunch

−0.04 < r < 0.81 (for
NDVI vs yield)

[85]
Satellite data from
vegetation (NDVI

from SPOT)
In-field Regional NDVI 0.73 < R2 < 0.84 (for

yield)

[86]

Quadcopter
md4-1000 with a

multispectral
Sequoia camera

In-field local

Radiometry and
geometry-based

parameters (NDVI and
Fc), water regime,

fertilization, climate
data

0.60 < R2 < 0.96 (for
yield)
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Data sources vary mainly from a handheld or mounted spectroradiometer [87], mul-
tispectral cameras mounted on UAV [65], or satellite data [5]. Each has its own main
advantages and disadvantages: spectroradiometers allow a finer sampling with less noise
but also a sparser one, UAVs are more practical, fast, and deployed as needed allowing
applicability on a medium scale without the disadvantages of satellite temporal, spatial
resolution, and cloud coverage dependency, and satellites cover larger areas, and their data
can be accessed and processed at low/no cost.

Using hyperspectral reflectance spectra, Maimaitiyiming et al. [87] propose an in-
depth study to address the effects of irrigation levels and rootstocks on vine productivity.
As part of the study, vine productivity, including fruit yield and ripeness parameters, were
measured with 20 vegetation indices calculated and used as input for predictive model
calibration. The berry yield and quality prediction models were developed with multiple
linear regression (MLR), partial least squares regression (PLSR), random forest regression
(RFR), weighted regularized extreme learning machine (WRELM) and a new activation
function by fusing of a hyperbolic tangent (Tanh) function and rectified linear unit (ReLU)
for WRELM (WRELM-TanhRe), demonstrating moderate to relatively strong correlations
between berry yield and vegetation indices, namely water index (WI) (r = 0.67), modified
triangular vegetation index (MTVI) (r = 0.64) and green normalized difference vegetation
index (GNDVI) (r = 0.53). Regarding yield estimation, RFR outperformed the different
models’ calibration (R2 = 0.86), while in the validation test, the WRELM-TanhRe model
achieved the highest estimation accuracy (R2 = 0.62).

Indices as NDVI can also strengthen traditional manual sampling trough informed
sampling strategies that may mitigate errors resulting from the within-field variability,
improving yield estimation on average by 10% using NDVI data [11].

Using satellite data allows for regional scale estimation that can cover large areas.
Gouveia et al. [80] developed multi-linear regression models of wine production, using
NDVI and meteorological variables (monthly averages of maximum, minimum, and daily
mean temperature and precipitation) as predictors to estimate yield in a 250,000 ha region
with R2 = 0.62 for early season estimation and R2 = 0.90 for mid-season. A similar approach
was made by Cunha et al. [85] with a Satellite Pour l’Observation de la Terre (SPOT) 10-day
synthesis vegetation product (S10) for three different regions in Portugal with significant
interannual variability, based on a correlation matrix between the wine yield of a current
year and the full set of 10-day synthesis NDVI.

Although they recognized potential of NDVI, Matese et al. [65] argue that acquiring
and analyzing spectral data, besides being costly (multispectral cameras), requires skills
(“spectral know-how on radiometric correction and data analysis, primarily for filtering the
canopy with low-temperature sensors resolution from common multispectral cameras”) not
often available for all farmers. As an alternative, a model based on geometric data (canopy
thickness and volume) retrieved with RGB sensors outperformed NDVI data. However, the
authors’ statements can be debated, as low-cost NDVI cameras are becoming more available,
namely Agrocam (https://www.agrocam.eu/ - accessed on 16 June 2021) and Mapir (https:
//www.mapir.camera - accessed on 16 June 2021) both with powerful and easy-to-use free
cloud software included, although the data quality can be argued and requires validation
and comparison with more recognized commercial multispectral alternatives that are
pricier but also with more features, such as DJIMultispectral (https://www.dji.com/pt/p4
-multispectral - accessed on 16 June 2021), Micasense (https://micasense.com - accessed on
16 June 2021) Parrot Sequoia+ (https://www.pix4d.com/product/sequoia - accessed on 16
June 2021) and Sentera (https://sentera.com/data-capture/6x-multispectral/ - accessed on
16 June 2021). Ballesteros et al. [86] used a hybrid approach combining NDVI (reflectance
approach) with vegetated fraction cover as a measure of plant vigor (geometric approach),
resulting in higher accuracy when compared to simple NDVI use with good results but
requiring calibration for each season.

An important question is the time frame for data acquisition to give the best correlation
day to estimate yield. Matese et al. [65] collected data during three seasons in the veraison

https://www.agrocam.eu/
https://www.mapir.camera
https://www.mapir.camera
https://www.dji.com/pt/p4-multispectral
https://www.dji.com/pt/p4-multispectral
https://micasense.com
https://www.pix4d.com/product/sequoia
https://sentera.com/data-capture/6x-multispectral/
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phenological stage; Carrillo et al. [11] collected data before veraison; Ballesteros et al. [86]
made UAV flights in several stages: fruit set, berry pea size, veraison, final berry ripening
and after harvest. Maimaitiyiming et al. [87] collected data during the late veraison stage
and the fruit ripening stage with the dates determined based on the number of no-rain days
after irrigation treatment initiation (considering that the study was not focused only on
yield estimation). For NDVI, Gouveia et al. [80] identified through comparing NDVI cycles
and meteorological parameters for years of low and high wine production the significant
differences during three stages: (1) from dormancy; (2) from budbreak and (3) starting
with flowering and continuing during veraison, with a maximum at the end of spring
and a minimum during winter for the selected vineyard area pixels, also indicating that
good years for wine production reflect high photosynthetic activity during the previous
autumn and spring followed by reduced greenness and reduced growth during summer
(considering the Douro region in Portugal where the study was conducted). Sun et al. [5]
found similar performance in NDVI and LAI regarding spatial yield variability, with peak
correlations during the growing season that differed in different years. Maximum and
seasonal-cumulative vegetation showed slightly lower correlations to yield. The authors
state that the best time interval depends on the crop type, climate/weather conditions
and management practices. Cunha et al. [85] used NDVI measurement 17 months before
harvest with very good results in obtaining very early forecasts of potential regional wine
yield (model explained 77−88% of the inter-annual variability in wine yield).

In line with what has already been mentioned for the data-driven models based
on computer vision and image processing, this approach can provide better results on
estimation yield. As pointed out by Sun et al. [5], performance is very dependent on
environmental conditions and management strategies. For satellite data, spatial resolution
can be the major bottleneck in smaller scales [85], along with less flexibility derived from
temporal resolution and soil effect [86]. However, presently, there are alternatives such as
Sentinel-2 with 12 spectral bands in 10–20 m spatial resolution, with global coverage and a
five-day revisit frequency.

3.3. C-Data-Driven Models based on Pollen (n = 7)

Table 4 shows the summary of the records included in the systematic review regarding
the use of data-driven models based on pollen. These models rely on the relationship
between airborne pollen and yield [82]. The assumption is that there are more flowers per
area unit in more productive years, thus higher airborne pollen concentrations [24].

Table 4. Summary of records included in the systematic review (data-driven models based on pollen).

Reference Data Sources Test Environment Scale Related Variables Estimation

[83]

Hirst type sampler
volumetric spore

trap
(Lanzoni VPPS-2000)

In-field Regional Airborne pollen
concentration

R2 = 0.92 (for grape
production)

[8]
Aerobiological data
(Lanzoni VPPS-2000

volumetric trap)
In-field Regional

Meteorological and
phytopathological

variables
R2 = 0.98 (for yield)

[72]

Pollen Hirst
volumetric sampler
and Cour passive

trap

In-field Regional
Airborne pollen

concentration, weather
data

R2 = 0.96 (Cour); R2 =
0.99 (Hirst)

[82] Pollen concentration
data In-field Regional Airborne pollen

concentration R2 < 0.98 (for yield)
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Table 4. Cont.

Reference Data Sources Test Environment Scale Related Variables Estimation

[24] Airborne pollen trap Simulated Regional Airborne pollen
concentration

0.71 < R2 < 0.86 (for
annual wine
production)

[6]

Aerobiological
(Lanzoni VPPS-2000

volumetric trap)
Phenological (BBCH
standardized scale)

Meteo data

In-field local

Meteorological,
phenological and
phytopathological

variables

0.79 < R2 < 0.99 (for
yield)

[84]

Aerobiological data
(Lanzoni VPPS-2000
volumetric sampler),

Meteorogical data

In-field Regional
Airborne pollen

concentration and
Meteorologic data

R2 = 0.99 (for yield)

Pollen monitoring and the determination of the pollen index (annual sum of the daily
pollen concentrations in m3/year) was conducted by Cristofolini et al. [83] between the
days when 5% and 95% of the seasons total pollen concentration were found (between
12 and 29 days per season), with very good results (R2 = 0.92). The combination of
aerobiological, phenological, and meteorological data used by Gonzaléz et al. [84] and
Fernandez et al. [6,8,72] also allowed an accurate production estimated more than one or
two months in advance, with Fernandez et al. [72] achieving better results from a hirst trap
(volumetric) for local predicting and with cour (passive) trap for regional yield predictions.
Cunha [24] made a more comprehensive study to assess the model adaptability in fast
expanding regions (regarding area and technology) with non-irrigated areas, with heavy
water and thermal stress during summer. The study resulted in a regional forecast model
to determine the potential yield at flowering through airborne pollen concentration and
climate impact, applied to Alentejo in Portugal (one of the most arid wine regions of
Europe). The determined regional pollen index (RPI) and fruit-set data as explanatory
variables allowed a very good regional estimation (R2 = 0.86)

Choosing the best placement for sampling devices at the regional level representing
effectively spatial variability, the number of observations needed for model calibration
(usually years as historical data, as opposed for instance to weather data, is not commonly
available), costly and complex laboratory processes, plant dynamics (e.g., high variations
of the area with vineyards around the pollen traps) are the main disadvantages of using
data-driven models based on pollen [24,85]. The number of pollen traps must be related
to the area of influence and the availability of grapes or wine production at the relevant
spatial scale [24]. Rainfall and temperature (primarily average and maximum) have an
influence on pollen season, and so in pollen index values, typically higher temperature
increases pollen concentration in the vineyard, and rainfall leads to less airborne pollen
concentrations [72,83]. Also, fertilization during the flowering period can negatively
decrease the airborne pollen concentrations [84]. For regional estimative, the models’
performance is linked with the different approaches on calculating RPI, and special care
must be taken regarding the identification of the beginning and final of the pollen season to
avoid pollen deposition, recirculation, and long-distance transport that does not contribute
effectively to local pollination but increases RPI [24].

In line with what has already been mentioned above, these approaches can provide
better results on estimation yield with application to local and regional scales.

3.4. D-Crop Simulation Models (n = 4)

Table 5 shows the summary of the records included in the systematic review regarding
the use of crop simulation models. Crop models are important decision-support systems
in agriculture [28] that allow the simulation through mathematical equations of plant
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development and the interaction with the environment by integrating phenotypic traits
along with climate, soil, management decisions, and others variables considered to be
related to yield estimation in this particular case. This approach is becoming more popular
because it allows for virtual experiments that can be made in a specific phenological stage,
testing hypotheses that could take years under real field conditions. Another advantage is
the possibility of integrating decision support systems (DSS) [71,74].

Table 5. Summary of records included in the systematic review (D—crop simulation models).

Reference Data Sources Test Environment Scale Related Variables Estimation

[71] Weather data and
plant characteristics

Simulated/In-field
Validation Regional Weather data and

plant characteristics

R2 = 0.96 (for yield in
low-density canopies)
R2 = 0.94 (for yield in

high-density canopies)

[74] Climate, soil, and
management practices

Simulated/In-field
Validation Regional

Climate data, soil and
terrain parameters,
water stress indices,

management practices

R2 = 0.86 (for yield)

[73]

Phenology and harvest
date, Soil water

content, water stress,
and grapevine growth

and yield

Simulated/In-field
Validation Regional

Phenology and harvest
date, soil water

content, water stress,
and grapevine growth

and yield

R2 = 0.85 (for yield)

[23]

Weather, yield,
phenological dates,

fertilizer information,
soil analysis, and

maturation index data

Simulated/In-field
Validation Regional

Weather, phenological
dates, fertilizer

information, soil
analysis, and

maturation index data

24.2% < RRMSE <
28.6%

The retrieved studies are complex and not limited to yield estimates, as they simulate
grapevine growth and development. The models need to be appropriately calibrated and
validated. That is one of the disadvantages of using this approach, as it needs to be adapted
for new environments with distinct climate, soil, grapevine varieties, training systems
and management. As such, complexity and cost in terms of time and biophysical data
requirements become operationality and transferability very difficult [23].

The model developed by Cola et al. [71] achieved good results in a five-year valida-
tion assessment demonstrating flexibility and thrift regarding meteorological data. The
approach used to simulate the fruit load was based on light interception derived gross
assimilation and thermal and water limitations.

Sirsat et al. [23] focused on grape yield predictive models for flowering, coloring and
harvest phenostages (due to lack of data regarding other phenostages, namely setting,
berries pea-size and veraison) using machine learning techniques and climatic conditions,
grapevine yield, phenological dates, fertilizer information, soil analysis and maturation
index data to construct the relational dataset. The authors stated that meteorology data
is the critical element for measuring the quantity of grapes, as the derived features of
dew point, relative humidity, and air temperature were identified as the most favorable
variables in constructing the model.

Some models such as the STICS have been used for different types of crops with good
results: Fraga et al. [74] used it for three Portuguese native varieties. The application of
this model requires thorough parameterization regarding yield components and historical
phenological data computed by STICS using a concept called growing degree day (GDD).
The results for simulating yield demonstrated a good capability of the model, with an
overestimation in one of the regions studied and underestimation in the other. The authors
pointed out a critical factor related to the duality between quality and yield, and the need for
viticultural practices such as cluster thinning to be included in the model parametrization.
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The same model was used by Valdes et al. [73] in non-irrigated and irrigated vineyards
in Chile and France, with similar results for yield estimation with an overestimation, that
resulted from the underestimation of moderate water stress simulated by STICS after
veraison.

3.5. E-Data-Driven Models Based on Trellis Tension (n = 4)

Table 6 summarizes the records included in the systematic review regarding using
data-driven models based on trellis tension, all from the same author This approach is
an indirect real-time method that uses sensors in the wires to measure the production in
each vine row. The changes in tension are recorded by automated data systems connected
to the load cells installed in-line. Each line needs calibration, the data must be corrected
to remove the effects of temperature (using a 48 h moving average), and the effects of
wind gust are negligible because measurements are not made in continuous periods [37].
The linear regression found in the studies demonstrates good results and estimation, with
better results than the traditional manual sampling.

Table 6. Summary of records included in the systematic review (E—data-driven models based on trellis tension).

Reference Data Sources Test Environment Scale Related Variables Estimation

[37]
Load cells installed

in−line with the
cordon wire

In-field local
Tension in the horizontal

(cordon) support wire of the
trellis

0.99 < R2 < 0.99 (for
tension and yield)

[78]
Tension Sensor in
main load-bearing

wire
In-field local Timing for hand sampling n.d.

[76] Trellis Tension
Monitors (TTMs) In-field local

Tension in the horizontal
(cordon) support wire of the

trellis

0.81 < R2 < 0.98 (for
yield)

n.d. means no data.

The trellis tension methodology can also be used to determine the timing for traditional
hand sampling for yield estimation to determine the lag phase, thus eliminating the field
scouting subjective visual and tactile assessments to assess whether berries are at lag
phase [78].

Despite the better estimative that can be achieved and the ability to monitor near to
real-time, the applicability of this method to commercial vineyards still needs to be evalu-
ated regarding needed calibration for different vineyards and trellis systems, consistency
across seasons, installation costs, number of sensors and spatial deployment [37].

The trellis tension monitor (TTM) is a spatial response to removing uniformly dis-
tributed fruit load of up to ~24 m or ~12 m to either side of the sensor. This means that
eight to ten vines are a meaningful sample size [76].

3.6. F-Data-Driven Models Based on Laser Data Processing (n = 1)

Table 7 shows the summary of the records included in the systematic review regarding
using data-driven models based on laser data processing with only one study identified.
Vine canopy properties are a good indicator of quality and yield [64]. The application
retrieved shows the potential of laser scanner technology to collect plant geometric char-
acteristics with sufficient precision capable of being correlated with yield using a shoot
sensor called Physiocap ®, designed and developed by the CIVC (Comité Interprofessionel
du Vin de Champagne) that maps vigor spatial variability used during winter just before
pruning [50]. In this study, the authors refer to the fact that at the scale of the Champagne
(region in France where the study was conducted) vineyard, the aboveground biomass
estimation was strongly correlated with the yield of the following year. The estimation
results are good, but extreme climate events tend to lower the correlation found at a more
local scale. Being the only study regarding this approach, and dependent on data from
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a single region that has been collected since 2011, applications to other regions must be
evaluated.

Table 7. Summary of records included in the systematic review (F—data-driven models based on laser data processing).

Reference Data Sources Test Environment Scale Related Variables Estimation

[50] Physiocap ®-optical laser In-field local Shoot biomass R2 = 0.98 (for yield)

3.7. G-Data-Driven Models Based on Radar Data Processing (n = 2)

Table 8 summarizes the records included in the systematic review regarding the use
of data-driven models based on radar data processing, all from the same author. Three-
dimensional radar imagery techniques for yield determination are reported here as an
alternative to remote estimations based on proximal optical or multispectral proximal or
remote sensors, to deal with limitations regarding performance, occlusion, and light issues
in field conditions.

Table 8. Summary of records included in the systematic review (G—data-driven models based on radar data processing).

Reference Data Sources Test Environment Scale Related Variables Estimation

[53] 3-D radar imagery
(FM-CW radar) In-field local

Polarization and
magnitude of radar

echoes

0.79 < R2 < 0.97 (for
yield)

[52]

24 GHz
frequency-modulated

continuous-wave
(FMCW) radar

In-field local

Grapes in grapevines
from the radar echoes

distribution in the
interrogated 3D scene

R2 = 0.947 (for grape
volume)

Henry et al. [52,53] used ground-based frequency-modulated continuous-wave radars
operating at 24, 77, and 122 GHz to estimate grape mass without contact. The major
advantage is that most grapes can be detected under field conditions even if leaves, shoots,
or other grapes partially or fully hide them. As for limitations, the study only addressed
yield estimation at the maturation phase for five different varieties.

3.8. H-Data-Driven Models Based on Radio Frequency Data Processing (n = 1)

Table 9 shows the summary of the records included in the systematic review regarding
the use of data-driven models based on radio frequency data processing, with only one
record retrieved. It relies on a new exploratory approach using a scheme that senses
grape moisture content by utilizing Radio Frequency (RF) signals to estimate yield without
physical contact in a laboratory environment. According to the authors, it can be used for
early yield estimation [39].

Table 9. Summary of records included in the systematic review (H—data-driven models based on radio frequency data
processing).

Reference Data Sources Test Environment Scale Related Variables Estimation

[39] RF signals Laboratory-based local Grape moisture
content

Degree of accuracy = 90% (for
moisture content)

This study represents an exploratory approach in a laboratory environment that does
not provide an actual yield estimative. Therefore, its applicability to real world scenarios
needs to be addressed. Nevertheless, it could be an alternative path for one of the main
issues reported in data-driven models based on computer vision and image processing and
occlusion.
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3.9. I-Data-Driven Models Based on Ultrasonic Signal Processing (n = 1)

Table 10 summarizes the records included in the systematic review regarding the use
of data-driven models based on ultrasonic signal processing, with only one record retrieved.
Using low-frequency ultrasound is an alternative approach to detect grape clusters in the
presence of foliage occlusion at a lower cost compared to alternatives such as Synthetic
Aperture Radar (SAR) [38].

Table 10. Summary of records included in the systematic review (I—data-driven models based on ultrasonic signal
processing.).

Reference Data Sources Test Environment Scale Related Variables Estimation

[38] Ultrasonic Array Laboratory-based local Grape cluster
detection

Ability to propagate through
foliage and reflect of grapes

behind

Despite not being a study to determine yield and being developed in a laboratory
environment, the results are very interesting as they can provide an alternative for one
of the main issues reported in data-driven models based on computer vision and image
processing, which is occlusion.

3.10. J-Other Data-Driven Models (n = 6)

Table 11 summarizes of the records included in the systematic review that did not fall
into one of the previous identified groups.

Table 11. Summary of records included in the systematic review (B—other data-driven models).

Reference Data Sources Test Environment Applicability
Scale Related Variables Estimation

[81]

Daily historic
meteorological

conditions, yield
data

In-field Regional Temperature and
Precipitation

0.68 ≤ r ≤ 0.84 (for
grapevine

production)

[34] Edapho-climatic
data In-field Local

Cation exchange
capacity (CEC),
Winkler index

R2 = 0.88 (CEC and
Winkler Index for

yield)

[45]

Number of flowers
per cluster, fruit-set
percentage, berry

weight

In-field Local

Number of flowers
per cluster, fruit-set
percentage, berry

weight

0.54 < R2 < 0.93 (for
number of flowers

and yield)

[79]

Monthly mean air
temperatures and

monthly total
precipitation data

Simulated Regional

Monthly mean air
temperatures and

monthly total
precipitation

Wine production
classes (1-low,

2-normal, 3-high):
average estimation

ratio of
79%(calibration)
67%(validation)

[70] Bunch mass data In-field Local Bunch mass data n.d.

[2]

Leaf area, berry
number, yield, water
potential in summer,
berry weight, sugar

concentration

In-field Local

Leaf area, berry
number, yield, water
potential in summer,
berry weight, sugar

concentration

LA/BN ratio
estimated properly

BW (R2 = 0.91))

n.d. means no data.
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For regional level decision support, Fraga et al. [81] proposed a simple grape produc-
tion model (PGP) based on favorable meteorological conditions. This model runs on a
daily step, comparing the thermal/hydric conditions in a given year against the average
conditions in high and low production years in three regional wineries, allowing one to
perceive regional heterogeneity. The recognition of the importance of climate data for esti-
mating yield at the regional level was also addressed by Santo et al. [79] with an empirical
model, where temperature and precipitation averaged over the periods of February–March,
May–June, and July–September, along with the anomalies of wine production in the previ-
ous five years, were used as predictors. At a local level, both climate and soil data were
considered by Ubalde [34] as yield predictors, with Cation Exchange Capacity (CEC) and
Winkler Index providing the best correlations with similar importance.

A different approach was made by Ellis [70], collecting bunch mass data during
three seasons and using a Bayesian growth model, assuming the double sigmoidal curve
that characterizes grape growth according to literature, to predict the yield at the end of
those seasons. The author advocates using Bayesian methods due to the capability of
systematically incorporating prior knowledge and updating the model with new data. The
study is not very clear regarding yield estimation and does not indicate the accuracy.

By determining water status, leaf area (LA), and fruit load influence on berry weight
(BW) and sugar accumulation, Santeesteban et al. [29] found that average leaf water
potential in summer and LA/BN ratio, when considered together, estimated BW properly
(R2 = 0.91), showing that under semiarid conditions, water availability plays the primary
role in regulation of berry growth.

4. Conclusions

As an overall conclusion, the alternative methodologies for yield estimation mentioned
in this paper can, as demonstrated by the revised articles, surpass the limitations assigned
to traditional manual sampling methods with the same or better results on accuracy. They
all have advantages and shortcomings, but more importantly, they still lack a fundamental
key aspect: the real application in a commercial vineyard.

Despite extensive research in this area, adoption at an operational level to effectively
substitute the manual sampling estimation is residual. Methods made available to wine-
growers should estimate production as far in advance as possible and must be as simple as
possible and with as little data as possible, preferably with data that producers can access
quickly, easily, and cheaply and, if possible, without the need for intensive training or
validation. The best approach must consider the availability and/or possibility to have
the required inputs (required data is sometimes not available), the adequate spatial reso-
lution (field level or regional level), the necessary granularity (information regarding the
spatial variability in each area) and required precision (e.g., a simple smartphone camera,
despite the loss in quality, can be in many cases a cost-effective alternative to hyper and
multispectral cameras, LiDAR, ultrasonic and radar sensors).

The synergistic use of proximal and remote sensing with AI can be one of the best
ways to model a vineyard production system. Still, due to its inherent complexity, it is a
difficult challenge to apply because of the diversity of field conditions, as remote sensing
data is dependent on spatial, temporal, and spectral resolution, and yield is correlated with
an extensive list of climate, soil and plant variables that have high temporal and spatial
heterogeneity. Also, the relation to quality is one of the biases that yield estimation needs
to deal with, as the producer’s management decision directly impacts both quality and
yield.

For local estimation at the farm level, data-driven models based on computer vision
and image processing are the ones that the research community is putting more effort into,
and can be classified as the easiest to be deployed by growers under real field conditions.
Data acquisition can be made easily on-the-go with a vast array of solutions ranging
from a simple smartphone to an autonomous robot platform, a UAV, or even agriculture
equipment. Despite good results in estimating yield, these methods are not fully matured
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yet. Management practices (e.g., trellis, leaf-pulling, shoot/cluster thinning and shoot
positioning) can directly impact data acquisition by affecting the relationship between what
is measured and the predicted yield. There are still problems with occlusion; algorithms
are generally variety dependent, and environmental dynamics are challenging. Data
acquisition speed, computational processing constraints, and the availability of predictive
yield maps as output should be addressed in commercial applications.

Vegetation indices are also a good alternative, as they can be easy to deploy and
used at different scales with good results, especially NDVI. Data acquisition is generally
feasible and affordable, but transforming data into usable information requires technical
knowledge not often available for all farmers. The past limitations linked to the direct
use of multispectral satellite remote sensing data, such as insufficient spatial resolution,
inadequate temporal resolution, and complex data access and processing, were signifi-
cantly overcome since the launch in mid-2015 of the EU Copernicus Program Sentinel-2
mission combined with the development of appropriate desktop and cloud-based data pro-
cessing platforms (e.g., Google Earth Engine: https://earthengine.google.com/ (accessed
on 16 June 2021) [118]; Sen2-Agri: http://www.esa-sen2agri.org/ (accessed on 16 June
2021) [119]; and Sen4CAP: http://esa-sen4cap.org/ (accessed on 16 June 2021) [120]). As
for models based on computer vision and image processing, correspondent operational
solutions are not yet available for growers as needed. Future commercial solutions can
pass by including yield estimation algorithms in UAVs data management software or web
platforms such as EO Browser (https://apps.sentinel-hub.com/eo-browser/ - accessed
on 16 June 2021) or EOS Platform (https://crop-monitoring.eos.com/ - accessed on 16
June 2021), providing multispectral satellite data and derived products and indices, with
required parametrization when needed.

Crop models were also referenced as one of the best alternatives for estimating yield.
Still, few examples were identified, mainly because of the complexity of their development,
especially hard in vineyards because of the inherent specificities and the required data for
calibration in different locations and for different varieties.

There is also a lack of solutions for estimating yield at broader scales (e.g., regional
level). The perception is that decisions are more likely to take place at a smaller scale,
which in some cases is not accurate. It might be the case in regulated areas and areas where
support for small viticulturists is needed and made by institutions with proper resources
and a large area of influence. This is corroborated by the fact that data-driven models based
on Trellis Tension and Pollen traps are being used for yield estimation at regional scales in
real environments in different regions of the world.

Other more residual approaches like laser, radar, radio frequency and ultrasonic data
can provide new alternatives to cope with some of the difficulties encountered especially
in computer vision and image processing approaches.

Despite the use of remote and proximal sensing models with an inherent spatial
component, predictive yield maps are scarcely referenced and used as an output of yield
estimation models. New approaches such as GeoAI [121] are not yet referred to in the
reviewed articles. As spatial variability and heterogeneity are some of the more critical
parameters for decision-making in PV (the producer wants to know the quantity and where
that quantity is), it is a relevant research gap that must be addressed appropriately.
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