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Abstract: In a nested row–column design (NRC), the experimental units in each of n blocks are
grouped into n1 rows and n2 columns. Due to its structure, this experimental design allows full
control of the experimental material and a relatively simple feedback loop within the “statistical
triangle”. By applying such designs in agricultural experiments, we provide an insurance policy
against future unexpected problems. Until now, the cost of this policy has been a complex statistical
analysis of experimental data. This paper proposes a new “direct” approach to ANOVA based on
the latest literature on the subject. The paper provides the theoretical foundations of this approach,
indicates the possibility of applying it to factorial and near-factorial experiments, and supplements
the theory with a familiar letter-based representation of all-pairwise comparisons, which has so far
been lacking in the literature. The methodology is illustrated by the analysis of a field experiment
carried out to improve the use of fungicides against late blight in tomato processing. The presented
analytical tools are supplemented with code in R.

Keywords: experimental design; randomization; blocking; nested row–column design; analysis of
variance—direct approach; letter-based representation

1. Introduction

Although almost 100 years have passed since Fisher published the basic principles
of experimental planning, it remains one of the most important problems faced by bi-
ologists and statisticians [1–3]. Only proper planning and adequate analysis of experi-
mental data can be a guarantee of success—a guarantee that the expenditure incurred
will enable the formulation of correct and satisfactory conclusions regarding the research
problems addressed.

In agricultural comparative experiments we conventionally follow the general theory
of scientific research, the heart of which is the “statistical triangle” described by Hinkel-
mann and Kempthorne [4] and extended by Casler [5]. The starting point in conducting
experiments is to pose questions and formulate hypotheses, which should be transcribed to
models based on a specific topic (e.g., tomatoes) and then translated into a statistical model
and developed in conjunction with statistical design (see Figure 1). The data obtained
in the experiment, after being subjected to an analysis determined by the researcher’s
previous assumptions, constitute a basis for formulating conclusions regarding the research
problems addressed, usually to determine the influence of the studied treatments on the
observed variable [6]. At this point, when the process seems complete, a feedback loop
should appear, as a good experiment usually leads to more questions and hypotheses. The
acquired knowledge should be used to answer new biological and statistical questions,
which will increase the effectiveness of the experiments [5].

One of the prerequisites for success is to incorporate the structure of the experimental
material into the experimental design so that the results are not distorted, for example by
soil variability. Even seemingly homogeneous fields can give heterogeneous answers [7].
In the literature, therefore, it is proposed to use bidirectional blocking in field experiments
as an insurance policy, especially if the statistical analysis is to be based on the analysis of
variance. In this paper, it is proposed to use nested row–column designs, which provide a
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powerful structural base for the two-dimensional control of experimental trends [8], and
also give the possibility of a relatively simple feedback loop (Figure 1). Experiments with
multiple blocking structures are usually carried out using a mixed-model specification,
which in the classical approach leads to the analysis of variance in the strata [8,9]. Unfortu-
nately, the inconvenience of inference (see Section 2) in this approach can demotivate the
use of safe design solutions. Motivated by the latest publications on the direct approach to
ANOVA [10–13], I suggest applying this modern approach to the analysis of experiments
laid out as NRC designs. The available literature on this topic requires the reader to have an
advanced mathematical apparatus. For that reason, this paper refers only to those elements
of direct ANOVA that are relevant from the practical point of view.

The aim of the paper is to present and illustrate a complete set of analytical tools
that make it possible to carry out direct inference in a nested row–column design under
a randomization-derived mixed model of observations. Moreover, to the best of my
knowledge, for these designs, there is no package or statistical program that can run the
described procedure. For this reason, the article has been supplemented with R code and
procedures (Appendix A).

The paper is organized as follows. Section 2 describes three basic principles of an
insurance policy in agricultural experiments. Section 3 begins with introduction of the
NRC designs and presents the randomization-derived mixed model of observations, then
gives the theoretical background of the analysis under the direct approach. The section
ends by showing how to proceed with the analysis for the very common treatment factorial
experiments, and a novel letter-based procedure for all-pair comparisons is proposed. A
detailed analysis of a field experiment carried out to improve the use of fungicides against
late blight in tomato processing, using the proposed approach, is presented in Section 4.
The paper ends with a discussion in Section 5.

Figure 1. Casler’s [5] flow diagram of the logical steps in scientific experimentation, including a
feedback loop that allows for new scientific hypotheses and experimental design modifications to
future experiments. The three central boxes form the “statistical triangle” [4].

2. Insurance Policy in Agricultural Experiments

It should be remembered that statistical design consists of equal measure of treatment
design and experimental design. Treatment design is responsible for the arrangement of
treatments on experimental units, and sets up a theoretical plan by which the treatment
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levels are arranged in the experiment. The choice of a plan is related to the definition of the
experimental factors and control treatments as well as the technical possibilities related
to the methodology of conducting the research and the manner of observation and data
collection. The problem of choosing a plan for different types of experiments has been
discussed in numerous publications. For instance, some methods of designing factorial
experiments with a control treatment in a block design with nested rows and columns are
widely considered by Bailey and Łacka [14] and Bose and Mukerjee [15]. An example of this
type of experiments is also presented in Section 4. Note the different number of replicates
for the control compared to the rest of the treatments in the experiment considered there,
which is often found in theoretical plans of experiments with a control treatment and
multiple blocking structures [16].

Experimental design should be based on the principles of replication, randomization
and local control, i.e., blocking. When planning an experiment, all these principles must
be considered from the point of view of its purpose and the conditions under which the
experiment is to be carried out, due to their fundamental influence on the analysis of the
experimental data and further inference [9].

The principle of replication, i.e., the use of a treatment on several experimental units,
is commonly known. It is well known that replication provides the possibility of estimating
the experimental error affecting the observation. It is thanks to replication that we obtain
greater precision in the estimation of treatment effects or their comparisons. In general,
the standard error of the estimator of effects decreases with an increase in the number
of replications; however, the use of a large number of repetitions for each treatment
can make it difficult to ensure the homogeneity of the experimental material. This fact
should not always be viewed as a disadvantage, as such heterogeneity may reflect the
natural variability of the population that we infer from the experiment. Thus, replication
contributes to an increase in the representativeness of the experimental material.

In the accepted theory, blocking should be related to the earlier recognition of the
directions of variability of the material used in the experiment, and lead to a grouping of
the experimental units into a system of blocks such that the units inside the blocks are as
homogeneous as possible. Local control is commonly used for field trials and plant protec-
tion trials carried out under found conditions; however, as research has shown, it should
also be included in greenhouse experiments. Hartung et al. [17] indicate blocking as more
efficient in improving the precision of greenhouse experiments than the re-arrangement
of pots, and hence they recommend it for comparative greenhouse experiments. On the
other hand, Casler [5] points to the “dark side” of blocking, noting that block designs
in which blocks are linearly arranged without prior recognition of spatial variation can
seriously reduce the likelihood of success of the experiment. Taking into account the fact
that many experimental stations have visually homogeneous fields, the author suggests the
use of two-way blocking as a kind of insurance policy against erroneous blocking. It has
been proposed in the literature to use many different designs to control two sources of
external variation, such as Latin squares, Youden squares, generalized Youden designs, or
row–column designs. Unfortunately, most of these designs are characterized by several
important constraints: Youden squares and generalized Youden designs exist only for a
limited number of parameter combinations, hence their practical application is limited. On
the other hand, row–column designs can have row–column interaction problems when
multiple rows and columns are used. Moreover, neither of these designs are applicable to
the analysis of a series of experiments carried out, for example, in different locations. An
excellent answer to these constraints are nested row–column (NRC) designs, i.e., designs
in which in each of n blocks, n1n2 experimental units are grouped into n1 rows and n2
columns [8,12,18]. These experimental designs, which are a natural extension of the pre-
viously introduced row–column designs, enable not only full control of the experimental
material, but also a relatively simple feedback loop and the making of modifications within
the “statistical triangle” when the experimental setup turns out to be “overestimated” and
the block insurance policy is exaggerated or other unexpected problems arise in the course
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of the experiment. Moreover, as Chang and Notz [19] note, for a given number of exper-
imental units, NRC designs have fewer rows and columns per block. The row–column
interactions in the NRC designs are likely not as severe as in row–column designs. There-
fore, NRC designs are particularly useful for eliminating heterogenity in two directions
when there are row and column interactions.

In field experiments, it is worth taking into account the possibility of loss of some of
the biological material as a result of unforeseen weather conditions, such as flooding or
hail, which may destroy some plots or the entire experiment. If, as a result of such events,
only one block of research material is obtained, it will still be possible to analyze it in a
row–column design.

If the experimental material turns out to be homogeneous within a range of rows
or columns, ignoring the system of rows (columns) leaves the system of blocks and the
system of columns (rows), forming a nested block design or—in a very specific situation
for two-factorial experiments—a split-plot design [13].

Ignoring any two of the systems—blocks and rows or blocks and columns or rows
and columns—still leaves a proper block design. Of course, any decision to ignore the
previously considered blocking must have a biological and statistical basis [20].

Another insurance policy, no less important than blocking, is the two-level randomness
principle. The first level concerns sampling from a previously defined population so as to
ensure the representativeness of the sample. The second level concerns the arrangement
of treatments on experimental units. Thus, randomization is a way to eliminate the bias
of measurements performed due to systematic differences between experimental units.
Unbias is perhaps the most important goal of randomizing plots before assigning them
to treatments, ensuring that certain treatments are not continually favored or harmed by
random sources of variation in the experimental material and the environment. Moreover,
randomization introduces randomness into the existing variability of experimental units.
With randomization, a properly performed statistical analysis of the experimental results
becomes correct, assuming that in deriving this analysis, the randomization is fully taken
into account [21]. In the case of NRC designs, the randomization scheme is performed
by randomizing three times, first blocks, then rows within each block, and similarly for
columns. It consists of assigning rows and columns of the theoretical plan to empirical
blocks. The mixed observation model obtained in this way is presented in Section 3.

As for any policy, randomization comes at a cost. This cost is, on the one hand, the
time devoted to carrying out this mathematical process, and on the other, what is some-
times considered a complicated statistical analysis under a randomization-derived mixed
model [5,8,22]. According to the classical procedure, the analysis of variance (ANOVA)
under such a model is first performed in strata and then combines the information obtained
in them, as originally suggested by Yates [23,24] and thoroughly discussed by Kala [25].
ANOVA in a nested row–column design is related to four strata (apart from the grand
mean): the between-blocks stratum, the between-rows-within-blocks stratum, the between-
columns-within-blocks stratum, and the so-called bottom stratum or rows-by-columns
stratum. Four strata mean also four ANOVA tables and the need to combine the infor-
mation contained in them. Awareness of this may discourage researchers from planning
experiments with multiple blocking structures. These doubts are answered in a series
of publications on a new approach to the analysis of variance for experiments with an
orthogonal block structure (OBS) [10–13]. The authors indicate that for designs with an
OBS, the analysis of variance can be performed in a relatively simple way, directly and
not by combining results from analyses based on some stratum submodels. It is this ap-
proach, which makes the analysis simple and conclusions intuitive, that will be applied in
this paper.
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3. Materials and Methods
3.1. NRC Design

Consider an experiment carried out in a nested row–column design with v treatments
arranged in b blocks, each grouped perpendicularly, into r0 rows of c0 units and c0 columns
of r0 units, according to the scheme shown in Figure 2 [14,26].

The usual procedure of randomization [27] of blocks, as well as of rows and of columns
within the blocks, makes it possible to present the following derived mixed model:

y = X1τ + XBβ + XR(B)ρ + XC(B)γ + η+ e, (1)

where y = [y′1, y′2, ..., y′b]
′ is an n× 1 vector of yield data observed on n = br0c0 plots of

the experiment, yg = [y1g, y2g, ..., yn0g]′ representing the yields observed on n0 = r0c0

units (plots) of the block g (=1, 2, ..., b) of the experiment. Suppose also that each of
the data vectors {y1, y2, ..., yb} is ordered according to the design rows, and let Ix and
1x denote the unit matrix of order x and the column vector of x ones, respectively. In
the model (1), X1 = [X ′11 : X ′12 : · · · : X ′1b]

′, XB = Ib ⊗ 1n0 , XR(B) = Ib ⊗ Ir0 ⊗ 1c0 ,
XC(B) = Ib ⊗ 1r0 ⊗ Ic0 are the known design matrices for treatments, blocks, rows and
columns, τ = [τ1, τ2, ..., τv]′ represents the vector of fixed treatment effects, β, ρ, γ stand for
the random effects of block, row and column, respectively, while the n× 1 vectors η and e
stand for the unit error and technical error random variables, all of these random variables
being unobservable [12,28,29].

︸ ︷︷ ︸
b blocks r0rows

︸ ︷︷ ︸
c0 columns

Figure 2. Schematic diagram of a nested row–column design with b blocks (here b = 3), each grouped
perpendicularly into r0 rows of c0 units and c0 columns of r0 units.

Because all blocks are of equal size, since the rows of the design are of equal size and
its columns are also of equal size, not necessarily the same size as the rows, an experiment
in such a nested row–column design has, under the randomization-derived model (1), the
orthogonal block structure (OBS) property as defined by Houtman and Speed [30]. This
means that the considered model may be resolved into five simple stratum submodels,
in accordance with the stratification of the experimental units [12]. Using Nelder’s [27]
notation, this stratification (“block-structure”) can be represented by the relation

Units (plots)→ (Rows×Columns)→ Blocks→ Total exp. area

and the vector of observations may be written as

y = y1 + y2 + y3 + y4 + y5,

where

y1 = φ1y, y2 = φ2y, y3 = φ3y, y4 = φ4y, y5 = φ5y



Agronomy 2021, 11, 2406 6 of 17

and φ1 = In − c−1
0 XR(B)X

′
R(B) − r−1

0 XC(B)X
′
C(B) + n−1

0 XBX ′B, φ2 = c−1
0 XR(B)X

′
R(B) −

n−1
0 XBX ′B, φ3 = r−1

0 XC(B)X
′
C(B) − n−1

0 XBX ′B, φ4 = n−1
0 XBX ′B − n−11n1′n and φ5 =

n−11n1′n are symmetric, idempotent and pairwise orthogonal matrices, summing to the
identity matrix In.

Thus, under model (1) and using the above representation of y, the expectation vector
and covariance (dispersion) matrix of y can be written as

E(y) = φ1X1τ + φ2X1τ + φ3X1τ + φ4X1τ + φ5X1τ = X1τ, (2)

D(y) ≡ V = σ2
1 φ1 + σ2

2 φ2 + σ2
3 φ3 + σ2

4 φ4 + σ2
5 φ5, (3)

where the scalars σ2
1 , σ2

2 , σ2
3 , σ2

4 and σ2
5 represent the relevant unknown stratum variances [12,30].

3.2. ANOVA—Direct Approach

The classic approach to data analysis under the model (1) involves applying so-called
stratum analysis, which for NRC designs is related to four strata (apart from the grand
mean). In a series of four articles published in 2017–2020, the first two by Caliński and
Siatkowski [10,11] and the others by Caliński et al. [12,13], a different approach was
presented. It turns out that thanks to the OBS property, the analysis of variance can be
performed directly, not by combining results from analyses based on stratum submodels.
This approach is based on the decomposition of the data vector y into two uncorrelated
parts, as

y = PX1(V−1)y + (In − PX1(V−1))y (4)

using the V−1-orthogonal projector PX1(V−1) = X1(X ′1V−1X1)
−1X ′1V−1, where V−1 is the

inverse of the covariance matrix V given in (3) [31]. The roles of these two parts are as
follows: the first term provides the best linear unbiased estimator (BLUE) of X1τ in (2),
which can be expressed as

X̂1τ = PX1(V−1)y, (5)

and the second term can be seen as the residual vector, giving the residual sum of squares
in the form

||(In − PX1(V−1))y||
2
V−1 = y′V−1(In − PX1(V−1))y, (6)

with the residual degrees of freedom given by rank(V : X1) − rank(X1) = n − v. See
Rao [32] and Caliński et al. [12] for details. It is worth noting that when the projector
PX1(V−1) is used in the way described, the variance σ2

5 in the matrix V can be replaced by 1.
Therefore, consider the following hypothesis concerning the treatment’s main effects:

H0 : τ∗ = 0, (7)

where τ∗ = (Iv − n−11vr′)τ and r stands for the treatment replication vector in the whole
design. To verify this hypothesis—for the analysis of variance—usually the unknown
stratum variances in (3) have to be estimated. Because E{||φi(In − PX1(V−1))y||

2} = σ2
i d′i

where d′i = tr[φi(In − PX1(V−1))], it is suggested by many authors to use as estimators of

σ2
i the solutions of the equations

||φi(In − PX1(V−1))y||
2 = σ2

i d′i, (8)

for i = 1, 2, 3, 4 [11,30,33]. Caliński et al. [12] note that the component σ−2
5 φ5 in V−1 =

σ−2
1 φ1 + σ−2

2 φ2 + σ−2
3 φ3 + σ−2

4 φ4 + σ−2
5 φ5 seems to play no role in the formulae applicable
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in the considered analysis of experimental data. They propose a reformulation in the
methodology, which would simplify the analysis without causing any changes to its results,
obtained by replacing the matrix (3) with

V∗ = σ2
1 φ1 + σ2

2 φ2 + σ2
3 φ3 + σ2

4 (φ4 + φ5),

where φ4 + φ5 = n−1
0 XBX ′B = Ib ⊗ n−1

0 1n0 1′n0
. Furthermore, hence V−1

∗ is now obtainable
as V−1

∗ = σ−2
1 φ1 + σ−2

2 φ2 + σ−2
3 φ3 + σ−2

4 (φ4 + φ5). The relations between the matrices V
and V∗, and their inverses, can be written as

V = V∗ + (σ2
5 − σ2

4 )n
−11n1′n and V−1 = V−1

∗ + (σ−2
5 − σ−2

4 )n−11n1′n.

The authors also indicate that the BLUE of τ∗ can be written as

τ̂∗ = (Iv − n−11vr′)(X ′1V−1
∗ X1)

−1X ′1V−1
∗ y∗, (9)

where y∗ = (In − n−11n1′n)y. Now, assuming that y ∼ Nn(X1τ, V), with variances
estimated by solving Equation (8), verification of the hypothesis (7) will be based on the
formulae presented in Table 1, which correspond to the statistics

F̂ =
n− v
v− 1

ŜSV
n− v

=
ŜSV

v− 1
, (10)

where the estimated mean square has, under H0, an approximated χ2(v− 1, 0)/(v− 1)
distribution.

Table 1. Analysis of variance for an experiment in an NRC design.

Source of Degrees Sum of Mean
Variation of Freedom Squares Square

Treatments v− 1 ŜSV = τ̂′∗X
′
1V̂−1
∗ X1τ̂∗ M̂SV = ŜSV

(v−1)

Residuals n− v ŜSR = y′∗[V̂
−1
∗ − V̂−1

∗ X1(X ′1V̂−1
∗ X1)

−1X ′1V̂−1
∗ ]y∗= 1

= n− v

Total n− 1 ŜST = y′∗V̂
−1
∗ y∗ —

3.3. Hypothesis for a Set of Contrasts—Two Ways

Rejecting a general hypothesis (7) usually generates more questions and thus more
hypotheses. To begin with, consider one hypothesis concerning a set of contrasts (or a
single contrast) among treatment parameters

H0,L : U ′Lτ∗ = 0, where U ′L1v = 0. (11)

Caliński et al. [13] indicate that the BLUE of U ′Lτ∗ is of the form

U ′Lτ̂∗ = U ′Lτ̂ = U ′L(X ′1V−1
∗ X1)

−1X ′1V−1
∗ y∗. (12)

and the relevant sum of squares can then be obtained in the form

SS(UL) = τ̂′∗UL[U ′L(X ′1V−1
∗ X1)

−1UL]
−U ′Lτ̂∗, (13)

with the d.f. equal to rank(UL).
For example, if a factorial experiment is analyzed, say with two factors: F1 with F1

levels and F2 with F2 levels with a cross structure, then we will usually be interested in a
partition for ANOVA treatment sums of squares for the sum of squares for the factor F1,
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the sum of squares for the factor F2 and the sum of squares related to the interaction F1F2
such that the following relation holds:

SS(UF1) + SS(UF2) + SS(UF1F2) = SSV . (14)

In this case, we can use matrices U ′L for L ∈ {F1, F2, F1F2} of the form U ′F1
= (I f1 −

1
f1

1 f1 1′f1
)⊗ 1

f2
1 f2 1′f2

, U ′F2
= 1

f1
1 f1 1′f1

⊗ (I f2 −
1
f2

1 f2 1′f2
), U ′F1F2

= (I f1 −
1
f1

1 f1 1′f1
)⊗ (I f2 −

1
f2

1 f2 1′f2
). A similar partition of the treatment sum of squares for the near-factorial experi-

ment is shown in Section 4. As can be checked, it satisfies the condition U ′L(X ′1V−1
∗ X1)

−1UL∗

= 0 for L 6= L∗ necessary for the partition SSV , as in (14) [12].
Sometimes we will be interested in even more detailed conclusions. Currently, a letter-

based representation of all-pairwise comparisons is a universal complement of the ANOVA
and a standard in the presentation of results. For the presented analytical procedure, no
convenient solution to this issue has yet been presented. The answer to this problem
may be based on the analysis of all (v − 1)v/2 contrasts between pairs of treatments.
However, it should be remembered that this is not a set of orthogonal contrasts, therefore the
comparisons should not be treated as simultaneous. Letter representation is obtained using
the Piepho [34] algorithm and the multcompView package in R [35], as also suggested by
Lenth [36]. This package has been implemented for the analytical methodology presented
above. Based on all-pairwise significance statements (P values) for v treatments obtained
during the verification of the hypotheses (11) for all simple contrasts, a familiar letter
display was obtained, where as usual treatments that do not differ significantly share a
common letter. A detailed analytical procedure that enables the direct application of the
proposed methodology for any data set for an NRC design is given in Appendix A.4.

4. Application for a Near-Factorial Experiment
4.1. Experimental Setup

Ratajkiewicz et al. [37] analyzed a field experiment carried out in Poznań, Poland in
2011. Studies were conducted to improve the use of fungicides against potato late blight
(Phytophthora infestans (Mont.) De Bary) (PLB) in tomato processing. Based on the infes-
tation of the plants, a determination was made of the influence of the constant (300 L/ha,
SV300) and variable (PSV) spray volume and adjuvants when alternating azoxystrobin
and chlorothalonil for coarse spraying with the IDKT12003 twin-jet induction nozzle. The
variable spray volume (PSV) was calculated from the number of leaves per plant according
to the model presented in the paper [38]. In accordance with the methodology described in
the article, two fungicides were used in the study alternatively: azoxystrobin (methyl (E)-2-
[2-[6-(2-cyanophenoxy)pyrimidine-4-yl]oxyphenyl]-3- methoxyprop-2-enoate, Amistar 250
SC; Syngenta Ltd., Guildford, UK) at a dose of 125 g/ha (50% of the recommended dose)
or chlorothalonil (2,4,5,6-tetrachlorobenzene-1,3-dicarbonitrile, Gwarant 500 SC; Arysta
LifeScience S.A.S., Noguères, France) at a rate of 625 g/ha (50% of the recommended dose).
The fungicide treatment began with azoxystrobin. The first spraying was carried out five
and four days after the small pale green change characteristic of PLB was observed on the
first leaf.

One of two adjuvants, Slippa (Interagro Ltd., Great Notley, UK) containing poly(alky-
lene oxide)-modified heptamethyltrisiloxane (PMH) (655 g/L) or Torpedo II (De Sangosse
Ltd., Swaffham Bulbeck, UK) was added to the fungicide slurry. The last adjuvant com-
prises alkoxylated tallowamine 210 g/kg, alcohol alkoxylate 380 g/kg, natural fatty acids
75 g/kg and polyalkylene glycol 210 g/kg; it is therefore defined as a multi-component
adjuvant. Both substances were used at a concentration of 1 mL/L. The study considered
the case when no adjuvant was added to the herbicides. Furthermore, included is the
standard control treatment, i.e., no protective procedure, called (by Yates [1937]) a dummy
treatment, also known as “witness” (in French) [39].

Therefore, the experiment investigated v = 7 treatments: the control treatment and
6 experimental combinations of two spray systems (SV300 and PSV)–factor F1–and adjuvant
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additive (NO, MULTI or PMH)–factor F2. This type of arrangement gives a treatment
structure called a near-factorial experiment [14,15]. Numerous construction methods for
this type of experimental situation in the case of NRC designs are given by Bailey and
Łacka [14] and Bose and Mukerjee [15], and it is from the first of these papers from which
the plan for the distribution of treatments on experimental units comes—see Figure 3.

6 1 3 0 5 2
5 4 0 1 6 3
3 0 1 5 2 4
2 5 4 6 0 1
4 3 6 2 1 0
0 2 5 3 4 6

0 2 3 6 4 1
6 3 2 5 0 4
1 6 5 4 2 0
3 1 4 0 5 6
2 0 1 3 6 5
4 5 0 1 3 2

TREATMENT SV Adjuvant
T factor F1 factor F2

0 (control) – –
1 SV300 NO
2 SV300 MULTI
3 SV300 PMH
4 PSV NO
5 PSV MULTI
6 PSV PMH

Figure 3. Scheme of distribution of treatments 0–6 on experimental units of the NRC design with
b = 2 blocks. Each block has r0 = 6 rows and c0 = 6 columns. The number at the intersection of a
row and column indicates the treatment used in that plot. Treatment numbers are consistent with the
legend on the right side of the diagram.

4.2. Statistical Analysis and Results

Based on the infestation results obtained in 2011, data were generated (Table 2) and
analyzed according to the methodology described in Section 3.2 (see Appendix A). The
experimental field was divided into b = 2 blocks with c0 = r0 = 6 perpendicular rows and
columns in each. The individual plot observations obtained for the combinations of the
levels of factors F1 and F2 or the control treatment, taking into account their location in
the rows and columns of each block, are shown in Table 2. Analyzing this experiment, we
are interested in the verification of the general hypothesis (7) as well as determining the
effectiveness of the applied protective procedures (H0,C : U ′Cτ∗ = 0) and the significance
of the main effects of the levels of factor F1 (H0,F1 : U ′F1

τ∗ = 0), the main effects of the
levels of factor F2 (H0,F2 : U ′F2

τ∗ = 0), and the interaction effects of these two factors
(H0,F1F2 : U ′F1F2

τ∗ = 0). These questions will be answered by estimating and testing certain
sets of treatment parametric functions, which can be defined as follows: 0 0′6

06

(
I2 − 1

2 121′2

)
⊗ 1

3 131′3

τ = U ′F1
τ ≡ U ′F1

τ∗,

 0 0′6

06
1
2 121′2 ⊗

(
I3 − 1

3 131′3

)τ = U ′F2
τ ≡ U ′F2

τ∗,

 0 0′6

06

(
I2 − 1

2 121′2

)
⊗
(

I3 − 1
3 131′3

)τ = U ′F1F2
τ ≡ U ′F1F2

τ∗,

√
10
6
[
6 −1′6

]
τ = U ′Cτ ≡ U ′Cτ∗,

All these linear functions can be seen as contrasts of treatment parameters. For each
of these four sets of contrasts, say UL, the BLUE is obtainable according to Formula (12),
and the relevant sum of squares, SS(UL), follows from (13). It can also be checked that

SS(UC) + SS(UF1) + SS(UF2) + SS(UF1F2) = SSV , (15)
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Now one can proceed to the general ANOVA (see Appendices A.1–A.3) and its
partition into four components related to the sets of contrasts as in Table 3.

Table 2. Experimental data for a field experiment concerning the infestation of tomato plants by
potato late blight (Phytophthora infestans (Mont.) De Bary). The experiment was carried out according
to the scheme in Figure 3.

T Block RowNR Col.NR Obs. T Block RowNR Col.NR Obs.

6 1 1 1 71.960 0 2 7 7 91.812
1 1 1 2 77.501 2 2 7 8 73.984
3 1 1 3 67.575 3 2 7 9 54.820
0 1 1 4 94.480 6 2 7 10 61.700
5 1 1 5 75.321 4 2 7 11 70.860
2 1 1 6 86.494 1 2 7 12 71.447
5 1 2 1 71.806 6 2 8 7 65.981
4 1 2 2 74.680 3 2 8 8 49.203
0 1 2 3 95.943 2 2 8 9 67.858
1 1 2 4 67.492 5 2 8 10 60.500
6 1 2 5 60.864 0 2 8 11 91.317
3 1 2 6 77.532 4 2 8 12 73.392
3 1 3 1 69.535 1 2 9 7 73.379
0 1 3 2 91.750 6 2 9 8 59.850
1 1 3 3 73.470 5 2 9 9 59.127
5 1 3 4 68.000 4 2 9 10 62.750
2 1 3 5 78.925 2 2 9 11 70.702
4 1 3 6 78.283 0 2 9 12 91.160
2 1 4 1 88.079 3 2 10 7 65.208
5 1 4 2 65.770 1 2 10 8 67.356
4 1 4 3 78.756 4 2 10 9 57.450
6 1 4 4 70.900 0 2 10 10 90.479
0 1 4 5 94.250 5 2 10 11 59.904
1 1 4 6 83.996 6 2 10 12 62.756
4 1 5 1 86.975 2 2 11 7 76.406
3 1 5 2 65.698 0 2 11 8 87.267
6 1 5 3 69.600 1 2 11 9 61.321
2 1 5 4 74.124 3 2 11 10 64.752
1 1 5 5 75.596 6 2 11 11 58.880
0 1 5 6 100.000 5 2 11 12 62.284
0 1 6 1 100.000 4 2 12 7 62.861
2 1 6 2 78.192 5 2 12 8 58.007
5 1 6 3 64.362 0 2 12 9 89.048
3 1 6 4 59.416 1 2 12 10 65.904
4 1 6 5 66.512 3 2 12 11 63.815
6 1 6 6 82.500 2 2 12 12 78.917

Table 3. Analysis of variance for the sets of contrasts.

Source Degrees of Freedom Sum of Squares Mean Square F̂ p Value

Treatments 6 450.024 75.004 75.004 < 0.0001
F1 1 14.3922 14.3922 14.3922 0.00015
F2 2 35.9117 17.9558 17.9558 <0.0001

F1F2 2 35.3518 17.6759 17.6759 <0.0001
C 1 364.368 364.368 364.368 <0.0001

Residuals 65 65 1

Total 71 515.0241

The critical values, at the 52.099 for 6 d.f., 3.841 for 1 d.f. and 2.996 for 2 d.f. The results
presented in Table 3 were obtained with the use of the empirical estimates τ̃ and τ̃∗, i.e.,
based on σ̂2

1 = 15.726, σ̂2
2 = 9.487, σ̂2

3 = 93.042 and σ̂2
4 = 1282.51. The elements of vectors τ̃

and τ̃∗ are presented in Table 4.
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The estimates σ̂2
i for i = 1, ..., 4 were obtained by solving Equation (8) using the

iterative method (after five iteration steps, out of 20 performed, convergence was obtained)
with the matrix V−1

∗ as suggested in Section 3.2.
The analysis of variance presented in Table 3 enabled rejection of the general hy-

pothesis (7). The hypotheses concerning the factor F1, the factor F2 and their interaction
were also rejected. The verification of the hypothesis H0,C enabled determination of the
effectiveness of the applied protective procedures. In this situation, the inference should be
supplemented with detailed results, that is, a letter-based representation of all-pairwise
comparisons (see Section 3.3). The contrasts used were normalized with respect to the
treatment replication matrix, and the results are presented in Table 4.

Table 4. Empirical estimates of τ and τ∗. Treatments that do not differ significantly share a com-
mon letter.

TREATMENT SV Adjuvant Treatment Effect Main Effect
T Factor F1 Factor F2 τ̃ τ̃∗

0 (control) – – 93.125 (19.948) a
1 SV300 NO 72.328 (−0.850) c
2 SV300 MULTI 77.398 (4.221) b
3 SV300 PMH 63.682 (−9.496) d
4 PSV NO 70.527 (−2.651) c
5 PSV MULTI 65.201 (−7.977) d
6 PSV PMH 65.993 (−7.185) d

5. Discussion and Conclusions

The high costs of conducting experiments should encourage the search for solutions
enabling the effort put in to lead to success, understood by many researchers as the detec-
tion of significant differences between the studied treatments. When planning experiments,
we make a number of decisions to solve the problems of which we are aware and those
that we can only expect. These decisions will always influence the method of analyzing the
results of the experiment. This paper recalls the principles that should be followed when
planning an experiment. It is proposed to use a nested row–column design, which has wide
practical application in agricultural experiments, and may be treated as an insurance policy
against missed blocking. Thanks to the new, direct approach to the analysis of variance,
inference for this type of experiment becomes simple and intuitive.

The methodology used here results from the use in the estimation and hypotheses
testing procedures, of dispersion matrix not in the form

V = σ2
1 [φ1 + (σ2

2 /σ2
1 )φ2 + (σ2

3 /σ2
1 )φ3 + (σ2

4 /σ2
1 )φ4 + (σ2

5 /σ2
1 )φ5] = σ2

1 F,

usually applied in the literature, as Kala [25] mentions, but in its original form (3) which
ensures that E(SSR) = n− v.

Another feature of the proposed approach concerns the simplification of the analytical
procedures. One of the resulting advantages is the reduction of the number of stratum
variances involved from 5 to 4. This widely simplifies the computations.

As Kala [25] notes, Equation (8) coincide-as it was observed by Patterson and Thomp-
son [40]—with the equations following from their maximum likelihood approach under
the assumption that y has a multivariate normal distribution, with such an advantage, that
here iteration is distribution free as it uses only geometrical arguments. The proposed
approach ignores within-stratum analyses based on the stratum submodels and involved
combined analysis. It is shown how to perform the analysis also in the case of factorial and
near-factorial structures of treatments. The main advantage of the proposed approach is
that the ANOVA results can be obtained directly rather than by first performing stratum
analyses and then combining their results, as in the classic approach [23,24].
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As shown in the publications [10–13] and presented in Table 1, the proposed proce-
dures lead to the reduction of the residual sum of squares to n− v, which in turn leads to
the form of the F statistic expressed by the Formula (10). This can be seen as an advantage
for the approximation of the relevant distribution.

In the applicative approach, the estimated mean square has (under H0) approximately
the distribution of χ2(v− 1, 0)/(v− 1). The greater is n, i.e., the size of the experiment, the
closer this approximation will be. Thus, the test of hypothesis H0 and the relevant critical
level of significance are regarded as approximate. These conclusions correspond to those
presented by Volaufova [41] and Johnson et al. [42].

The paper shows how to obtain a letter-based representation of all-pairwise com-
parisons using simple contrasts. The letter display, by far the most popular method for
reporting the result of mean comparisons in all areas of research where ANOVA procedures
are used, is now available after the analysis of variance under a derived mixed model in an
NRC design is performed directly. All of this gives a complete set of tools that make it easy
to analyze any NRC experiment. Appendix A provides all the necessary tools in R [43],
and the example of a field experiment shows how the proposed procedure is performed
in practice. An example of the data including a file structure compliant with the R code
(Appendix A) is available in Table S1 in Supplementary Materials.

Finally, this approach can be applied to various classes of designs with the OBS
property, in particular those shown in Table 5.

As previously noted, sometimes it turns out following an experiment that the applied
approach needs to be reviewed. If the estimated row- (or column-) related variance
components are small, close to zero, then the analysis reverts to the model for a simpler
block structure—a nested block design. If both the row and column variances are close
to zero, then the experiment should be run as for a proper block design [8]. Finally,
if the researcher has data only from one block, the analysis will follow the model for a
row–column design.

Since the starting point for the analysis is the NRC design, each of the possible
modified analyses will be carried out for a design with an orthogonal block structure,
which makes it possible to apply the direct approach [10–13]. As the practical application
of this analytical approach depends on the structure of the experimental design, Table 5
shows how the model of the NRC design will change when some block structures are
omitted. Of course, for new designs, the structure of the dispersion matrix V changes
and therefore a different matrix V∗ should be used for each of them. Next, the analytical
procedure will be analogous to that in Section 3.2. The notation used in Table 5 is based
on the notation of the output NRC design, so only some of the σ2

i φi components appear
in the matrix V . It should be noted here that since the roles of rows and columns in the
NRC design can be changed, the nested block design is presented only for the case of the
omission of the NRC’s column system. Usually the system we call “blocks” (by analogy
with the NRC design) is called “superblocks” for a nested block design, while our “rows”
are called “blocks”.
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Table 5. Parameters and models of experimental designs obtained if certain block structures of the
NRC design are omitted. The starting point is the design shown in Figure 2. The omitted block
structures correspond to the deleted elements of the base model (1).

ROW-COLUMN DESIGN (b = 1)

Parameters

r0 rows

︸ ︷︷ ︸
c0 columns

Model y = X1τ +��
�HHHXBβ + XR(B)ρ + XC(B)γ + η+ e

V = σ2
1 φ1 + σ2

2 φ2 + σ2
3 φ3 + σ2

5 φ5 taking XB = 1n

V∗ = σ2
1 (φ1 −φ5) + σ2

2 (φ2 + φ5) + σ2
3 (φ3 + φ5)

NESTED BLOCK DESIGN

Parameters

︸ ︷︷ ︸
b blocks (superblocks)r0 rows (blocks)

︸ ︷︷ ︸
c0 exp. units in each row (block)

Model y = X1τ + XBβ + XR(B)ρ +���
�XXXXXC(B)γ + η+ e

V = σ2
1 φ1 + σ2

2 φ2 + σ2
4 φ4 + σ2

5 φ5 taking φ1 = In − c−1
0 XR(B)X

′
R(B)

V∗ = σ2
1 φ1 + σ2

2 φ2 + σ2
4 (In −φ1 −φ2)

PROPER BLOCK DESIGN

Parameters ︸ ︷︷ ︸
b blocks (n0 = r0c0 plots in each block)

Model y = X1τ + XBβ +���
�XXXXXR(B)ρ +���

�XXXXXC(B)γ + η+ e

V = σ2
1 φ1 + σ2

4 φ4 + σ2
5 φ5 taking φ1 = In − n−1

0 XBX ′B

V∗ = σ2
1 φ1 + σ2

4 (In −φ1)

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
395/11/12/2406/s1, Table S1. TOMATOES_DATA.csv—experimental data for the field experiment
analyzed in Section 4. The file structure follows the R code available in Appendix A.
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Abbreviations
The following abbreviations are used in this manuscript:

NRC design Nested row–column design
ANOVA Analysis of variance
d.f. Degrees of freedom
OBS Orthogonal block structure
BLUE Best linear unbiased estimator
SV Spray volume

Appendix A

The following procedure is used to carry out analyses in R in accordance with the
methodology presented in the paper. The packages psych, Matrix, matlib, multcompView
and utilsIPEA are used here [35,44–47]. To analyze data other than those available in the
file “TOMATOES _DATA.csv”, the structure of this data set should be maintained. Note
that the control treatment in this file is numbered 7, while the remaining treatments are
numbered as shown in Figure 3. All parts of the code should be treated as a whole, because
subsequent pieces of the code are based on the calculations from the previous parts.

Appendix A.1. Basic: Parameters, Elements of the Design Structure and Auxiliary Markings

data <−read . csv2 ( "TOMATOES_DATA. csv " , h=T )
dat <−as . data . frame ( data )

dat <− within ( dat , {
BLOCK <− f a c t o r (BLOCK)
ROW_NR <− f a c t o r (ROW_NR)
COL_NR<− f a c t o r (COL_NR)
TREATMENT<− f a c t o r (TREATMENT)

} )

v<− n l e v e l s (dat$TREATMENT) # NUMBER OF TREATMENTS
b<− n l e v e l s ( dat$BLOCK ) # NUMBER OF BLOCKS
r <− n l e v e l s (dat$ROW_NR) # NUMBER OF ROWS
r0 <−r/b # w NUMBER OF ROWS PER BLOCK
c<− n l e v e l s ( dat$COL_NR ) # NUMBER OF COLUMNS
c0<−c/b # NUMBER OF COLUMNS IN THE BLOCK
n<−b * r0 * c0 # NUMBER OF EXPERIMENTAL UNITS
n0<−n/b # NUMBER OF EXPERIMENTAL UNITS PER BLOCK
Y<−as . vec tor (dat$OBSERVATION) # VECTOR OF OBSERVATIONS
F1 <− with ( dat , outer (BLOCK, l e v e l s (BLOCK) , ‘ = = ‘ ) * 1 )
colnames ( F1 ) <− paste ( "BLOCK" , sep ="=" , l e v e l s ( dat$BLOCK ) ) # DESIGN MATRIX X_B
F2 <− with ( dat , outer (ROW_NR, l e v e l s (ROW_NR) , ‘ = = ‘ ) * 1 )
colnames ( F2 ) <− paste ( "ROW" , sep ="=" , l e v e l s (dat$ROW_NR ) ) # DESIGN MATRIX X_R( B )
F3 <− with ( dat , outer (COL_NR, l e v e l s (COL_NR) , ‘ = = ‘ ) * 1 )
colnames ( F3 ) <− paste ( "COL" , sep ="=" , l e v e l s ( dat$COL_NR ) ) # DESIGN MATRIX X_C( B )
F4 <− with ( dat , outer (TREATMENT, l e v e l s (TREATMENT) , ‘ = = ‘ ) * 1 )
colnames ( F4 ) <− paste ( "TREATMENT" , sep ="=" , l e v e l s (dat$TREATMENT ) ) # DESIGN MATRIX X_1
wr<− t ( F4)%*%as . vec tor ( matrix ( 1 , nrow=n ) ) # VECTOR OF TREATMENT REPLICATIONS
wr_minus<−(wr)^( −1) # VECTOR OF INVERSE TREATMENT REPLICATIONS
rDelta <− t ( F4)%*%F4 # TREATMENT REPLICATION MATRIX
rDelta_minus <−solve ( rDel ta )
In <−diag ( nrow=n )
Iv <−diag ( nrow=v )
w1<−as . vec tor ( matrix ( 1 , nrow=n ) )
w1v<−as . vec tor ( matrix ( 1 , nrow=v ) )
Fi1 <−In −( c0 )^( −1) * F2%*%t ( F2 ) −( r0 )^( −1) * F3%*%t ( F3 ) + ( n0 )^( −1) * F1%*%t ( F1 ) # Phi1 MATRIX
Fi2 <−( c0 )^( −1) * F2%*%t ( F2 ) −( n0 )^( −1) * F1%*%t ( F1 ) # Phi2 MATRIX ( see Equation 3)
Fi3 <−( r0 )^( −1) * F3%*%t ( F3 ) −( n0 )^( −1) * F1%*%t ( F1 ) # Phi3 MATRIX ( see Equation 3)
Fi4 <−(n0 )^( −1) * F1%*%t ( F1 ) −(n )^( −1) *w1%*%t (w1) # Phi4 MATRIX ( see Equation 3)
Fi5 <−(n )^( −1) *w1%*%t (w1) # Phi5 MATRIX ( see Equation 3)

This is where the first code check is proposed. In accordance with Section 3, the
relation φ1 + φ2 + φ3 + φ4 + φ5 = In holds, which can be checked like this:

a l l . equal ( as . matrix ( round ( Fi1+Fi2+Fi3+Fi4+Fi5 , d i g i t s = 3 ) ) , In )
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Appendix A.2. Iteration Procedure to Determine Estimates of Stratum Variances

In the iterative procedure, 20 steps are declared. Usually this is a sufficient value. You
should of course check if the iteration procedure converges—the test below then gives
“TRUE”. If not, the number of iteration steps should be increased.

sigma2M1<−1
sigma2M2<−1
sigma2M3<−1
sigma2M4<−1
sigma2M5<−1

ITERATIONS<− l i s t ( )
f o r ( i in 1 : 2 0 ) {

VstarMinus <−sigma2M1 * Fi1+sigma2M2 * Fi2+sigma2M3 * Fi3+sigma2M4 * ( Fi4+Fi5 )
V_Minus<−VstarMinus +(sigma2M5−sigma2M4 ) * ( n )^( −1) *w1%*%t (w1)
Dodatkiwa<−V_Minus−VstarMinus
a11<−Dodatkiwa [ 1 , 1 ]
sigma2M5<−n* a11+sigma2M4
sigma2_5 <−1/(sigma2M5 )
P<−F4%*%solve ( t ( F4)%*%V_Minus%*%F4)%*% t ( F4)%*%V_Minus
d1<− t r ( Fi1%*%(In −P ) )
d2<− t r ( Fi2%*%(In −P ) )
d3<− t r ( Fi3%*%(In −P ) )
d4<− t r ( Fi4%*%(In −P ) )
sigma2_1 <−(d1 )^( −1) * t ( ( F i1%*%(In −P))%*%Y)%*%(( Fi1%*%(In −P))%*%Y)
sigma2_2 <−(d2 )^( −1) * t ( ( F i2%*%(In −P))%*%Y)%*%(( Fi2%*%(In −P))%*%Y)
sigma2_3 <−(d3 )^( −1) * t ( ( F i3%*%(In −P))%*%Y)%*%(( Fi3%*%(In −P))%*%Y)
sigma2_4 <−(d4 )^( −1) * t ( ( F i4%*%(In −P))%*%Y)%*%(( Fi4%*%(In −P))%*%Y)
sigma2M1 < −(( sigma2_1 ) ^ ( − 1 ) ) [ 1 , 1 ]
sigma2M2 < −(( sigma2_2 ) ^ ( − 1 ) ) [ 1 , 1 ]
sigma2M3 < −(( sigma2_3 ) ^ ( − 1 ) ) [ 1 , 1 ]
sigma2M4 < −(( sigma2_4 ) ^ ( − 1 ) ) [ 1 , 1 ]
ITERATIONS [ [ i ]] < − c ( sigma2_1 , sigma2_2 , sigma2_3 , sigma2_4 , sigma2_5 )

}
ITER<−matrix ( as . numeric ( u n l i s t ( ITERATIONS ) ) , 2 0 , 5 , byrow=T )

a l l . equal ( ( as . matrix ( round ( ITER [20 , ] − ITER [ 1 9 , ] , d i g i t s = 1 0 ) ) ) , matrix ( 0 , nrow = 5) ) # TEST

Appendix A.3. General Solutions and ANOVA Table

tau <− solve ( t ( F4)%*%V_Minus%*%F4)%*% t ( F4)%*%V_Minus%*%Y # tau empir i ca l e s t i m a t e s
tau_s tar <− ( Iv −(n )^( −1) *w1v%*%t (wr))%*% tau # tau * empir i ca l e s t i m a t e s
SSv<− t ( t a u _ s t a r )%*% t ( F4)%*%V_Minus%*%F4%*%t a u _ s t a r
SSr <− t (Y)%*%V_Minus%*%(In −P)%*%Y
y_star <−( In −(1/n ) *w1%*%t (w1))%*%Y
SSt <− t ( y _ s t a r )%*%VstarMinus%*%y _ s t a r
F_general <−(n−v ) * SSv / ( ( v −1)* SSr )
p_value <−pchisq ( F_general , df=v−1 , lower . t a i l =FALSE) / ( v−1)
ANOVA_TABLE <− matrix ( c ( v−1 ,n−v , n−1 , round ( SSv , d i g i t s =4) , round ( SSr ) ,

round ( SSv+SSr , d i g i t s =4) ,
round ( SSv /(v −1) , d i g i t s =4) , round ( SSr /(n−v ) ) , ’ ’ ,
round ( F_general , d i g i t s = 4 ) , ’ ’ , ’ ’ ) , ncol =4)

colnames (ANOVA_TABLE)<− c ( " df " , " Sum_of_squares " , " Mean_square " , " F " )
rownames (ANOVA_TABLE)<− c ( ’ Treatments ’ , ’ Residuals ’ , ’ Total ’ )
ANOVA_TABLE<−as . t a b l e (ANOVA_TABLE)
ANOVA_TABLE
p_value

Appendix A.4. Letter-Based Representation of All-Pairwise Comparisons

combin<−combn ( c ( 1 , 2 , 3 , 4 , 5 , 6 , 7 ) , 2 , s im pl i f y = TRUE)
zo<− matrix ( 0 , v , v * ( v −1)/2)

f o r ( i in 1 : ( v * ( v − 1 ) / 2 ) ) {
k<−combin [ [ 1 , i ] ]
l <−combin [ [ 2 , i ] ]
zo [ k , i ] <− 1
zo [ l , i ] <− −1

}

wsp1<− matrix ( 0 , v * ( v−1)/2 ,v * ( v −1)/2)
f o r ( i in 1 : ( v * ( v − 1 ) / 2 ) ) {

k<−combin [ [ 1 , i ] ]
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l <−combin [ [ 2 , i ] ]
wsp1 [ i , i ] < −(1/ s q r t (1/ rDel ta [ k , k]+1/ rDel ta [ l , l ] ) )

}

col_names <−matrix ( 0 , 1 , v * ( v −1)/2)
f o r ( i in 1 : ( v * ( v − 1 ) / 2 ) ) {

col_names [ 1 , i ]<− paste ( combin [ 1 , i ] , combin [ 2 , i ] , sep = " −" )
}
col_names <−as . vec tor ( col_names )

s imple_contras ts <−zo%*% wsp1 # DEFINING SIMPLE CONTRASTS
rownames ( s i m p l e _ c o n t r a s t s )<− paste ( " t r " , sep ="=" , l e v e l s (dat$TREATMENT ) )
p_values_simple <−as . vec tor ( matrix ( 0 , 1 , v * ( v −1)/2) )
f o r ( i in 1 : ( v * ( v − 1 ) / 2 ) ) {

c i <−s i m p l e _ c o n t r a s t s [ , i ]
SS_ci <− t ( t a u _ s t a r )%*% c i%*%solve ( t ( c i )%*%solve ( t ( F4)%*%VstarMinus%*%F4)%*% c i )%*%
t ( c i )%*% t a u _ s t a r
p_values_simple [ i ]<− pf ( q=SS_ci , df1 =1 , df2=Inf , lower . t a i l =FALSE)

}
names ( p_values_simple )<−col_names
L e t t e r s <−multcompLetters ( p_values_simple )

L e t t e r s #### Let ter −based r e p r e s e n t a t i o n
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