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Abstract: Global sensitivity analysis (SA) has become an efficient way to identify the most influential
parameters on model results. However, the effects of cultivar variation and specific-stage variations
of climate conditions on model outputs still remain unclear. In this study, 30 indica hybrid rice
cultivars were simulated in the CERES-Rice model; then the Sobol’ method was used to perform a
global SA on 16 investigated parameters for three model outputs (anthesis day, maturity day, and
yield). In addition, we also compared the differences in the sensitivity results under four specific-
stage variations (vegetative phase, panicle-formation phase, ripening phase, and the whole growth
season) of climate conditions. The results indicated that (1) parameter Tavg, G4, and P2O are the
most influential parameters for all model outputs across cultivars during the whole growth season;
(2) under the vegetative-phase variation of climate parameters; the variability of model outputs is
mainly controlled by parameter P2O and Tavg; (3) under the panicle-formation-phase or ripening-
phase variation of climate parameters, parameter P2O was the dominant variable for all model
outputs; (4) parameter PORM had a considerable effect (the total sensitivity index, STi; STi > 0.05) on
yield regardless of the various specific-stage variations of the climate parameters. Findings obtained
from this study will contribute to understanding the comprehensive effects of crop parameters on
model outputs under different cultivars and specific-stage variations of climate conditions.

Keywords: CERES-Rice; rice; cultivars; Sobol’ method; sensitivity analysis

1. Introduction

Process-based crop models play an important role in many applications such as crop
management [1], yield prediction [2], climate change assessment [3], and improvements
of crop genotypes [4]. These models simulate physiological and ecological processes of
photosynthesis, respiration, and transpiration in detail during the crop growth season [5].
They have also been helpful in understanding the interactions between soil, crops, and
the atmosphere [6]. However, these models have usually included a large number of
parameters which are dynamic, nonlinear, and complicated [7,8]. Accordingly, these pa-
rameters could lead to more serious over-parameterization problems. Therefore, parameter
identification has become an important and urgent problem in agro-biophysical prediction
and model further application [8–10].

A sensitivity analysis (SA) is a prerequisite process in model parameter estimation. SA
has been implemented to study the influence of individual parameters on the uncertainty
of model outputs [11], and was used to identify the input parameters regarding impact sig-
nificance on a model’s outputs [12,13]. After SA, the low-impact parameters were fixed as
default values; and only high-impact parameters deserved to be costly calibrated [10,14,15].
Thus, SA was useful to improve model calibration efficiency by ignoring insensitive pa-
rameters [16]. SA methods have been categorized into local SA and global SA [17]. Local
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SA has mainly calculated the influence of single parameter variability on model outputs by
holding other variables or parameters at fixed values. It only analyzes the direct influence
of parameters on the model results, while ignoring the indirect influence of the interactions
between parameters on the model [9]. Local SA is easy to implement but could lead to
unrealistic sensitivity results since the sensitivity of a specific parameter depends on the
values of other parameters, which was particularly evident in the non-linear models [18].
In contrast, the global SA takes into account the influence of multiple parameters and their
interactions on the model results, which was suitable for nonlinear models with more input
parameters [8]. The commonly used global SA methods include the Morris method [19],
Fourier amplitude test (FAST) method [20], Sobol’ method [21], and the extend FAST
(EFAST) method [22]. Because global SA methods consider the interactions of parame-
ters and nonlinear responses, they were desirable to explore the parameter sensitivity
and uncertainty analysis of model outputs in mechanistic models such as the hydrologic
models [23,24], climate models [25,26], and ecological models [27,28].

In recent years, global SA has been successfully applied to implement parameter iden-
tification and uncertainty analysis for crop growth models [18,29–32]. SA and uncertainty
of crop models under the different ranges of parameter variations have been explored.
For example, Tan et al. [33] used a regression-based method to carry out global SA on
16 parameters in the ORYZA model under different ranges of parameter perturbation; and
the results indicated that ± 30% perturbation was suggested in sensitivity and uncertainty
analysis. The effects of parameter variation range on model outputs over time were also
discussed by Jin et al. [16]. Besides the effects of parameter perturbation range on sensitiv-
ity, the effects of different environment and climate conditions on model sensitivity in crop
models have been reported. Liu et al. [34] conducted global SA of the APSIM-Oryza rice
model under different environment and CO2 level conditions by using the EFAST method;
they demonstrated that the orders of the same influential parameters in different climate
conditions were different. Roberto et al. [31] also analyzed the parameter sensitivity to
the rice model WARM under various environment and climatic conditions and then the
necessity of SA within different modeling environments was emphasized.

Although a number of global SA studies have been performed for crop models [8,16,31],
some limitations need to be further addressed: (i) Few studies have paid attention to the
effects of crop genotype variations on SA. The SA results derived from one cultivar could
not be directly transferable to another cultivar. (ii) A systematical description of the effects
of specific-stage climate variations on SA results is still unclear.

Therefore, it is necessary to explore the responses of model outputs to input parameters
or variables under different genotypes, and specific-stage climate variations. In this study,
the Sobol’ method was used to implement global SA of the CERES-Rice model for thirty
rice genotypes and four specific-stage climate variations. The specific objectives were
to: (1) explore whether the sensitivity rankings of the investigated parameters among
different cultivars were statistically different for the model outputs (anthesis day, ADAP;
physiological maturity day, MDAP; and yield); (2) identify the most influential parameters
for model results in the CERES-Rice model among different cultivars; (3) highlight the
differences in effects of the input parameters on the crop model outputs under specific-stage
variations of climate parameters.

2. Materials and Methods
2.1. Field Experiments

The experiment site was located at the Longping High-tech Rice Breeding Base
(28◦19′ N, 112◦40′ E), Ningxiang District, Changsha City, Hunan Province, China. This
area belongs to a subtropical monsoon climate, which is characterized by mild climate,
abundant precipitation, simultaneous rain and heat, and four distinct seasons. The annual
average temperature and rainfall are 16.8 ◦C and 1358 mm, respectively. The soil at the
experimental site has a typical fine-loam profile from 0–20 cm. The detailed soil physical
and chemical properties are shown in Table 1.



Agronomy 2021, 11, 2446 3 of 17

Table 1. Soil profile properties at the experimental site.

Layer (m) Clay (%) Silt (%) OC (%) TN (%) LL (%) DUL (%) SAT (%) BD (g cm−3)

0–0.2 25.96 28.6 2.13 0.18 21.4 37.0 48.3 1.26
0.2–0.4 25.13 27.1 2.12 0.20 20.9 36.2 48.0 1.27
0.4–0.6 23.03 25.7 1.73 0.17 18.8 32.7 46.4 1.32
0.6–0.8 22.99 27.9 1.51 0.19 18.2 32.0 46.2 1.33
0.8–1.0 24.5 28 1.58 0.16 19.2 33.2 46.5 1.32

Note: OC, organic carbon; TN, total nitrogen; LL, lower limit; DUL, drained upper limit; SAT, saturation; BD, bulk density.

Thirty indica hybrid rice cultivars were investigated at the experiment site in 2018.
Among these cultivars, there were 12 mid-season rice cultivars, 9 late-season rice cultivars
and 9 one-season-late rice cultivars. All cultivars were transplanted in a randomized
complete block with 3 replicates. The planting density was 33 hills m−2. Each cultivar had
the same cultivated area with 2.5 m × 5.5 m. All the experimental cultivars had the same
fertilizer treatment with 195 kg ha−1 N, 112 kg ha−1 P2O5 and 112 kg ha−1 K2O. Other
field management practices followed the local standard procedures for rice production in
this region.

2.2. Data Observation

The observations of the rice phenological stages were collected once every 1 to
3 days during the rice growth season. The data of critical phenological events such as
sowing, transplanting, initial heading, anthesis, full heading, and maturity stages are
listed in Table 2. The specific descriptions of these phenological stages were presented by
Yang et al. [35] and Fageria [36]. At maturity, all the rice in each plot was harvested and
hand-threshed. The collected grains were put into an oven at 75 ◦C until their weights had
no change (about 72 h) and then weighed by an electronic balance (±0.1 g). Subsequently,
the 1000-grain weight was measured by local agro-technicians in the laboratory.

Table 2. The observed phenology of the different rice cultivars in 2018 at the experiment station.

Type of Cultivar Sowing Transplanting Initial
Heading Flowering Full Heading Maturity

Mid-season 15 May 6 June 2 August–
10August

4 August–12
August

7 August–14
August

10 September–16
September

Late-season 24 June 15 July 29 August–5
September

31 August–7
September

2 September–9
September

17 October–24
October

One-season-late 10 June 29 June 24 August–30
August

26 August–1
September

29 August–3
September

10 October–12
October

2.3. CERES-Rice Model
2.3.1. Model Description

The CERES-Rice model was first developed by the American IBSNA scientists in the
1980s. This model has been integrated in the Decision Support System for the Agrotech-
nology Transfer (DSSAT) system. Combining with the relevant modules of the DSSAT
system, the CERES-Rice model could analyze the effects of many factors on the growth
and development of paddy rice. It mainly consists of three parts: (1) an input module
including input files of weather, soil, field management, and species genetic characteristic
parameters, as well as observed data, etc.; (2) an output and analysis module including
all simulation results and output files of data analysis; (3) a physiological and ecological
process simulation module. Thus, the CERES-Rice model can quantitatively describe the
basic process of rice growth and development under different environmental conditions.
At present, the CERES-Rice model has been widely applied in many applications such as
yield estimation [37], climate change assessment [38], and field management [39].
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2.3.2. Crop Modeling

To run the CERES-Rice model, parameters and inputs including weather data, soil
profile information, field management data, and genotype parameter data were required.
The minimum requirements of weather data contained daily minimum and maximum
temperature, daily rainfall, and daily solar radiation. These data were collected from the
local weather station. The soil profile data is listed in Table 1. Field management data are
introduced in Section 2.1. In the CERES-Rice model, the genotype parameters included
cultivar, species, and ecotype coefficients. There were eight cultivar coefficients which
were used to describe the hereditary characteristics of the specific genotypes. Among them,
four cultivar parameters (P1, P2R, P5, P2O) were related to phenology and another four
parameters (G1, G2, G3 and G4) were pertinent to rice growth and development. The
species coefficients were set as default values. At present, the ecotype coefficients are not
available for common users in the CERES-Rice model. Accordingly, only eight cultivar
parameters were determined in this study.

The time period (growing degree days, ◦C·d) from beginning of grain filling (3–4 days
after flowering) to physiological maturity (P5) was calculated based on observation data.
Single grain weight (G2) was set based on 1000-grain weight. The calculation of cultivar
parameters based on observed data in DSSAT has been described by Yan et al. [40]. The
specific calculation processes of P5 and G2 were as follows:

P5 =
m

∑
i
(Tavgi − Tbase)


Tavgi = (Tmaxi + Tmini)/2

Tavgi = Tbase i f Tavgi ≤ Tbase
Tavgi = Tupper i f Tavgi ≥ Tupper

(1)

G2 = W/1000 (2)

where i = 1, 2, . . . m days between beginning of grain filling and physiological maturity. On
the ith day, Tavgi is the daily average temperature (◦C); Tmini is the daily minimum tem-
perature (◦C); Tmaxi is the daily maximum temperature (◦C); Tbase is the base temperature
of 9 ◦C; Tupper is set to 40 ◦C. In equation 2, W represents the 1000-grain weight (g).

Other six parameters (P1, P2R, P2O, G1, G3 and G4) of each rice cultivar were de-
termined by the Generalized Likelihood Uncertainty Estimation (GLUE) method which
has been widely used in model calibration [41,42]. The specific procedures of the GLUE
method are mainly as follows [15,43]:

(1) Set parameter range by using the default range (Table A1) in the CERES-Rice model.
Uniform parameter distributions were assumed to generate parameter sets. In this
study, 10,000 parameter sets were randomly generated by Python 3.6.

(2) Select the observation data including anthesis date, maturity date, and grain yield as
our objectives.

(3) Run the CERES-Rice model. The executable file “DSCSM047.exe” was looped called
Python 3.6 based on the abovementioned parameter sets.

(4) Calculate the likelihood value. A likelihood function which was described by
He et al. [41] was implemented to obtain likelihood values based on simulations
and observations.

(5) Calculate the cultivar parameters based on the maximum likelihood value.

2.4. Sensitivity Analysis
2.4.1. Sobol’ Method

In this study, the Sobol’ algorithm was implemented to rank sensitivity of input
parameters or variables to the model outputs (ADAP, MDAP and yield). The Sobol’ global
SA calculates the analysis of variance-based decomposition of output variance, where the
main effects and interaction terms can be computed [44]. The Sobol’ sensitivity index is
the fraction of total variance which is attributed to any individual factor or combination of
factors [45]. In addition, the Sobol’ method can calculate the total sensitivity index (STi),
defined as the sum of the first-order and higher-order effects involving all the input factors.
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With m quantitative input factors, the decomposition of variance var(Y) can be calculated
as follow:

var(Y) =
m

∑
i=1

vi + ∑
1≤i<j≤m

vij + · · ·+ v1,2,...,m (3)

where vi is the variability based on the main effect of input factor xi; vij is the variability
based on the interaction effect between input factors (xi and xj); v1,2,...,m is the variability
based on the interaction effect between all input factors (x1, x2, . . . , xm). var(Y) represents
the variability of Y including the overall uncertainty of the input factors. The sensitivity
indices are calculated from Equation (3) by dividing the individual importance measures
by the total variance var(Y).

Si =
vi

var(Y)
(4)

SIij =
vij

var(Y)
(5)

where Si is defined as the first order sensitivity index of input factor xi, representing the
main effect of factor xi on the output. SIij is defined as the second-order sensitivity index
which represents the interaction effect of two factors xi and xj.

Sobol’ input samples were generated by using the Python library “SALib” and exe-
cuted by a size of m(2n + 2) model input sets in Python 3.6, where m required a range of
100 or larger [44]. Sixteen parameters (n) were selected to implement global SA (Table 3).
In this study, we used m = 350 and n = 16 for a total of 11,900 input parameter sets
for each cultivar. Four specific-stage variations of climate parameters were considered
(Figure 1). The investigated stages include the whole growth season, vegetative phase,
panicle-formation phase and ripening phase. Accordingly, the total number of model
executions was 30 × 11,900 × 4 = 1,428,000. The majority of global SA computations
described in this paper were performed on the High-Performance Computing System at
the Institute of Soil Science, Chinese Academy of Sciences.

Table 3. Description of the 16 investigated parameters in the CERES-Rice model.

Type Parameter Description Unit Range

Cultivar
parameter

P1 Time period in ◦C above a base temperature of 9 ◦C during the basic
vegetative phase. GDD (◦C) ±30%

P2O Critical photoperiod (in hours) at which the development occurs at a
maximum rate. hours ±30%

P2R Extent to which phasic development leading to panicle initiation is
delayed for each hour increase in photoperiod above P2O GDD h−1 ±30%

P5 Time period in ◦C above a base temperature of 9 ◦C from beginning of
grain filling (3–4 days after anthesis) to physiological maturity. GDD (◦C) ±30%

G1 Potential spikelet number coefficient – ±30%
G2 Single grain weight (g) under ideal growing conditions g ±30%
G3 Tillering coefficient relative to IR64 cultivar under ideal conditions. – ±30%
G4 Temperature tolerance coefficient. – ±30%

Species
parameter

SHFC Shock calculation method (1-standard, 2-Salaam) – ±30%
RWEP Species coefficient – ±30%
PORM Minimum pore space – 0–0.3
RWMX Max root water uptake – ±30%
RLWR Root length weight ratio – ±30%

Climate
parameter

SRAD Daily solar radiation MJ m−2 day−1 ±30%
Tavg Daily average temperature ◦C ±30%
RAIN Daily rainfall mm day−1 ±30%
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2.4.2. Top-Down Concordance Coefficient (TDCC)

The top-down concordance coefficient (TDCC) can quantify agreements among multi-
ple rankings. The TDCC adopts the savage scoring method to emphasize the consistency
of influential parameter rankings and to de-emphasize the inconsistency of non-influential
parameter rankings [46]. The TDCC was calculated using the following equation:

Sij =
n

∑
i=rij

1
i

(6)

TDCC =
∑n

i=1

(
∑m

j=1 Sij

)2
−m2n

m2
(

n−∑n
i=1

1
i

) (7)

where Sij is the savage score of the ith parameter in the jth SA experiment; rij is the rank of
the ith parameter in the jth SA experiment; n is the number of investigated parameters; and
m is the number of SA objectives.

The p-value was calculated to test the TDCC’s significance, which is calculated
as follows:

T = m(n− 1)TDCC (8)

where T is close to the chi-squared distribution with n− 1 degrees of freedom. In general,
rankings were considered statistically consistent if the p-value derived from TDCC was
smaller than 0.05.
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3. Results
3.1. Distribution of Observation Data across Different Cultivars

The distributions of observations including dates of anthesis and maturity, and grain
yield are presented in Table 4. Among different cultivar types, the mid-season rice had
the earliest date of anthesis. Although, the sowing date for late-season cultivars was
two weeks later than that for one-season-late cultivars, the anthesis dates for these two
cultivar types were close. The mean anthesis dates were 8 August, 3 September, and 29
August for mid-season, late-season, and one-season-late rice cultivar types, respectively
in 2018. As for physiological maturity, all the mid-season rice cultivars were harvested in
September, and all late-season and one-season-late rice cultivars were harvested in October.
The mean maturity dates for mid-season, late-season, and one-late-season rice cultivars
were 12 September, 20 October, and 11 October, respectively. Additionally, the yield of
one-season-late cultivars tended to be slight larger than that of mid-season cultivars; the
yield obtained from late-season cultivars was the lowest.

Table 4. Distributions of anthesis and maturity dates, and grain yield among mid-season, late-season, and one-season-late
rice cultivars in 2018.

Observation
Index

Cultivar Type Number of
Cultivars

Statistical Indicators

Mean Median 25th Percentile 75th Percentile

Anthesis date
Mid-season 12 8-August 8-August 7-August 9-August
Late-season 9 3-September 2-September 1-September 4-September

One-season-late 9 29-August 30-August 26-August 30-August

Maturity date
Mid-season 12 12-September 13-September 10-September 14-September
Late-season 9 20-October 19-October 18-October 21-October

One-season-late 9 11-October 12-October 11-October 12-October

Yield (t ha−1)
Mid-season 12 9.7 9.6 9.4 10.1
Late-season 9 8.2 7.8 8.0 8.5

One-season-late 9 9.9 9.7 9.6 10.1

3.2. Sensitivity Analysis during the Rice Growth Season

For both ADAP and MDAP, parameters P2O, G4, Tavg were more influential than other
parameters among different cultivar types (Figure 2). G4 in late-season and mid-season
cultivars showed larger inter-cultivar variability than that in one-season-late cultivars.
Tavg had the largest influence on STi values for phenology in all cultivars. For yield,
parameters Tavg and P2O had a markedly larger influence and inter-cultivar variability.
The variations of STi values were similar in different cultivar types. In general, the more
influential parameters (Tavg and P2O) showed a more evident difference between cultivars.

Figure 3 shows the mean Si values and interactions between parameters under dif-
ferent cultivar types when the variation of climate parameters occurred for the whole
growth season. Different cultivar types demonstrated similar effects on the sensitivity
results of the investigated parameters for ADAP, MDAP, and yield; for instance, the most
influential parameters (Tavg, P2O, G4) were the same. It is worth mentioning that the
influence of the interaction among parameters on all outputs of the CERES-Rice model was
notable. For ADAP, the interaction indices of Tavg, P2O, and G4 contributed to 64.9–90.7%,
56.1–77.4%, and 73.5–86.6%, respectively in late-season, one-season-late, and mid-season
cultivar types. For MDAP, though the most influential parameters were the same as those
for ADAP, the interaction effects of these parameters were slightly smaller and contributed
to 51.2–81.7%, 43.0–70.2%, and 51.9–81.5%, respectively in late-season, one-season-late,
and mid-season cultivar types. For yield, the interaction effects of cultivar parameters
contributed approximately 90% such as P1, P2R, P2O, and G4. The climate parameter Tavg
contributed 54.8%, 62.5%, and 55.2% for the variance of yield, respectively in late-season,
one-season-late, and mid-season cultivar types.
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Table 5 shows the values of TDCC under the different cultivar types. The different
cultivars in the same cultivar type had no noticeable effect on the parameter ranking
for the model outputs. The TDCC values were larger than 0.93 for all output variables.
Additionally, the TDCC values in different cultivar types were greater than 0.98 for all
output variables. The corresponding p-values are not presented in this study but were less
than 0.05. In general, different cultivars had no statistical influence on the rankings of the
sensitivity parameters.

Table 5. TDCC values based on the results of Sobol’ total order effects (STi ) under the same cultivar type and different
cultivar types over the whole growth season.

Model Output
Same Cultivar Type Different Cultivar Types

Late-Season One-Season-Late Mid-Season L-O L-M O-M

ADAP 0.95 0.98 0.94 0.99 0.99 0.99
MDAP 0.98 0.96 0.98 0.98 0.98 0.98
Yield 0.98 0.99 0.97 1.00 1.00 1.00

Note: L-O rice represents the cultivars between late-season and one-season-late cultivar types; L-M rice represents the cultivars between
late-season and mid-season cultivar types; O-M rice represents the cultivars between one-season-late and mid-season cultivar types.

3.3. Sensitivity Analysis under Specific-Stage Variations of Climate Parameters
3.3.1. Sensitivity Analysis under the Variation of Climate Parameters at the
Vegetative Phase

Figure 4 illustrates the mean Si values and interactions between parameters under
different cultivar types when the variation of climate parameters occurs at the vegetative
phase. At this stage, the effects of P2O (Si ranged from 0.61 to 0.70) and Tavg (Si ranged from
0.12 to 0.25) on model outputs (ADAP and MDAP) were significant, while the interactions
between parameters were non-significant. Except for P2O and Tavg, the species parameter
PORM showed a notable effect on yield (STi > 0.05). Different cultivar types indicated
no differences in the sensitivity results of the investigated parameters for ADAP, MDAP,
and Yield. Parameter P2O was the most sensitive for all model outputs, whereas the
growth-related parameters (e.g., G1, G2, G3, and G4) showed negligible effects on the
model outputs (STi < 0.05). The sensitivity rankings of the 16 investigated parameters were
statistically consistent among different cultivars (Table 6).

Table 6. TDCC values based on the results of Sobol’ total order effects (STi ) under the same cultivar type and different
cultivar types with variation of climate parameters at the vegetative phase.

Model Output
Same Cultivar Type Different Cultivar Types

Late-Season One-Season-Late Mid-Season L-O L-M O-M

ADAP 0.98 0.99 0.98 1.00 1.00 1.00
MDAP 0.98 0.97 0.95 0.99 0.98 0.98
Yield 0.96 0.97 0.99 0.99 0.97 0.97

Note: L-O rice represents the cultivars between late-season and one-season-late cultivar types; L-M rice represents the cultivars between
late-season and mid-season cultivar types; O-M rice represents the cultivars between one-season-late and mid-season cultivar types.
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3.3.2. Sensitivity Analysis under Variation of Climate Parameters at the Panicle-
Formation Phase

Figure 5 presents the sensitivity indices of the 16 investigated parameters for model
outputs simulated in late-season, one-season-late, and mid-season rice cultivar types,
respectively under the panicle-formation-phase variation of climate parameters. At this
stage, climate parameters (SRAD, Tavg, and RAIN) had no influence on the variations
of all model outputs; the STi values were less than 0.05. For ADAP and MDAP, only
phenology-related parameters (P1, P2R, P5, and P2O) had a notable influence on the model
outputs. For yield, parameter P2O (STi > 0.70) was the most sensitive parameter, followed
by PORM (STi > 0.10). The growth-related parameters (G1 and G2) indicated slight effects
on yield. In general, the effects of single parameters (Si) on model outputs were significant,
while interactions between parameters were non-significant. In addition, the sensitivity
rankings of parameters were statistically consistent among various cultivars (Table 7).

Table 7. TDCC values based on the results of Sobol’ total order effects (STi ) under the same cultivar type and different
cultivar types with variation of climate parameters at the panicle-formation phase.

Model Output
Same Cultivar Type Different Cultivar Types

Late-Season One-Season-Late Mid-Season L-O L-M O-M

ADAP 0.99 0.99 0.99 0.99 0.99 0.99
MDAP 0.96 0.96 0.97 0.96 0.96 0.96
Yield 0.96 0.98 0.97 0.98 0.98 0.98

Note: L-O rice represents the cultivars between late-season and one-season-late cultivar types; L-M rice represents the cultivars between
late-season and mid-season cultivar types; O-M rice represents the cultivars between one-season-late and mid-season cultivar types.
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3.3.3. Sensitivity Analysis under Variation of Climate Parameters at the Ripening Phase

Figure 6 shows the mean sensitivity indices of the 16 investigated parameters under
the ripening-phase variation of climate parameters, simulated on late-season, one-season-
late, and mid-season rice cultivar types, respectively. For ADAP, the cultivar types showed
no significant influence on the ranks of parameter sensitivities. Parameter P2O was the
most influential parameter for ADAP (STi > 0.82). Except for phenology-related parameters
(P2, P2R and P2O), other parameters demonstrated no effect on the variation of ADAP
(STi < 0.05). For MDAP, parameter Tavg indicated more effects on MDAP in the late-season
cultivar type than in the one-season cultivar type. However, Tavg in the mid-season cultivar
type showed negligible effects on the variability of MDAP (STi < 0.05). For yield, parameter
P2O and PORM were the most sensitive parameters. The growth-related parameters (G1
and G2) had minor effects on yield. The effects of interactions between parameters on the
model outputs were non-significant. Table 8 shows that the TDCC values among different
rice cultivars were above 0.95.

Table 8. TDCC values based on the results of Sobol’ total order effects (STi ) under the same cultivar type and different
cultivar types with variation of climate parameters at the ripening phase.

Model Output
Same Cultivar Type Different Cultivar Types

Late-Season One-Season-Late Mid-Season L-O L-M O-M

ADAP 0.99 1.00 0.99 0.99 0.99 0.99
MDAP 0.96 0.97 0.97 0.96 0.95 0.95
Yield 0.97 0.98 0.98 0.99 0.98 0.98

Note: L-O rice represents the cultivars between late-season and one-season-late cultivar types; L-M rice represents the cultivars between
late-season and mid-season cultivar types; O-M rice represents the cultivars between one-season-late and mid-season cultivar types.
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4. Discussion
4.1. Sensitivity Analysis of Different Cultivars for Model Outputs during the Rice Growth Season

Crop growth models become more complicated due to the improvements in the
understanding of the physiological and ecological processes and their interactions and
the increased computing power of the corresponding simulators with several related
parameters to estimate. Global SA is an important component of modelling practices
which could help in factor prioritization [47], and the Sobol’ method demonstrated the
sensitivity of the CERES-Rice model with a variety of 16 investigated parameters among
30 rice cultivars for ADAP, MDAP, and yield during the rice growth season. Although, only
one year of data was used to analyze the SA of the experiment area, it has been reported
that data from one year or a single growth season can be used for the global SA [16,33].
Besides, the sensitivity ranking of the parameters was not significantly affected by the
year [48]. The computationally expensive Sobol’ SA method helped us to understand the
overall functioning of the CERES-Rice model in cultivar variations of the breeding trials
and then to implement a quantitative evaluation of SA for the model outputs. Although,
variance-based methods have expensive computation cost, they can explore all regions of
input space and consider both interaction and nonlinear response [21,49].

For different cultivars, the TDCC values for all model outputs were more than 0.90
(Table 5); this indicated that the effects of cultivars on parameter rankings were not signif-
icant (p < 0.05), which is due to two reasons: (1) different cultivars in the breeding trials
showed similar phenotypic traits (Table 4) and (2) these genotypes were all obtained from
two parents in this study. In addition, the cultivar types (e.g., late-season, one-season-late,
and mid-season types) had little effect on the ranking of the influential parameters for
model outputs. However, due to the variation of growth duration length, the distribution of
sensitivity index values of inter-cultivars was slightly inconsistent in the different cultivar
types (Figure 2).

As for specifically influential parameters, the Tavg, G4, and P2O (STi > 0.24) were
the most sensitive parameters for the variation of ADAP and MDAP. In the CERES-Rice
model, the development rate of rice depended on the degree days (DD). Parameter Tavg
which determined the daily maximum and minimum temperature was a key factor in
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calculating the day’s value of DD [50]. Accordingly, parameter Tavg (STi > 0.61) was the
most influential parameter for rice phenology among all cultivars. Parameter G4 was the
temperature tolerance coefficient, the influences of parameter interactions were greater
than the influences of the first-order contribution (Figure 3). Parameter P2O represented
the longest day length when the development rate was maximum. Compared to other
phenology-related parameters (P1, P2R, and P5), parameter P2O was more sensitive to
phenology, which was mainly because the longest day length in the breeding site was larger
than P2O; thus, a notable effect on the results. For yield, the most sensitive parameters
were similar to those for ADAP and MDAP (Figure 3), which could be explained by the
close relationship between growth duration length and panicle formation. It was of note
that the species parameter PORM (minimum pore space) had considerable influence on
yield. All the STi values of PORM among different cultivars were larger than 0.05.

4.2. Effects of Specific-Stage Variations of Climate Parameters on Sensitivity

This study demonstrated a new comprehensive insight into the SA of a crop model
with variations of climate parameters at specific stages. The variation of climate parameters
was divided into three phases: (1) vegetative phase (sowing to initial heading), (2) panicle-
formation phase (initial heading to full heading), and (3) ripening phase (full heading to
maturity). When the variation of climate parameters occurred at the vegetative phase, Tavg
showed significant effects on the model outputs. It demonstrated that the rice growth was
easily affected by the changes of climate conditions at the vegetative phase regardless of the
different cultivars (Figure 4). In phenology-related parameters, P2O was the most sensitive
parameter for the model outputs. The result agreed with the global SA when the variation
of climate parameters occurred during the whole growth season (Figure 7). At panicle-
formation phase, climate parameters indicated no effects on the model outputs, which
was likely due to the small duration length of this phase (4–5 days) which had negligible
influence on the accumulation of degree days. At the ripening phase, climate parameters
showed no influence on ADAP (Figure 6), which was because ADAP was only controlled
by the accumulation of thermal time from planting to flowering. The effects of climate
parameters on different cultivar types were not completely concordant. For instance,
parameter Tavg in late-season and one-season-late cultivars showed a considerable effect
on MDAP (STi > 0.1); while Tavg in mid-season cultivars indicated no significant effect
on MDAP (STi < 0.05). In general, the sensitivity rankings of the parameters were similar
under variations of climate parameters at the panicle-formation phase and ripening phase
(Figures 5–7).

Cultivars with environment studies have been conducted such as investigations
of ideal cultivars for the given environments for rice [51] and wheat [52], as well as
investigations of genetic gains in soybean for given possible sources [53]. However, due
to the variation of irrigation, fertilization, and soil conditions, these factors could bring
large uncertainty as well as interactions for the global SA. In this study, all the investigated
cultivars were planted in the same site with the same field management and soil conditions;
we only analyzed the effects of inter-cultivars and cultivar types for the model outputs with
variation of climate parameters at specific stages, which allowed for testing the CERES-Rice
model responses to the changes of cultivars and climate status as well as utilizing genotypes
in the currently explored conditions in the breeding trials. The ideal cultivars in different
locations might be related to different climate conditions. Therefore, the variations of
climate conditions at specific phases should be considered in selecting reasonable cultivar
types in rice breeding.
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specific-stage variations of climate parameters. (a,e,i), (b,f,j), (c,g,k), and (d,h,l) represent the main influential parameters
for model outputs (ADAP, MDAP, and yield) under variations of climate parameters for the whole growth season, vegetative
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5. Conclusions

The Sobol’ method was applied to investigate the effects of cultivars and different
specific-stage variations of climate parameters on parameter sensitivity in the CERES-Rice
model. The global SA demonstrated that the variation of climate parameters was: (1) for
the whole rice growth season, the interactions between parameters were larger than the
effects of the parameters themselves for the model outputs and different cultivar types
showed no significant effects on parameter rankings (p < 0.05); (2) at the vegetative phase,
Tavg indicated a considerable effect on the variation of all the model outputs; (3) at the
panicle-formation phase, the climate parameters demonstrated no effect on model outputs
(STi < 0.05); (4) and at the ripening phase, ADAP were only affected by phenology-related
parameters while Tavg showed different effects on MDAP depending on the cultivar types.
Additionally, the species parameter PORM indicated an indispensable influence on yield
regardless of the different specific-stage variations of the climate conditions (STi > 0.05).
In all, these investigations provided useful knowledge to guide efforts toward model
calibration and applications in rice breeding trials.
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Appendix A

Table A1. Cultivar parameters range of the CERES-Rice model.

Parameter Description Unit Range

P1 Time period in ◦C above a base temperature of 9
◦C during the basic vegetative phase GDD (◦C) 210–900

P2O Critical photoperiod (in hours) at which the
development occurs at a maximum rate hours 10.4–13

P2R
Extent to which phasic development leading to
panicle initiation is delayed for each hour
increase in photoperiod above P2O

GDD h−1 30–200

G1 Potential spikelet number coefficient – 50–80

G3 Tillering coefficient relative to IR64 cultivar under
ideal conditions – 0.3–1

G4 Temperature tolerance coefficient – 0.8–1.25
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