
agronomy

Review

An Overview of Cooperative Robotics in Agriculture

Chris Lytridis , Vassilis G. Kaburlasos * , Theodore Pachidis , Michalis Manios, Eleni Vrochidou ,
Theofanis Kalampokas and Stamatis Chatzistamatis

����������
�������

Citation: Lytridis, C.; Kaburlasos,

V.G.; Pachidis, T.; Manios, M.;

Vrochidou, E.; Kalampokas, T.;

Chatzistamatis, S. An Overview of

Cooperative Robotics in Agriculture.

Agronomy 2021, 11, 1818. https://

doi.org/10.3390/agronomy11091818

Academic Editors: Francisco

Manzano Agugliaro and

Esther Salmerón-Manzano

Received: 11 August 2021

Accepted: 6 September 2021

Published: 10 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Human-Machines Interaction (HUMAIN) Lab, Department of Computer Science, International Hellenic
University (IHU), 65404 Kavala, Greece; lytridic@cs.ihu.gr (C.L.); pated@cs.ihu.gr (T.P.);
m.manios@cs.ihu.gr (M.M.); evrochid@teiemt.gr (E.V.); theokala@cs.ihu.gr (T.K.); stami@emt.ihu.gr (S.C.)
* Correspondence: vgkabs@teiemt.gr; Tel.: +30-2510-462-320

Abstract: Agricultural robotics has been a popular subject in recent years from an academic as well
as a commercial point of view. This is because agricultural robotics addresses critical issues such as
seasonal shortages in manual labor, e.g., during harvest, as well as the increasing concern regarding
environmentally friendly practices. On one hand, several individual agricultural robots have already
been developed for specific tasks (e.g., for monitoring, spraying, harvesting, transport, etc.) with
varying degrees of effectiveness. On the other hand, the use of cooperative teams of agricultural
robots in farming tasks is not as widespread; yet, it is an emerging trend. This paper presents
a comprehensive overview of the work carried out so far in the area of cooperative agricultural
robotics and identifies the state-of-the-art. This paper also outlines challenges to be addressed in
fully automating agricultural production; the latter is promising for sustaining an increasingly vast
human population, especially in cases of pandemics such as the recent COVID-19 pandemic.

Keywords: agricultural robots; agriculture 4.0/5.0; cooperative robots; farming automation

1. Introduction

The popular term Precision Agriculture, or PA for short, has been defined as “a
management strategy that uses electronic information and other technologies to gather,
process, and analyze spatial and temporal data for the purpose of guiding targeted actions
that improve efficiency, productivity, and sustainability of agricultural operations” [1].
Based on this definition, the introduction of robots in agricultural tasks can serve the
purpose of PA by taking advantage of sophisticated equipment for accurate measurements,
management, and operations. Hence, an analysis of the effects of the introduction of
agricultural robots in the workforce was presented in [2]. Systematic reviews that widely
cover research in the field of agricultural robots can be found in [3–5]. These studies show
a wide range of agricultural applications that can be achieved by replacing humans with
autonomous machines. The objective of introducing robots in agriculture are mainly (a) to
improve efficiency and productivity, (b) to counter labor shortages of seasonal workers, and
(c) to perform laborious and possibly dangerous tasks. Those developments in agriculture
can be interpreted in a more general, industrial context as follows.

Industry 1.0 or, equivalently, the (classic) industrial revolution, has been called the
transition from manual production to mechanical (steam) production from the late 18th
century to the early 19th century. The second industrial revolution (Industry 2.0), from
the late 19th century to the early 20th century, was shaped by the widespread use of
electricity. The third industrial revolution (Industry 3.0), in the second half of the 20th
century, was shaped by the widespread use of digital computers. Currently, the fourth
industrial revolution (Industry 4.0) is driven by advanced artificial intelligence as well as
by the Internet. Corresponding developments can be observed in agricultural technology
whose most recent developments are outlined next.

The term “Agriculture 3.0” has been proposed as an alternative to “Precision Agri-
culture” [6]. Agriculture 3.0 can be interpreted as a domain-specific extension of Industry
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3.0 in agriculture. Note that PA, which includes the application of personalized practices
(i.e., inputs) based on local measurements, may not be suitable for all agricultural tasks. In
particular, the production of certain high-quality agricultural products may require manual
skills based on empirical knowledge. For example, vinicultural tasks such as harvesting,
pruning, spraying, tying, etc. require the aforementioned skills.

Lately, the term “Agriculture 4.0” has been proposed as a domain-specific extension
of “Industry 4.0” to agriculture [6,7]. More specifically, among other things, “Agriculture
4.0” refers to a massive automation of skillful manual agricultural tasks. The work here has
been motivated by an ongoing project regarding the development of a team of cooperative
robots, including ground robot vehicles as well as unmanned aerial vehicles, for vinicultural
applications [6], where emphasis is given to the engagement of mechanical hands with
many (>20) degrees of freedom toward reproducing the skillfulness of the human hand in
selected vinicultural tasks.

The cooperative robotics reviewed in this work could be regarded as a precursor,
in agriculture, of a more general industrial trend toward a cooperative integration of
humans with robots/machines, namely “Industry 5.0” [8]. More specifically, cooperative
robotics can be a future “Agriculture 5.0” technology that integrates humans with robots
in agricultural applications. In the latter context, a technological challenge regards the
development of effective models to support interaction between humans and/or robots.
This work, in the discussion section below, proposes a novel information processing
paradigm for supporting cooperative robots in agriculture.

Technological advances in sensing and actuation as well as machine learning have
allowed more agricultural tasks to be feasible by autonomous machines. Such tasks
range in all stages of cultivation from land preparation and sowing, to monitoring and
harvesting. Commercial agricultural robots are already available, and more are expected to
appear in the next years as technologies such as machine vision and dexterous grasping
become more mature. However, the introduction of multiple cooperating robots in the
field can have good prospects in the reduction of production costs and the improvement
of operational efficiency. This paper presents an overview of research in the field of
cooperative robotics in the context of agriculture. The incentive behind this work is the
fact that even though there are numerous studies regarding advances in agricultural robots
and their underlying technologies, there are no studies that comprehensively survey the
utilization of cooperation in agricultural robotic applications.

The paper is structured as follows: Section 2 describes the methodology followed for
compiling relevant research works. Section 3 details our results regarding cooperative agri-
cultural robots, including relevant statistics. Finally, Section 4 summarizes the contribution
of this work, including discussions for potential future work.

2. Materials and Methods

The sources used for the compilation of the present review were the databases of
Google Scholar, ScienceDirect, Scopus, IEEE Xplorer, and Wiley. The criteria for selecting the
research to be included in this paper were the following: (a) work from the last 15 years was
reviewed, (b) aerial or ground robots had to demonstrate autonomy as well as cooperative
and coordination skills, and (c) the application area had to be in agriculture exclusively, i.e.,
no robots executing general-purpose cooperation algorithms were included. Furthermore,
among articles by the same author(s) that report research results incrementally, only the
most recent ones were considered in the present review.

Note that, sometimes, a team of robots is employed “in parallel” such that each robot
is operating alone on a different land parcel without interacting with another robot. Such
teams of robots have not been considered here. Instead, the interest of this work is in teams
of robots interacting with one another.

This paper presents statistical results regarding papers based on the date of research
as well as the country where the research took place. For the former, the publication year



Agronomy 2021, 11, 1818 3 of 23

was used; for the latter, a country was defined by the affiliation of the first author, even
though several articles are the result of international collaborations.

In total, 77 articles were compiled and (a) reviewed and (b) statistically analyzed
regarding their (b.1) type of publication, (b.2) research topic, (b.3) geographical region of
the first author, (b.4) country of origin of the first author, and (b.5) year of publication.
Details regarding our review analysis are presented next.

3. Cooperative Agricultural Robotics

The reviewed papers were categorized into five main research topics where cooper-
ation is found in agricultural robotics: (a) human–robot cooperation, or “human–robot”
for short, (b) cooperative Unmanned Aerial Vehicles (UAVs), or “multi-UAV” for short,
(c) cooperative Unmanned Ground Vehicles (UGVs), or “multi-UGV” for short, (d) Hybrid
teams of UAVs and UGVs, or “UAV/UGV” for short, and (e) cooperative manipulation by
multi-arm systems, or “manipulators” for short.

3.1. Human–Robot Cooperation (Human–Robot)

The majority of agricultural work is currently being performed by humans either
manually or using human-operated machines or equipment. In recent years, there have
been many attempts to automate tasks and produce fully autonomous robots. However,
some tasks cannot yet be carried out by a single robot in a reliable and efficient manner.
For this reason, collaboration between humans and robots has been considered [9–12].

When a human and a robot must work together towards a common objective, there are
several ways in which control can be realized, such as through remote control, supervisory
control, or cooperative control [13]. In this section, the focus will be on examples of
cooperative human–robot control in agricultural applications.

To realize cooperative control, some interface between the robot and the human must
be established, such that information is shared and some level of control from the part of the
human is achieved. For example, in [14], the usability of different types of user interfaces
was studied for the control of a semi-autonomous vineyard sprayer robotic system. In
this case, the robot can perform some tasks autonomously, but the human operator can
intervene through a user interface. In [15], tractor steering was achieved using signals from
an electromyographic (EMG) human–machine interface put on a human tractor driver.
Apart from interface types, other works explore the idea that, depending on the conditions,
different levels of cooperation may be needed. For instance, in [16], a semi-autonomous
system was presented. The system used a three-layer architecture that includes a servo
control, autonomous control, and manual operation. The operator can either manually
operate the vehicle or can act as a supervisor of the autonomous vehicle, able to intervene
at appropriate times through an interface. In [17], automatic melon recognition was
investigated. The objective was to evaluate the effectiveness of collaboration between a
human and a robot in a target recognition task. Four collaboration levels were investigated,
ranging from target selection, performed by the human operator, to automatic target
selection, performed by the system. The study showed higher detection rates in the
collaborative detection case compared to either manual or autonomous detection cases.
In a later study [18], the authors used an objective function for the performance of the
collaborative task (as defined in [19]) to dynamically alter the collaboration levels during
the melon recognition task.

A mathematical programming framework for optimizing human–robot collaboration
was proposed in [20]. The framework considers the question of when interaction of the
human operator with the robotic system is most economically beneficial. To validate the
framework, simulations of citrus robotic harvesting were implemented, and showed how
the robotic system required human collaboration in order to compensate for inefficient
components of the system.

In [21], human action recognition by robots in an agricultural task was investigated.
More specifically, human participants equipped with wearable sensors for data acquisition
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were asked to perform the common agricultural task of lifting and carrying a crate. The
objective was to determine whether the robots, using appropriate machine learning models
and classification algorithms, could identify the actions of the human participants through-
out the task. The authors reported an average accuracy in action recognition of 85.6%. In
an earlier work [22], an omni-directional stereo vision camera mounted on a robot tractor
was employed for human detection. The system was validated using field tests, which
showed that the human could be detected successfully in the range of 4 to 11 m.

In the precision spraying task described in [23], the authors reported a reduction of up
to 50% in terms of spraying material. The proposed human–robot collaboration framework
aimed at minimizing the false positives in spraying targets, based on images collected by
an on-board camera. Depending on the selected cooperation level, target detection can be
fully automatic, completely manual by the remote operator, or the operator can adjust the
automatically marked targets.

In [24,25], an emulated cooperative strawberry recognition task was presented. In this
work, a robot navigated the environment and relayed the images with the automatically
recognized targets (together with the degrees of recognition confidence) to human test
operators. The user could then accept the recognized targets or not. Based on questionnaires
completed by the test users, they reported that they preferred a robot behavior where
automatic recognition yields more false positives as opposed to a behavior which results in
more false negatives.

A model which enables coordination between humans, robots, sensors, and software
agents (i.e., a cyber-physical organization) for gathering unspecified crops and fruit was
introduced in [26]. The proposed model consisted of five connected layers, namely network,
communication, interaction, organization, and collective intelligence. Through this layered
approach, the objective was to achieve indistinguishability, i.e., to enable the system to
achieve the desired goal regardless of the actor, either human or machine, that performs
the task.

A human–robot skill transfer interface aimed at improving UAV pesticide delivery
was proposed in [27]. In this scheme, the UAV was first instructed a trajectory by a human
operator via the interface. Then, the accuracy of the trajectory derived in the demonstration
phase was improved using an adaptive cubature Kalman filter. Finally, the UAV could
follow the resulting trajectory using the stored position and velocity data. The methodology
was tested in both simulation through SIMULINK and field experiments using an actual
UAV in a commercial canola field.

The cooperative tea harvesting system proposed in [28] used a robot with a camera to
detect a marker-carrying human and move by his side by estimating position differences.
This coordinated motion then made it easy for the human operator to guide the robot,
which had the harvesting device mounted on it, through the field, compared to the standard
tea plucking machine which requires two workers.

The presence of a human in an agricultural task requires additional considerations
to ensure the health and safety of the workers and to increase the level of trust in human–
robot interaction among agricultural workers [29,30]. The study presented in [31] identified
the main risk factors in human–robot collaboration in agricultural tasks and proposed
methods for safe collaboration by minimizing potential hazards. Moreover, in the pilot
study presented in [32], the authors conducted field experiments both in open and indoors
environments, where field workers harvesting strawberries evaluated their work carried
out alongside the Thorvald robot. The data collected from this study can be used for the
design of collaborative systems in terms of the safety aspects.

Figure 1 shows examples of systems where human–robot cooperation is exploited.
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Table 1 summarizes the basic features of the reviewed studies.

Table 1. Summary of the reviewed human–robot cooperation studies in agriculture.

Ref. Task Objective Type of Study Cooperation Strategy

[14] Spraying Vineyard Field trial User confirmation of machine vision
[15] Driving N/A Field trial EMG interface
[16] Driving N/A Field trial Teleoperation platform

[17–19] Target recognition Melon Lab experiments User confirmation of machine vision
[20] Harvesting Citrus Simulations Risk-averse collaboration
[21] Transportation N/A Field trial Activity recognition
[22] Human detection N/A Field trial Stereo vision
[23] Spraying Vineyard Field trial User confirmation of machine vision

[24,25] Harvesting Strawberry Simulation User confirmation of machine vision
[26] Harvesting N/A Lab experiments Layered task selection
[27] Spraying Canola Simulation and field trial Skills transfer interface
[28] Harvesting Tea Field trial Motion coordination
[29] N/A N/A Correlational study Acceptance issues
[30] N/A N/A Design principles Safety issues
[31] N/A N/A Design principles Safety and ergonomics issues
[32] Transportation Strawberry Field trial Safety issues

In conclusion, from the perspective of human–robot cooperation, it can be seen that
the research has focused on two main areas: firstly, for improving the sensory limitations
of current vision-based systems. In this context, the human operator complements the
automatic detection capabilities of the autonomously navigating robot, by performing an
additional verification and corrections of the robot perceptions; secondly, robotic support
of manual labor. Here, the robot acts as an assistant to alleviate the burden of arduous and
possibly hazardous tasks. In both of these areas, the level of autonomy of the robot and
the division of labor between the human and the robot is an open question. This balance
is dependent upon the nature of the task at hand, since the effectiveness, efficiency, and
accuracy of the robot varies for each function. Additionally, issues that are currently being
considered are the design of appropriate human–robot interfaces and ensuring the safety
of the human when he shares a common workspace with the robot.

3.2. UAV Robot Teams (Multi-UAV)

While UAVs have been used in various tasks in agriculture such as remote sensing
(e.g., [33,34]), mapping (e.g., [35]), monitoring (e.g., [36]), and pest control (e.g., [37]), using
a single UAV for these tasks presents certain limitations, most prominently time efficiency
and battery limitations [38]. First, the time required for a single vehicle to cover a large area
can be long. Second, because of the increased task duration and the workload, the energy
requirements can force the UAV to cover only a small area between frequent recharges. A
solution is to use a team of cooperating UAVs so that the task is divided between different
UAVs, which can coordinate their movements by partitioning the area and therefore the
workload. Such an approach certainly reduces the task duration but it can also reduce the
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energy consumption at the individual UAV level. Because of the nature of the agricultural
work that can be assigned to UAVs, the research in this area is focused on formation
control and area coverage algorithms. Even though numerous such algorithms have been
developed in the past for a variety of applications, in this section, the focus is specifically on
agricultural applications. A recent detailed historical survey of the research in unmanned
aerial vehicles in agriculture can be found in [39]. Furthermore, a formal description of
managing a group of heterogeneous UAVs was proposed in [40], where parameters such
as the field, various facilities, available resources, and constraints were considered.

In 2008, a multi-UAV system for water management and irrigation control was pre-
sented [41]. The system is viewed as a camera array with image reconstruction (stitching),
and the bands of the images that are collected can be reconfigured depending on the
mission. To ensure that the maximum number of images is acquired simultaneously, the
system employs formation control where the UAVs are aligned horizontally with a certain
distance in between. The paths are precomputed based on mission parameters.

The Swarm Robotics for Agricultural Applications (SAGA) project aims at employing
cooperating UAVs for precision farming. In [42], a simulation of the collective behavior of
a UAV team for weed monitoring and mapping was presented. The system implements
a stochastic coverage and mapping that includes collision avoidance among the aerial
vehicles and onboard vision. Further simulation studies on using UAV robot swarms for
weed control and mapping were presented in [43]. The monitoring strategy adopted was
first to divide the field in cells and assign to each agent a random-walk-based path. The
individual agent then decides to move to neighboring cells according to the probability
governed by a Gaussian distribution. On the other hand, the Robot Fleets for Highly
Effective Agriculture and Forestry Management (RHEA) project aimed at coordinating
aerial and ground vehicles in precision agriculture tasks. Specifically, in [44,45], the control
structure of the aerial team, consisting of two hex-rotors and tasked with taking high
resolution pictures for pest control, was described.

Recall that in [38], the design of a system to perform inspections for precision agricul-
ture by controlling a single UAV or by coordinating multiple UAVs was presented. The
system is based on the idea of a control station for on-the-fly mission planning. A hetero-
geneous embedded framework for small UAVs was also proposed. The work described
in [46] involved simulation studies and experiments using four quadrotor aerial vehicles
to evaluate a control algorithm for swarm control of agricultural UAV in pest and disease
detection. The approach followed in that paper was to implement control in two layers:
the first layer was teleoperation where a human operator set the velocity control and the
second layer dealt with velocity and formation control as well as collision avoidance. The
work in [47] dealt with a surveying task where the UAV team was controlled by a system
responsible for connecting the UAVs to act as a swarm, produce flight plans, and respond
to disruptive circumstances. Initially, the system divides the survey area in squares, whose
size varies according to the UAV’s on-board camera characteristics. Each UAV tries to
find unvisited and unplanned squares and plans routes depending on both how long a
square has remained without supervision and the distance of the UAV to that square. The
sub-tasks selected by the UAVs can be exchanged dynamically depending on the predicted
sub-task completion times communicated between the agents. A remote sensing task with
a self-organizing multi-UAV team capturing georeferenced pictures was presented in [48].
A central controller divided the global task (i.e., the farm area) into sub-tasks and assigned
the sub-tasks to the UAVs, based on an extension of the alternate-offers protocol. The
UAVs then computed their paths. The proposed approach was validated through field
experiments. Similarly, [49] proposed a task allocation and coordination strategy based on
a space-based middleware. First, an area decomposition algorithm partitioned the search
space so that tasks were dynamically allocated to the UAVs aiming at minimal spatial
interference between the UAVs. Second, the task selection was improved by using a model
of robot capabilities to extend the space-based middleware. The approach was tested on a
weed control task. Another study on a remote sensing task in [50] compared four configu-
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rations of agricultural UAVs, namely autonomous versus teleoperated single and multiple
UAV teams. This was essentially an area coverage task. To evaluate the performance of
the system, total time, setup time, flight time, battery consumption, inaccuracy of land,
haptic control effort, and coverage ratio were used as metrics. Experimental results showed
that using the autonomous swarm control algorithm [51] improved the efficiency of the
agricultural task.

Another path planning technique for UAV teams was proposed in [52]. In particular,
the authors proposed a technique where coordinate transformations between virtual and
actual workspaces were performed in order to focus on regions of interest, with conven-
tional path planning algorithms applied to each region. The methods were demonstrated
in real-world experiments using 3 UAVs in a surveying task. Table 2 summarizes the basic
features of the reviewed studies.

Table 2. Summary of the reviewed multi-UAV cooperation studies in agriculture.

Ref. Task Objective Type of Study Robot Team Cooperation Strategy

[40] N/A N/A Formal description Variable number of
UAVs N/A

[41] Irrigation
control N/A Field tests Variable number of

UAVs Coverage control

[42] Weed mapping N/A Simulation Variable number of
UAVs Coverage control

[43] Field
monitoring N/A Simulation Variable number of

UAVs Individual random walk

[44,45] Pest control Maize Architecture design N/A Central robot management system

[46] Disease
detection N/A Simulation Four UAVs Formation control

[47] Surveying N/A Simulation and field
tests Up to 10 UAVs Distributed mission planning

[48] Mapping Vineyard Field tests Three UAVs Centralized path planning
[49] Weed control N/A Simulation Three UAVs Centralized area decomposition
[50] N/A N/A Field tests Three UAVs Formation control

[51] Remote
sensing N/A Simulation Four UAVs Formation control

[52] Crop health
surveying N/A Simulation and field

tests Three UAVs Centralized path planning

In conclusion, the type of cooperation between artificial systems depends on the
characteristics of the cooperating systems. Unmanned aerial vehicles are not normally
tasked with physically acting on a field, such as performing seeding or harvesting. In most
cases, UAVs are typically equipped with a variety of cameras and sensors and are used for
monitoring, pest detection, and mapping. The use of multiple UAVs aims at achieving more
rapid field coverage compared to employing a single UAV, and cooperative algorithms
aim at improving the efficiency of coverage. In addition, by reducing the task duration,
battery limitations of aerial vehicles can be remedied. Consequently, research in this field
has mainly focused on path planning and coordination and collision avoidance algorithms
which take into account the spatial arrangement and the battery limitations of UAVs. As
more technological tools become available, future research will focus on extending the
utility of UAVs by improving their perception capabilities and battery autonomy as well as
enhancing manipulation skills. Figure 2 shows examples of multi-UAV robot teams.
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3.3. UGV Robot Teams (Multi-UGV)

An important consideration in using multiple robots in farming operations is to
maximize the efficiency and therefore the operational costs. This is achieved by effective
task planning and path optimization. In [53], the effect of employing a controlled traffic
strategy for a pair of agricultural robots compared to uncontrolled traffic was investigated.
The simulation study assumed that one robot was an application unit while the other was a
refilling unit. In various scenarios and field traffic patterns, the results showed an efficiency
improvement in terms of total distance travelled when traffic control was adopted.

One of the early works in multi-robot control in agricultural robotics was presented
in [54]. In that work, two algorithms for the control of two master-slave agricultural robots,
namely the GOTO algorithm and a FOLLOW algorithm, were introduced. In the proposed
architecture, the master is making decisions and sends commands to the slave vehicle,
while the slave vehicle follows the master vehicle and broadcasts its status. Another
leader–follower system for agricultural applications was demonstrated in simulation
and field tests in [55,56]. The robot tractors in this system can work independently, and
work cooperatively in the sense that they must keep a certain spatial arrangement during
operation. Efficiency improvements were shown when the robots coordinated in either
a formation maintenance strategy or a skipping path turn method. Each of the proposed
algorithms is suitable for different field operations. In another study [57], the authors
discussed a complete farming system which comprised multiple tractors coordinated by a
robot management system and central monitoring.

A large part of the work carried out regarding cooperative UGVs in agriculture has
been carried out using simulations in order to establish appropriate path planning algo-
rithms. For example, in [58], a simulation of cooperative citrus harvesting was presented.
The focus of that study was the demonstration of both a hierarchical task assignment and a
trajectory planning algorithm. In the proposed planning framework, there were two main
optimization iterations: the cooperative level for formation planning and the individual
level for trajectory planning. A leader–follower structure was adopted for the group of
agricultural robots. When a configuration trigger event was detected, a wavefront path
planning algorithm is used to find an obstacle-free corridor by the leader. The leader then
determines the optimal trajectory information and sends it to the followers who, in turn,
determine their own local optimal trajectory. The simulation results indicated that the
proposed approach is not computationally intensive and can produce optimal paths fast,
even though the complex dynamics of the robots are included in the trajectory calculations.
The framework is partly decentralized in the sense that some of the computational tasks are
decentralized while others are not. The route planner for herbicide applications proposed
in [59] considers various criteria in determining the robot teams’ routes, including the
distance to be travelled, herbicide tank capacity, dynamic characteristics of the hetero-
geneous robots, etc. A simulation study aimed at studying the planner under different
optimization targets (e.g., time to completion) as well as under different conditions (e.g.,
number of vehicles).

The “Mobile Agricultural Robot Swarms” (MARS) project [60] aimed at employing
cooperating small-sized UGVs for precision farming. The work presented in [60] demon-
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strated a system architecture where a centralized controller (OptiVisor) coordinated and
supervised the motion of a team of low-level intelligence robot team in a field seeding task.
A decentralized swarm control system for various farming operations such as ploughing,
seeding, watering, etc. was proposed in [61]. The experiments were conducted in a land
area replicating a farm using miniature prototype robots equipped with tools to perform
farming operations. The work presented in [62] dealt with a spraying task by a team of
robots using local information only. Simulations were utilized to demonstrate the proposed
strategy’s capacity to perform task allocation. The authors also explored the multi-robot
ploughing task in [63]. Also focusing on spraying tasks, specifically for vineyards, the work
described in [64] aimed at utilizing at least two robots working on either side of a vine
row in order to improve accuracy. For this, the authors employed Ultra-Wide Band (UWB)
sensors to achieve relative localization and synchronize the trajectories of the two robots in
a leader–follower scheme.

A route planning algorithm for efficient field coverage was proposed in [65]. The
objective of this work was to replace multiple large agricultural machinery with smaller
autonomous robots in order to minimize soil compaction. The route planning algorithm
was designed to produce efficient field coverage for finding routes with minimal costs.
The framework included a mission control center to allocate sub-tasks to robot teams, to
coordinate their movements, and to allow them to communicate with one another. In a
simulation study [66], the authors considered teams of heterogeneous robots (harvesting
and transport robots) deployed in grapevines and modeled their behavior in order to
investigate the effect of team size in both harvesting and processing times.

The simulation environment named “Simulation Environment for Precision Agricul-
ture Tasks using Robot Fleets” (SEARFS) presented in [67] allows for the investigation of
multi-robot teams in precision agriculture and more specifically in a weed management
task. It is a general-purpose computational tool that can model a 3D virtual agricultural en-
vironment and simulate the behavior of fleets of autonomous agricultural robots. The user
is allowed to select the robots, their sensory and actuation characteristics, the type of field,
and determine the specific mission. The behavior of the robot fleet can then be studied.

The cooperative two-robot system for rice harvesting proposed in [68] employs
two head-feeding combines. To initialize the harvest, a human operator drives the com-
bines a few laps of crops first, in a spiral toward the center of the field. The combines
then begin harvesting autonomously according to target paths planned from the locus
of the combine while the operator was driving. The robots harvest in a spiral where
the second robot is located 1.2 m inward. Collision avoidance is achieved by inter-robot
communication of location.

A simulation of a precision agriculture scenario was presented in [69]. The scenario
explores the use of three types of robot for collecting information, sowing, and harvesting.
The work focuses on (a) modeling of the robots, which is based on the open-source packages
Gazebo and ROS, and (b) interaction between the robots, which is based on the smart
space combined with the blockchain platform for information (represented by fuzzy sets)
exchange between the robots.

In [70], a monitoring application for precision agriculture using heterogeneous ground
robots was presented. The approach followed was to use a weighted directed graph
to represent the robot team. The partitioning of the workspace took into account the
possible heterogeneous characteristics of the robots such as speed and processing power.
According to these characteristics, the robots were distributed on the virtual graph and
tasked to monitor a specific region. The potential of the method was demonstrated both by
simulations and by experiments on the field.

A collaborative fleet management system for coordinating the flow of operations in a
field was demonstrated in simulation and field experiments in [71]. The system supports
all the operating stages of a field crop and is based on a novel algorithm which assigns
strips of field to each robot, then dynamically updates the state of each strip.

Figure 3 shows examples of multi-UGV robot teams.
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Workspace partitioning for a multi-robot system operating in an orchard in a spraying
task was the subject of [72]. In this work, given a map induced from a UAV-acquired
image, a number of nodes for a Voronoi diagram were produced, where an orchard tree
was considered to be a node. The nodes were then clustered so that partitions were
computed through the Voronoi diagram. In this case, the robots were not cooperating
directly; instead, indirect cooperation arose by coordination of their independent actions.
Table 3 summarizes the basic features of the reviewed studies.

Table 3. Summary of the reviewed multi-UGV cooperation studies in agriculture.

Ref. Task Objective Type of Study Robot Team Cooperation Strategy

[53] N/A N/A Simulation An application unit and a
refilling unit Leader–follower

[54] N/A N/A Simulation A master and a slave vehicle Master–slave
[55,56] N/A N/A Field trials A master and a slave tractor Master–slave

[57]
Planting, seeding,
transplanting, and

harvesting
Rice Architecture

design

A robot for data acquisition
and two robot tractors for

farming operations

Central robot
management system

[58] Harvesting Citrus Simulation A virtual leader robot and
three follower robots

Formation selection or
individual trajectory

selection

[59] Herbicide application N/A Simulation Multiple
heterogeneous robots Route planning

[60] Seeding N/A Simulation and
field tests Variable number of robots Central robot

management system

[61]
Ploughing, irrigation,

seeding, and
harvesting

N/A Lab experiments Multiple
heterogeneous robots

Central robot
management system

[62,63] Spraying, ploughing N/A Simulation Variable number of robots Use of information
stored at checkpoints

[64] Spraying N/A Lab experiments A leader robot and a
follower robot Formation control

[65] N/A N/A Simulation Variable number of robots Central robot
management system

[66] Harvesting, transport Grapes Simulation One harvesting robot and
two transport robots

Central robot
management system

[67] Weed management N/A Simulation Variable number of robots Central robot
management system

[68] Harvesting Rice Field trials Two combine robots Leader–follower

[69] Harvesting N/A Simulation Variable number of
heterogeneous robots

Central robot
management system

[70] Monitoring N/A Simulation and
field trials Two robots Route planning

[71] Coordination N/A Simulation and
field trials Three robot tractors Central robot

management system

[72] Spraying N/A Simulation with
real data 2 to 10 robots Central robot

management system
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In conclusion, in contrast to UAV systems, UGVs are more suitable for agricultural
tasks traditionally demanding human intervention, such as sowing, weeding, spraying,
harvesting, etc. Research in this area has focused on improving the efficiency of the
aforementioned tasks by introducing multi-robot teams in the field. The introduction
of multiple robots in a given area, however, demands appropriate management of the
spatial allocation of robots, with several approaches proposed, some stemming from the
sub-field of swarm robotics. In the special case of heterogeneous robots assigned with
different operations, temporal task allocation is also required. A popular method in the
literature is the leader–follower approach, with inter-robot communications coordinating
motions based on progress status. More research is required to improve collaborative
tasks by ground robots, e.g., transfer of a load between a harvesting and a carrier robot or
individual robots harvesting a tree concurrently.

3.4. UGV and UAV Teams (UAV/UGV)

While the use of multiple UAVs has advantages such as large area coverage, speed
etc., they also have limitations including uncertainty in ground measurements and power
limitations. Typically, UAVs are equipped with long-range measuring equipment, such
as cameras, and are used in field monitoring tasks. In contrast, UGVs can be deployed in
the field to locate targets and either take short-range measurements or perform a physical
action. The combined use of UAV and UGV teams has also been proposed in order for the
robots to complement each other in agricultural tasks [73].

In [74], the team consisted of a UAV and a UGV for disease detection in a strawberry
field. The role of the UAV was to inspect the entire crop and to mark suspect regions. The
UGV then approached the marked regions to perform spectral analysis and collect samples.

The robot team presented in [75] consisted of a single UAV and a single UGV. The UGV
measured nitrogen in a field, and depending on these measurements, deployed the UAV
at selected locations. The UAV landed on the UGV once its mission was complete. This
approach has the advantage of limiting the operating time of the UAV, which is desirable
given the UAV’s limited battery life. The problem is then to minimize the time the UGV
needs to obtain soil samples and a path planning algorithm was proposed to this end. The
methodology was validated through simulation studies with real-world data.

A bioinspired path planning strategy for coordinating a hybrid (aerial and ground-
based) multi-robot team toward a target was presented in [76]. In this strategy, investigated
using simulation studies, the three=dimensional terrain was modeled as a neuron topologi-
cal map and a Dragonfly Algorithm (DA) optimized the movements of the robots. Although
this algorithm was not developed specifically for agriculture, the scenario can have ap-
plications in agricultural robot teams consisting of UAVs and UGVs. Other examples of
UAV/UGV coordination approaches can be found in [77–79].

As mentioned earlier, the RHEA project dealt with coordinating aerial and ground
robots in precision agriculture [80,81]. In [81], two sub-tasks of weed and pest control
missions were considered: (a) inspection missions carried out by the aerial team and (b)
treatment missions carried out by the ground robots. A Mission Manager was employed to
manage the collected data from the various units and centrally compute the trajectories
and actions of the robots. Furthermore, the ground robot plans were optimized based on
factors such as costs and time.

In [82,83], a UGV and UAV independently generated point clouds that represented
a map of a field using own on-board cameras. The proposed methodology aimed at
effectively merging the two individual maps, thus producing a more accurate map which
included the surface model as well as the vegetation index. Therefore, collaboration was
implicit and arose from the aggregate result of the individual measurements.

In [84,85], dual agricultural robot teams consisting of an aerial unit and a ground
unit were proposed, but no details on the implementation of the proposed cooperation
strategy were given. Similarly, the hardware design of a dual UAV/UGV robot system
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was proposed in [86]. The objective of the system was to collect images of a crop and then
process them using various vegetation indices in order to determine the crop status.

Another approach for robot team control was followed in another simulation study [87],
where the agricultural robot team consisted of three unmanned aerial vehicles and one
unmanned ground robot. Each robot was modeled as a finite state automaton and the entire
multi-robot system as a discrete event system. It featured a supervisory controller that en-
abled heterogeneous agricultural robots to perform field operations, avoid obstacles, follow
a defined formation, and follow a given path. Table 4 summarizes the basic characteristics
of the reviewed studies. Figure 4 shows examples of UAV/UGV robot teams.

Table 4. Summary of the reviewed UAV/UGV cooperation studies in agriculture.

Ref. Task Objective Type of Study Robot Team Cooperation Strategy

[74] Disease detection Strawberry Architecture design One UAV and one UGV UGV visiting locations
identified by the UAV

[75] Fertilization Not specified Simulation One UAV and one UGV UGV visiting locations
identified by the UAV

[80,81] Pest control Winter cereal Field trials Two six-rotor drones and
three tractors

UGVs visiting locations
identified by the UAVs

[82,83] Mapping Not specified Simulation with real data One UAV and one
simulated UGV Map data fusion

[84] Crop management Lettuce Architecture design One UAV and one UGV UGV visiting locations
identified by the UAV

[85] Inspection Not specified Architecture design One UAV and one UGV Transportation of UAV by
the UGV

[86] Crop status mapping Not specified Architecture design One UAV and one UGV Crop data fusion

[87] N/A N/A Simulation Three UAVs and
one UGV

Leader-follower
formation control
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In summary, hybrid robot teams comprised of UAVs and UGVs engaged in agricultural
work are found in the literature, exploiting their relative merits. In particular, the aerial
vehicle(s) first mark areas of interest and then the ground robot approaches the location
and performs the necessary operations. Another cooperation strategy between the UAV
and the UGV in the literature is that the UGVs can also serve as landing and charging
stations for the accompanying aerial vehicle.

3.5. Cooperative Manipulation (Manipulators)

The notion of cooperative operation in agricultural robots can also be extended from
cooperation between separate robotic platforms to cooperation between arms typically
mounted on the same robot. The main benefit of a multi-arm robotic system performing
an agricultural task is to improve efficiency and reduce the task duration. In addition,
the arms can be actively collaborating toward the same goal, e.g., both working together
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to harvest a single fruit, therefore attempting to solve problems such as occlusion. The
principles governing cooperative manipulation by robotic arms mounted on a single robot
platform can also be extended to cooperative manipulation by robotic arms mounted on
separate robotic platforms.

A multi-arm kiwi harvester was presented in [88]. The system was equipped with
four identical 3 Degrees-of-Freedom (DoF) arms with customized grippers. Although the
arms harvested the fruit independently, there was an overall task scheduler which, based
on the detected fruits, created fruit clusters, determined the harvesting order, and assigned
fruit clusters to each arm. Another multi-arm robot for melon harvesting was presented
in [89]. The proposed system consisted of four Cartesian manipulators which reached
down, picked melons, and placed them on lateral conveyors. The assignment of melons to
each arm was considered to be an interval graph coloring problem, with a greedy search
algorithm that calculated an optimal solution for the harvest order. The controller took
into account the kinematic conditions that governed the capabilities of each arm and the
hardware design was oriented toward improving the harvest ratio. A dual-arm strawberry
harvesting robot was described in [90]. Two single-rail 5 DoF manipulators were controlled
by a collision avoidance and harvesting order planner based on the location of detected
strawberries. The authors reported reduced harvesting times with the dual-arm robot
compared to harvesting with a single manipulator.

Cooperative manipulation in an apple orchard was demonstrated in [91]. The authors
employed a graph-based method to guide two 6 DoF arms. Each arm was assigned a
different role; the grasping arm was designated to pick the apple and the searching arm
was designated to locate apples that were hidden from the point of view of the grasping
arm. Both arms were equipped with depth cameras. Location information was encoded
as a graph whose nodes could be used to calculate appropriate paths. The study reported
that the method worked reasonably well in simulation as well as in experimental studies.
Apple harvesting using dual cooperative manipulators was also proposed in [92]. In this
case, simulation studies were carried out where RGB cameras, located on the manipulators’
end effectors, were assumed to accurately detect and locate apples on randomly generated
virtual trees. The two manipulators cooperated since one served as the searching arm
which identified the other’s (grasping arm’s) reference points and helped determine clear
paths to the detected fruit.

The dual-arm configuration proposed in [93] for aubergine harvesting assumed three
modes of operation: (1) a single arm picking a single aubergine, (2) two arms picking
fruits independently, and (3) arms working cooperatively to pick a single aubergine. In
the second mode, a planning algorithm was developed for task scheduling and collision
avoidance. The cooperative mode was employed when there was limited visibility to a fruit
and so, one arm was tasked with removing any occlusions while the other arm was tasked
with grasping. The performance of the system was evaluated in laboratory experiments.

In [94], a pair of collaborating manipulators were evaluated in an apple harvesting
task. The first manipulator was equipped with an 8-DoF manipulator and was tasked with
picking apples, while the second one was a catching manipulator with two links which
could reach any drop position in the picking manipulator’s workspace. Two strategies of
fruit harvesting were tested in studies with a replica apple tree, in order to determine the
most efficient method in terms of average picking time. However, additional tests in the
field demonstrated the need for additional considerations in the picking strategies in order
to limit damage to the harvested fruit.

A robot for harvesting greenhouse tomatoes was described in [95]. Two mirrored
3-DoF arms in this dual-arm system had different end-effectors: one arm was fitted with a
cutter and the other one was fitted with a suction cup. A single stereo camera mounted
at the top of the robot captured images that were processed by a computer responsible
for tomato detection and performed a 3D world reconstruction, after which the arm with
the vacuum end effector grasped the fruit while the other arm detached the fruit. A
planting and watering dual-arm robot was presented in [96]. The prototype robot was
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equipped with two Prismatic-Revolute (PR) arms which were tasked with digging, seeding,
and covering the soil. Then, there was a separate watering module which was activated
depending on the readings of a soil moisture sensor. Table 5 summarizes the basic features
of the reviewed studies.

Table 5. Summary of the examined cooperative manipulation studies in agriculture.

Ref. Task Objective Type of Study Mode of Operation Manipulators

[88] Harvesting Kiwi Field trials Arm coordination Four 3-DoF arms
[89] Harvesting Mellon Simulation Arm coordination Variable number of 3-DoF arms
[90] Harvesting Strawberry Field trials Arm coordination Two single-rail 5-DoF arms

[91] Harvesting Apple Simulation and
lab experiments Arm collaboration Two 6-DoF arms

[92] Harvesting Apple Simulation Arm collaboration Two 6-DoF arms

[93] Harvesting Aubergine Lab experiments Arm collaboration
and coordination Two 6-DoF arms

[94] Harvesting Apple Lab experiments Arm collaboration An 8-DOF arm and a 2-DoF arm
[95] Harvesting Tomato Field experiments Arm collaboration Two mirrored 3-DoF arms
[96] Planting and watering N/A Field experiments Arm coordination Two 2-DoF arms

In conclusion, cooperative manipulation for agricultural operations is generally ap-
plied by robotic manipulators mounted on the same vehicle in order to collaborative com-
plete a task, mainly harvesting. Although there are several agricultural robots equipped
with more than one manipulator, in most cases the robotic arms operate independently
with some planning algorithm coordinating motions for task assignment and collision
avoidance. Few studies examine actual cooperative manipulation tasks, such as two robotic
arms cooperatively picking an individual fruit. These can be especially advantageous in
cases where view of fruits is limited due to occlusion or when cutting and grasping of fruit
may require two hands. For instance, recently, the European project BACCHUS [97] consid-
ered, in a cognitive mechatronics context, the development of a bi-manual robotic platform
for grape harvest; detailed application results are expected in the future. Nevertheless, to
the authors’ knowledge, applications where cooperative manipulation must be performed
by arms mounted on different mobile platforms are yet to appear in agricultural robotics,
and this is another future direction for research. Such a system would render the robot
team more flexible, as one of the platforms could be attending to other field work and assist
the other platform only when needed. This would improve the efficiency of the work and
would reduce the need for additional task-specific machines, reducing operational costs as
a result. The increased complexity and sophistication of such a system could potentially be
compensated to some degree by the aforementioned flexibility it would provide.

Figure 5 shows systems with cooperative manipulators.
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3.6. Trends

With the 77 articles studied in this review, trends were identified in the field of co-
operative agricultural robotics. More specifically, the distribution per publication type
(i.e., conferences, journals, theses, and books) is shown in the pie chart in Figure 6, which
shows that the 77 articles were fairly evenly distributed mainly between conference pub-
lications (33) and journal publications (42); in addition, one thesis and one book have
been published.
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The pie chart in Figure 7 shows the distribution of the 77 articles in the assumed
five sections, namely (a) human–robot, (b) multi-UAV, (c) multi-UGV, (d) UAV/UGV, and
(e) manipulators.
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The bar chart in Figure 8 displays the distribution of the 77 articles in various geo-
graphical regions including North America, Asia, Europe, and elsewhere, such that, on
the bar of a region, the distribution of different topics is also indicated by different colors.
Furthermore, Figure 9 details the distribution of the 77 articles in different countries; again,
on the bar of a country, the distribution of different topics is indicated by different colors.
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Finally, the bar chart in Figure 10 displays the distribution of the 77 articles per year
from the year 2003 to the year 2021, where, on the bar of a year, the distribution to different
topics is indicated by a different color. An abrupt increase is obvious in Figure 10 in the
year 2016. More specifically, since 2016, there has been a sustained increase (tripling or
more) of the annual publications compared to the previous years, before 2016. The reason
for the aforementioned abrupt increase is unknown. However, for the current year (2021),
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based on evidence, it is reasonable to assume that the aforementioned trend is sustainable
because 6 publications have already been reported up to May. In the aforementioned sense,
the recent COVID-19 pandemic does not seem to have affected interest in this technology.
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4. Discussion and Conclusions

This paper reviewed fifteen years of work on cooperative robotics in agriculture
including human–robot and robot–robot cooperation. Five different topics were identified,
namely (a) human–robot cooperation (human–robot), (b) cooperative UAVs (multi–UAV),
(c) cooperative UGVs (multi–UGV), (d) hybrid teams of UAVs and UGVs (UAV/UGV),
and (e) cooperative manipulation by multi-arm systems (manipulators).

The compiled evidence from the literature (Figures 6–9) suggests that there is an
emerging global interest in cooperative robotics in agriculture. In conclusion, Figure 10
confirms that the interest in the area has clearly increased over the last 15 years.

There are a number of important reasons for considering cooperative robotics in
agriculture. One reason is food production for an increasingly vast human population,
especially under seasonal human labor shortages, e.g., during harvest. Another reason
is controllably minimal environmental pollution pursued by the minimization of human
involvement during food production. Yet another reason is sustainable food production in
the event of natural disasters, including climate changes as well as pandemics such as the
recent COVID-19 pandemic.

The technology of interest here, namely “collaborative robotics in agriculture”, was de-
scribed as (a) an “Agriculture 4.0” technology, and (b) a precursor to “Agriculture 5.0” tech-
nology; the latter regards an integration of humans with robots in agricultural applications.

In the aforementioned context, a significant technological challenge remains, which is
the development of models to effectively drive a robot during its interaction with another
robot and/or a human. Note that a robot in agriculture has been described as a Cyber-
Physical System (CPS) [7]. In the latter context, the “Lattice Computing (LC) information
processing paradigm” has been proposed as a promising mathematical domain for rigorous
modeling CPSs due to LC’s capacity to accommodate rigorously both numerical data
(regarding the “physical” components of a CPS) and non-numerical data (regarding the
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“cyber” components of a CPS) [98]. Moreover, the work in [7] considered the potential of
LC in agricultural applications. Future work remains to demonstrate it further [99].

Based on the reviewed work, a number of research areas in cooperative agricultural
robotics are still open to further development in order to improve the current systems, both
in terms of usefulness as well as reliability, thus reaching the stage of commercial availability
in the near future. In terms of human–robot collaborative teams, it is important to research
appropriate interfaces so that effective collaborative control is achieved, especially by field
workers with minimal technological training. In addition, human–robot coordination is still
a very promising research area that will provide robots with a better perception of human
actions and intentions, and therefore greatly improve coordination issues. On the other
hand, monitoring tasks require the deployment of large numbers of cooperating aerial
and ground vehicles. Despite the increasing availability of affordable small-sized robotic
platforms, it appears that the power requirements of such robots are restricting the number
of tasks they are able to perform, and, as a result, they are limited to short inspection and
mapping missions. Finally, a promising research field is the cooperative manipulation of
agricultural products, as applied in harvesting and transportation operations. In addition
to being indispensable in some tasks, for instance occlusion removal or handling, the use
of multiple arms in a cooperative manner could mitigate limitations of other underlying
technologies such as vision.

Figure 11 shows the SWOT analysis of cooperative approaches in agricultural robotics.
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Additional research, in the context of this work, regarded the engagement of collabo-
rative robots for livestock handling. It turned out that only a few publications exist in the
literature typically involving single robots. We believe that there is a promising potential
in using teams of collaborative robots for livestock handling.
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