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Abstract: Farm-scale crop yield prediction is a natural development of sustainable agriculture, pro-
ducing a rich amount of food without depleting and polluting environmental resources. Recent
studies on crop yield production are limited to regional-scale predictions. The regional-scale crop
yield predictions usually face challenges in capturing local yield variations based on farm manage-
ment decisions and the condition of the field. For this research, we identified the need to create a
large and reusable farm-scale crop yield production dataset, which could provide precise farm-scale
ground-truth prediction targets. Therefore, we utilise multi-temporal data, such as Sentinel-2 satellite
images, weather data, farm data, grain delivery data, and cadastre-specific data. We introduce a deep
hybrid neural network model to train this multi-temporal data. This model combines the features
of convolutional layers and recurrent neural networks to predict farm-scale crop yield production
across Norway. The proposed model could efficiently make the target predictions with the mean
absolute error of 76 kg per 1000 m2. In conclusion, the reusable farm-scale multi-temporal crop yield
dataset and the proposed novel model could meet the actual requirements for the prediction targets
in this paper, providing further valuable insights for the research community.

Keywords: farm-scale crop yield prediction; deep learning; hybrid neural network; convolutional
neural network; recurrent neural network; Sentinel-2 satellite remote sensing data

1. Introduction

In Norway, sustainable crop yield production depends on the agro-climatic conditions,
the persistence of rainfall, soil quality, and other infrastructural development [1]. As the
global population has been increasing, it is a significant challenge for farmers to produce
increased quantities and better quality grains [2]. In this paper, we focus on exploring farm-
scale crop yield prediction. We believe that it will provide valuable insights to the farmers
in terms of knowing the particular type and quantity of crops in growing seasons based on
geographical location and other environmental factors. In addition, it will improve food
security and aid decision-making at various administrative levels.

In the past decade, machine learning has become an increasingly researched topic,
used to predict and improve crop yield production worldwide [3]. Multiple studies
have shown that county-scale crop yield prediction models are well suited for regional
or national applications. However, limited studies have been reported on farm-scale
yield prediction [4]. The primary reason is the limited ground-truth data available for
farm-scale (i.e., kg per 1000 m2) production [4] due to the lack of funding needed for
sustainable agriculture and collecting cost-intensive satellite images [5,6]. However, these
impediments in the agriculture sector seem to fade. In Norway, detailed agricultural
reports, including farm-scale statistics, have been made publicly available since 2017.
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One can access the high-resolution satellite images provided by the European Union’s Earth
observation program, Copernicus.

In this paper, we identify the need to explore the use of satellite images from the
Copernicus Sentinel-2 mission and the availability of other farm-scale digital crop pro-
duction data. In addition, we propose and build a novel deep learning model to predict
farm-scale crop yields throughout Norway. To accomplish this research study, we worked
with a joint research project named KORNMO (KORNMO: https://prosjektbanken.for
skningsradet.no/project/FORISS/309876). The principal aim of this project is to explore
the potential deep learning-based models to predict the added value in the agriculture
industry in terms of production optimisation, quality management, and sustainability.

1.1. Problem Statement and Hypotheses

We identified that the weather data are helpful in predicting farm-scale yield produc-
tion, and the satellite data are beneficial to predict regional-scale yield production [4–7].
This research study explores the possibilities of building neural network models that can
utilise satellite data for farm-scale yield prediction. To further concretise the problem, we
define four hypotheses that this research study will test:

• H1: Satellite images of farms and their surroundings can be used to accurately
predict farm-scale crop yields.
The first hypothesis assumes that farm-scale crop yield prediction is possible given the
availability of enough per-farm crop yield data in Norway and satellite images. We
will then do a comparative analysis with the preliminary experiment using weather
data to predict crop yield production. This is a prerequisite for the subsequent hypothe-
ses, assuming that satellite data contains independent variables affecting crop yield.

• H2: Accurate field boundaries along with satellite images increase crop yield accu-
racy significantly.
This hypothesis assumes that differences between field conditions and management
decisions in neighbouring farms can effect crop yield, which could be difficult for
a model to learn unless accurate field boundaries are provided. If the hypothesis is
correct, it may show that satellite images can explain differences in crop yield between
neighbouring farms and that such models can aid in decision-making at a farm level.

• H3: Prediction accuracy can be further increased by combining satellite images
and weather data.
It is assumed that weather data and satellite images contain some different and inde-
pendent variables. We hypothesise that a deep learning model can learn features from
both datasets effectively and that this provides better performance than models using
the two data sources separately. Higher prediction accuracy makes the prediction
model more helpful in aiding farmers and subsequent industries.

• H4: It is possible to predict farm-scale crop yield earlier in the growing season
with some reduced accuracy.
The most accurate crop yield predictions will likely be when there is as much data
available as possible, meaning at the end of the growing season. However, getting
accurate estimates for deliveries earlier allows mills and administrative authorities to
prepare in advance.

Based on the proposed hypotheses, the authors investigate that the deep learning has
emerged as the current state-of-the-art for crop yield prediction using remotely sensed
data [8,9]. The progression of remote spectral observations for vegetation analysis over
time was also investigated. From past decades, crop yield prediction has been a well-
established research area and most research uses traditional statistical methods and hand-
crafted features derived manually from satellite images [9]. In recent years, automatic
feature extraction from multispectral images using deep neural networks has outperformed
conventional methods that rely on handcrafted features. Therefore, we address the state-of-
the-art knowledge on crop yield prediction using satellite images, so-called remote sensing.
This makes the alignment with the proposed hypotheses more apparent.

https://prosjektbanken.forskningsradet.no/project/FORISS/309876
https://prosjektbanken.forskningsradet.no/project/FORISS/309876
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1.2. State-of-the-Art Approaches to Crop Yield Prediction
1.2.1. Origins and Early Use of Remote Spectral Observations

In 1973, NASA launched the world’s first Earth-observing satellite named Landsat 1.
The intent of Landsat 1 was to monitor and study the landmass of planet Earth. The
satellite had two instruments to carry out the data collection: a primary camera system
named the Return Beam Vidicon (RBV) and a secondary and experimental multispectral
scanner (MSS) [10]. One significant project conducted by Rouse et al. in 1974 studied how
the Landsat 1 MSS data could provide quantitative regional vegetative information of the
farmlands throughout the Great Plains Corridor rangeland in America [11]. Later, in 1975,
America launched the Large Area Crop Inventory Experiment (LACIE) in a joint effort
between the United States Department of Agriculture (USDA), the National Oceanic and
Atmospheric Administration (NOAA) of the Department of Commerce, and the National
Aeronautics and Space Administration (NASA). This project aimed to evaluate and prove
the economic importance of applications built using remote sensing from space. The LACIE
project concentrated on wheat grown in North America and combined Landsat data with
NOAA’s meteorological information to run experimental investigations on the crops. The
ultimate aim was to satisfy the requirements of being able to monitor and make crop
production inventories on a global scale [12].

In 1976, the Agricultural Research Service (ARS) of the USDA continued developing
agrometeorological models for forecasting wheat yields [13]. Even though the use of
remote spectral observations for forecasting models received scepticism at the time, earlier
research by [11–13] demonstrated that it would be both of value and technically feasible.
The spectral observations were to be collected through handheld, aircraft, or spacecraft-
mounted sensors to combine these observations with soil property and daily increments
of weather data to estimate the yield of the saleable plant parts ultimately. Experiments
showed spectral observations could calculate vegetation indices. Which could measure the
amount of green photosynthetically active tissues and estimate reliably the leaf area index
(LAI), both of which could be used as input to their models [13]. As proven by [11–13], the
multispectral images carry information that is useful for crop yield-related experiments,
but it is challenging to extract the full potential of the data. The most promising avenue at
the time was the use of vegetation indices.

1.2.2. Deriving Values from Vegetation Indices

After the initial research and experiments on vegetation and yields using MSS data
collected by Landsat, there was further work to continue these efforts. One common
and central theme seems to revolve around the use of vegetation indices [14]. Vegetation
indices can capture the information of multispectral images into a format well suited for
experimentation using existing models and techniques. Bendetti et al. conducted a study
to investigate the potential use of NDVI applied to spectral imagery collected by NOAA
satellites in Italy in the period 1986 to 1989 [15]. The study considered the production of
wheat of the provinces in the region Emilia Romagna. The spatial resolution of the images
collected was about 1 × 1 km and was applied to test sites of 900 ha (3 × 3 km), resulting
in each test site having 3 × 3 pixels of data per image. The researchers calculated the NDVI
of each pixel and calculated the mean of these represented the real NDVI that provided
reasonable yield estimates at a province and regional scale.

In 2014, Johnson assessed the use of remotely sensed variables for forecasting corn
and soybean yields in the United States. In this case, the remotely sensed variables were
satellite multispectral images collected from Terra satellites, daytime and night time Land
Surface Temperature (LST), and precipitation. The satellite images were masked based on
the Cropland Data Layer (CDL) produced by the NASS, such that only pixels connected
to soybean or corn remained, and an NDVI was calculated for each pixel. Much like
Bendetti et al., the representative NDVI of each day was the mean of all NDVI values
from an image [14]. Thus, we identify that vegetation indices have been proven to work
adequately with crop yield prediction and estimation. Given that satellites had a relatively
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poor resolution for many years, using vegetation indices such as NDVI allowed it to
capture vegetational relevant properties into a single feature that is well suited for various
linear models.

1.2.3. Machine Learning Applied to Remotely Sensed Data

There has been increasing use of machine learning and deep learning techniques on
remotely sensed data to estimate and predict different crop yields [9,16]. Various studies
have found that non-linear approaches outperform linear models when predicting and
estimating yield with remotely sensed data [14,16,17]. Crop phenology (phenology is
defined as “a study of the timing of recurring biological events” [18]) varies from season
to season, depending on environmental and managerial factors [19]. Jiang et al. set out
to explore a phenology-based LSTM model for corn yield estimation [17]. The corn crop
includes six distinct phases of development throughout the season: planted, emerged,
silking, dough, dent, and mature. Jiang et al. split these into five Growth Phases (GP)
(the growth phases as identified by Jiang et al. GP1: planted to emerged; GP2: emerged
to silking; GP3: silking to dough; GP4: dough to dented; GP5: dented to mature), where
one growth phase symbolises one time step for the LSTM. Each time step included three
meteorology features and a single vegetation index WDRI (Wide Dynamic Range Vegetation
Index (WDRVI) is a vegetation index similar to NDVI. However, it will be less affected by
the saturation effect when the density of biomass is high [17]), in total 4 features × 5 time
steps, with this, the LSTM should estimate county-level corn yield. With ten years of
training data (2006–2015), they saw an RMSE of 0.87 metric tons per hectare [17]. This
result is better than what [14] could manage using the RuleQuest Cubist (0.96), but cannot
be directly compared due to the number of and which seasons involved in the training is
not the same.

In 2017, You et al. developed a novel approach by combining convolutional and LSTM
networks. The researchers predict the soybean yield on a county-level scale in the USA
using multispectral images [9]. As far as we know, their research is the first to use the raw
images as input to the deep learning algorithms. You et al. argue that using handcrafted
features such as NDVI can be pretty crude. Using deep learning to find the relevant
features in multispectral images automatically can be more effective. Both convolutional
and LSTM networks were trained on extracted features. They saw that these networks
significantly outperformed competing methods, such as ridge regression, decision trees,
and DNNs, with an RMSE reduction of 30% compared to the best of the competing models.
You et al. demonstrate that deep learning models can automatically find relevant features
for yield prediction from multispectral imagery and that handcrafted features might not be
necessary [9]. Inspired by You et al. [9] and their histogram approach, Sharma et al. trained
neural networks using raw satellite images into a CNN-LSTM model. Their approach
forgoes any handcrafted or rudimentary features, such as vegetation indices or histograms.
Instead, they use a convolutional neural network to perform all necessary feature extraction
and learn the best representation for yield prediction. They argue that prior work has not
considered surrounding factors, such as water bodies or urban areas that may effect crop
yield [8]. By comparing the proposed models with the histogram approach of You et al. [9]
and other machine learning and regression methods, they show that using raw satellite
images outperforms all previous methods on these data. In addition, they show that
adding land cover masks improved their model by 17%, which suggests that contextual
information is essential for these models.

Khaki et al. in 2019 [20], proposed a CNN–RNN framework to predict crop yield
production for corn and soybean yields in the United States for years 2016, 2017, and 2018
using historical data. The researchers implemented various deep learning methods such as
random forest, deep fully connected neural networks, and LASSO and did comparative
analysis with the newly proposed model. They found RNN-CNN model achieved a
root-mean-square-error 9% for corn and 8% for soybean, which outperformed all other
implemented methods. Later, in 2021 [21], the researchers used expanded data collected
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from more counties across the United States, i.e., covered 1132 counties for corn and 1076
counties for soybean. They proposed a new convolutional neural network model called
YieldNet, which utilised transfer learning between corn and soybean yield predictions
by sharing the weights of the backbone feature extractor. In addition, to consider the
multi-target response variable, they proposed a new loss function, which could make
accurate early predictions before the harvesting period.

A recent study by Sagan et al. in 2021 presented the use of raw satellite images for
field-scale level yield prediction. Although You et al. used raw satellite image data, they
also condensed it using pixel value histograms. As well as to investigate the use of raw
images, Sagan et al. also did experiments based on several handcrafted features, such
as vegetation indices [22]. The researchers used the images collected from each plot for
two main directions in their study: (1) condense them into handcrafted vegetation indices,
and (2) use the raw images directly in a CNN-based model. Their results show that raw
image-based deep learning performance was comparable, if not superior, to deep learning
methods using handcrafted features. Overall, the root-mean-square error was about 10%
regardless of crop-type and irrigation conditions. Their work showcase that an image-
based deep learning approach can utilise spectral, spatial, and temporal information from
the satellite data and essentially reduce the need for feature engineering. Most studies have
evaluated the use of remotely sensed data on a county or regional scale, as discussed in this
section. As crop yield statistics required to make predictions based on farm or field-scale
have not commonly been available to the public [4]. Sagan et al. [22] made an effort to
predict field-scale crop yields using deep learning by building a dataset comprising small
experimental plots and making yield predictions for these plots. The results show the
models can learn growth-related features, even on such small plots. In conclusion, this
indicates that remote sensing with deep learning can be effective for field and farm-scale
predictions, given that enough crop yield statistics are available.

We present our contributions thus: (i) an accurate farm-scale crop yield prediction
using satellite images; (ii) identifying field boundaries by applying image masks on satellite
images to improve the crop yield accuracy; (iii) fusing satellite image data and weather
data for further crop yield prediction improvement; and (iv) predicting farm-scale crop
yield production earlier in the growing season. In this section, we presented the overview
of this research study and motivated the idea behind this study. In addition, we define the
current state-of-the-art approaches to the crop yield predictions using remotely sensed data.
In Section 2, we report on the history of Norwegian agriculture and grain production. We
also report the relevant studies of using remote sensing data and building deep learning
models in agriculture improvements. Section 3 presents the methodology of this research
study. We will discuss the implementation of baseline and novel models to carry out the
yield prediction in addition. Section 4 showcases the experiments conducted on the satellite
images and compares the implemented models’ performances. We summarise our results
and assess them against our problem statement and the four hypotheses in Section 5. We
conclude this research study and discuss further directions for future work in Section 6.

2. Related Work
2.1. Norwegian Agriculture and Grain Production

Norwegian agriculture has traditionally been family farming [23]. With the support of
society and politicians, the goal is to reach national self-sufficiency based on the available
natural resources. The government has designed the subsidy rates to compensate for any
disadvantages to keep agriculture active and profitable. For example, land payments are
differentiated by geography and type of agricultural production [24]. Although Norwegian
agriculture has comprised smaller family farms spread out, there has been a decline in
the number of farm holdings by 50% in the last three decades. Simultaneously, there has
been an increase in the average size of farms, from 14.7 hectares in 1999 to 24.7 hectares in
2018 [25]. The most produced categories of food throughout the country include milk and
milk products, meat, poultry, eggs, potatoes, and grains [23]. The Norwegian topography
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consists mainly of mountain masses, and as a result, only 3% of the total landmass is
cultivated land (excluding Svalbard and Jan Mayen). Because of differences in climatic
conditions, a minor part of this cultivated land can grow cereal for human consumption [25].
Nibio has constructed a map by using climate divisions to showcase where the different
climatic zones are located [25]. As per the research, Norway’s eastern and southeastern
part is best suited to produce food-grade grains. There are mainly four types of grain
produced in Norway: wheat, barley, oat, and rye (and rye–wheat).

Barley is the most grown grain in Norway because of the need for a shorter growing
period. The most suitable growing areas are in the north and in higher altitudes, where
barley is used for animal fodder [26]. Wheat requires a longer growing season compared
to barley. Wheat can be harvested in two categories, i.e., spring wheat and winter wheat.
Winter wheat resumes growing in the spring and is harvested in the summer. The result is
the same type of grain, but winter wheat may give higher yields as it will resume growing
earlier in the spring compared to spring wheat [27]. Oats thrive in cold and moist climates,
which makes them well suited for cultivation in Norway. The vast majority, i.e., over 90%
of oats grown, are used for animal feed, and 2% are used for human consumption [28]. Rye
is the least grown grain in Norway, covering 2% of the total area used for grains [29]. Rye
thrives in higher altitudes, but is mostly only grown in the east and southeastern parts of
the country [29,30].

2.2. Plant Growth Factors

Plant growth and wellness are affected by elements from its surroundings. According
to Woodward F. Ian [31] and Oregon State University [32], the four main environmental
factors affecting plant growth are light, temperature, water, and nutrition.

• Light: Light is a component of photosynthesis and is essential for overall plant growth.
In Norwegian crops, the duration of light is particularly relevant; according to Åssveen
and Abrahamsen, the duration of light in a day (day length) is more influential than
temperature as growth factors [33].

• Temperature: temperature affects growth in several ways. A rise in temperature
triggers the germination process, so the temperature controls when the seedlings
initially sprout [34]. The temperature also affects when crops such as winter wheat
break dormancy to resume the growth in spring [35]. A typical measurement using
temperature to estimate plant growth is the so-called sum degrees, meaning the sum
of mean daily temperatures for the period. Crops will have different requirements for
how much sum degrees are needed before it is ripe for harvest [31,32].

• Water: together with light, water is a primary component of photosynthesis, and
consequently, an essential factor for growth. For crops, water can come in the form of
direct precipitation, humidity, or irrigation [31,32].

• Nutrition: plants need in total 17 essential chemical elements to grow. Three of the
required components are found in air and water (carbon, hydrogen, and oxygen),
while the soil must provide the rest [36]. Farmers can fertilise the soil, which adds
materials containing nutrients to make these available to the plants. The roots absorb
approximately 98% of the nutrients through soil water [37]. If the plant is under stress
by extreme temperatures, drought, or low light, this can lower the plants’ ability to
absorb nutrients efficiently [38].

With the understanding of Norwegian agriculture, grain production and plant growth
factors, we are now exploring deep learning models to predict crop yield production. We
will report on remote sensing techniques used by researchers in predicting crop yields and
how it helps analyse vegetation indices.

2.3. Deep Learning Models in Crop Yield Prediction

In crop yield prediction, the researchers used a supervised algorithm called percep-
tron [39]. There are two types of perceptrons, i.e., single layer perceptron and multilayer
perceptron. Single layer perceptron algorithm is a type of binary classification which en-
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ables the artificial neurons to learn and processes elements in the training set one at a time
automatically [40,41]. Multilayer Perceptron (MLP) is constructed by combining multiple
perceptrons and placing them in layers [41]. An MLP architecture can be considered a Deep
Neural Network (DNN) when the stack of hidden layers is big enough, although the exact
number of layers required for it to be considered deep is not clearly defined [40].

2.3.1. Convolutional Neural Networks

In 1981, inspired by research on the receptive fields in the visual cortex of cats and
monkeys, Kunihiko Fukushima created a new layered hierarchical architecture which he
called the neocognitron [42]. Convolutional Neural Networks (CNNs) share the same basic
architecture as the neocognitron. CNN uses a combination of convolutional layers, and
sub-sampling layers called pooling layers. They are widely used in the field of computer
vision, taking images represented as three-dimensional matrices of pixels (width×height×
channels) as input [43]. Both convolutional and pooling layers take a 3D matrix as input
and outputs a new 3D matrix, typically with fewer pixels than the previous layer. In deep
neural networks, each neuron is directly connected to all the neurons in the previous layer,
allowing each to learn global patterns across its input space. This approach enables fully
connected layers to learn complex patterns on the input space. As a result, it limits the
ability to detect local correlations at any position in the input space, but it can identify a local
pattern in any different position of the input space by simply adding enough neurons [44].
This leads to an inefficient network architecture, which increases computational costs and
requires large datasets that include pattern samples in all possible locations.

2.3.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family of neural networks that take data in
sequences as input. Recurrent neural networks are known for their ability to “remember
an encoded representation of its past” [8] by passing on the output of the previous time
step along with the input at the current time step. Each time step of the sequence is
processed using the same weights as all other time steps, significantly reducing the number
of neurons required to process long data sequences. Reusing the same weights for each
time step allows RNN to generalise well even on sequences of varying lengths, as the
output can be extracted from any calculation step. A known limitation of simple RNNs is
their inability to retain information across long sequences of data because of the vanishing-
gradient problem that arises with very deep neural networks [45,46]. To solve this issue,
Hochreiter and Schmidhuber released a significantly more complex RNN cell called the
Long Short-Term Memory (LSTM) cell in 1997 [47]. Although LSTMs have proven superior
to standard RNNs, they are also more complex and require more computations to train [47].
A newer variant of LSTM called the Gated Recurrent Unit (GRU) was simpler to compute
and implement [48]. The primary purpose of GRU is to drop information that is no longer
relevant and to control how much information is carried over to the next step, which helps
the RNN to remember long-term information [48].

2.4. Remote Sensing Technique in Crop Yield Prediction

Remote sensing is defined as “the field of study associated with extracting information
about an object without coming into physical contact with it” [49]. Although the definition
is broad, the term is primarily used in the context of earth observations using optical
imaging instruments on-board satellites or aircraft [49,50]. Satellites used for earth obser-
vations often carry a unique optical imaging sensor, making them capable of measuring
the earth’s reflectance in multiple spectrums. For example, the Sentinel-2 satellites carry a
Multi-Spectral Instrument (MSI) measuring the reflectance of the earth in 13 spectral bands,
from the Visible and Near-Infrared (VNIR) to Short-Wavelength Infrared (SWIR) [51]. The
images produced by such instruments allow us to look at unknown parts of the earth and
vegetation indices that are simply invisible to human eyes. In addition, it captures the
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changes in plant growth over time that can span anything from minutes to decades of
measurements [49].

Identifying Vegetation Index

A vegetation index is a type of feature engineering in which several spectral bands
are combined to form compact and more manageable vegetation features. A widely used
type of vegetation index is the Normalised Difference Vegetation Index (NDVI). The NDVI
uses known properties of vegetation and their reflectance to show whether a pixel from
a multispectral image contains healthy vegetation and to which degree [52]. The specific
relevant properties used to calculate the NDVI are:

1. The leaves of plants contain chlorophyll pigments, which is an essential factor in
photosynthesis and ultimately makes the leaves green. Chlorophyll pigments make
the leaves absorb a lot of the red and blue regions of the visible and near-infrared
(VNIR) spectrum, but not in the green region. The number of chlorophyll pigments
can indicate health in vegetation; thus, measuring the amount of reflection in the red
spectrum can estimate vegetation health. Low reflectance in the red spectrum shows
healthy vegetation.

2. Leaves have evolved to scatter solar radiation in the Near-Infrared (NIR) part of the
spectrum, as it is difficult to extract the energy at these wavelengths efficiently (longer
than 700 nm). This implies that healthy vegetation will have higher reflectance of NIR.

Based on these known properties, the formulae for calculating the NDVI for any
given pixel in a multispectral image can be seen in Equation (1). The pixel values from
the near-infrared (NIR) and red (R) bands are used to calculate the NDVI for that specific
pixel location. One method to utilise the NDVI values for existing models and frameworks
is to get the NDVI of all relevant pixels and do an arithmetic mean to get a single value
representing the NDVI of the entire area [14,15].

NDVI =
NIR − R
NIR + R

(1)

3. Material and Methods

In this section, we present the research methodology for this study. As shown in
Figure 1, we discuss the sources of the collected multi-temporal data and the techniques
to handle these data in Section 3.1. We present the data pre-processing techniques in
Section 3.2. In addition, we present the feature extraction techniques used to expand
the dataset and combat overfitting. We then present the proposed prediction models to
predict per farm-based crop yield production in three subsections based on processed
data: Section 3.3 includes a baseline weather data model; Section 3.4 introduces two
initial experiments focusing on single and multi-temporal satellite images; and Section 3.5
presents three newly proposed approaches using a combination of weather data and
satellite images.

3.1. Multi-Temporal Data Collection and Data Handling

There is no readily available single dataset that can be downloaded and used for
machine learning in yield prediction in Norwegian agriculture. Therefore, a large portion
of this work has been collected from different sources that can be used for crop yield
prediction on a farm-scale level. This section explains which data sources are used and
how the data have been collected.



Agronomy 2021, 11, 2576 9 of 31

Figure 1. Research methodology for this research study.

3.1.1. Norwegian Agriculture Agency

The primary data sources for the project are the official public archives of farmer grant
applications and grain deliveries from the Norwegian Agriculture Agency. As Norwegian
grain farmers rely on subsidies, they must fill out yearly grant applications describing the
land used for crop cultivation. Some of these data are publicly available. These are used to
build a base dataset that can integrate other data sources through each farmer’s unique
organisation number (all farmers are registered in the official registers (Brønnøysundreg-
istrene), giving them a unique organisation number). From the Norwegian Agriculture
Agency, three different yearly reports serve as the base data for this research study. First,
the grain delivery reports that include how much grain of different types, i.e., barley, oats,
wheat, rye, and rye wheat, each farmer has sold in the last year. Second, the agriculture
production subsidies from farmers regarding the area of cultivated land. These areas
provide the relative crop yield for each farm and crop type from the year 2017 to 2019 for
crop yield prediction [53]. The area of cultivated land use is the only missing information
that prevents data from 2012, through 2016, from being used in our experiments. Third, As
farmers must submit which land areas are used, the Norwegian Agriculture Agency has
detailed reports linking farmers’ organisation numbers to all used cadastral units (an area
of land, as specified in the official Norwegian cadastre (matrikkelen)). We served these data
as a basis for precise geographic location and masking of images, as will be described in
forthcoming sections.

3.1.2. Geographical Data

Precise geographical mapping for each farm is required to retrieve accurate remote
sensing data. The Norwegian Institute for Bio-economy Research (NIBIO) provides a map
of cultivated land areas throughout Norway. Together with cadastral identifiers from the
land use data, these two map layers allow us to create precise geographical mappings for
each farm in the dataset. Figure 2a,b show a visualisation of the two map layers, further
explained in this section.

The Norwegian cadastre contains millions of geographical entities, each one is describ-
ing some land area with a unique label or identifier. The cadastral identifiers are composed
of a commune number and three numbers describing the exact property and section. Using
the land-use reports from the Norwegian Agriculture Agency, a collection of geograph-
ical shapes for all farms, each year from 2017 to 2019, was extracted from the cadastre.
However, the cadastre lacks information about agricultural land; the geographical data
do not separate forested areas, water, and other land types from cultivated land (visible in
Figure 2a). New and updated cadastral identifiers for old values are obtainable through a
public API at Geonorge (https://ws.geonorge.no/kommunereform/v1/), which was used
to create a mapping from the old to new identifiers compatible with the latest cadastre.

https://ws.geonorge.no/kommunereform/v1/
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Figure 2. Visualisation of the geographical layers, overlaid on a satellite images.

We further track soil and field-related features, such as quality, organic material, and
water storage capacity, throughout Norway. These datasets are made publicly available
by Geonorge (https://www.geonorge.no/) and can be downloaded in formats such as
GDB (geodatabase), which making it possible to distinguish fields from the rest of the
environment (such as lakes, forests, and towns). A well-suited dataset for this is the
soil quality (in Norwegian: jordsmonn: https://kartkatalog.geonorge.no/metadata/jords
monn-organisk-materiale/6898f450-01ea-4b1c-b284-194308de1445) dataset, illustrated in
Figure 2b, which, according to NIBIO, maps roughly 50% of all cultivated fields in Norway.
The soil-quality dataset includes detailed information on the field boundaries and further
classification of soil quality within these fields. For this project, only the field boundaries
are used. A new geospatial dataset is created by extracting the intersection between the
two layers while keeping cadastral attributes to connect field boundaries from NIBIO
with the cadastral boundaries data from the cadastre. The output dataset has precise field
boundaries for each farm. See Figure 2c for illustrations of the two base layers (cadastral
and field boundaries) and the resulting intersection.

3.1.3. Weather Data

The weather is one of the main external factors that are crucial for farming [54]. Grain
farmers depend on periods with little precipitation in the spring so that the fields are dry
enough to support heavy equipment for ploughing, harrowing, and sowing. After sowing,
the temperature must be stable so that the seedlings sprout and precipitation throughout
the summer is required to water the plants [55]. As the grains mature, a period of limited
precipitation is needed, so that a combined harvester can harvest the grains before they can
be delivered to the mills. As shown by [14], temperature is highly correlated to the eventual
yield, and precipitation is relevant when there is no irrigation used [56]. The Norwegian
Meteorological Institute (MET Norway) collects weather data across Norway and makes
it publicly available through the Frost API (https://frost.met.no/). MET Norway has
1578 weather stations throughout Norway, where roughly 840 includes temperature and
630 includes precipitation data, with some variations from year to year. The temperature
measurements are available at one-hour intervals, but that level of granularity is not
required for this project. It split temperature measurements into individual days, where a
min, max, and arithmetic mean are stored. The accumulated precipitation is downloaded
from each weather station with these measurements, resulting in one precipitation feature
per day.

Previously, the weather at each farm was estimated using the readings from its nearest
weather station [53]. This approach has been further improved by including weather
stations with intermittent data. Interpolation (interpolation using linear triangulation

https://www.geonorge.no/
https://kartkatalog.geonorge.no/metadata/jordsmonn-organisk-materiale/6898f450-01ea-4b1c-b284-194308de1445
https://kartkatalog.geonorge.no/metadata/jordsmonn-organisk-materiale/6898f450-01ea-4b1c-b284-194308de1445
https://frost.met.no/
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was attempted but was dismissed because too many farms are outside the bounds of
the possible triangulation arrangements) using neural networks is used to estimate the
weather at each farm to reduce this difference. By training two deep neural networks to
create soft sensors, lower deviations are achieved than nearest neighbour interpolation.
Training samples are designed by keeping the sensor’s reading as the actual/desired
output value and providing the readings of the three closest sensors and their normalised
latitudinal, longitudinal, and vertical (distance from sea level) differences as inputs. The
trained model is then used to create soft sensors at the location of each farm. Temperature
and precipitation models are trained separately since the temperature and precipitation
sensors often have different geographical locations. A deeper network showed a slightly
lower prediction error for the temperature model than the precipitation model, where
additional depth provided no significant benefit. As shown in Table 1, when compared to
the nearest neighbour, the DNN models (a dense neural network built for the preliminary
project [53] further improved the predictions compared to the results reported in Table 1
by including weather stations with intermittent data) achieve a 23% reduction in mean
absolute error in soft precipitation sensors and a 67% reduction in mean absolute error in
soft temperature sensors.

Table 1. Mean absolute errors in weather interpolation.

Nearest Neighbour Deep Neural
Network Change

Precipitation error 1.5 mm 1.15 mm −0.45 mm (−23%)
Temperature error 1.6 ◦C 0.52 ◦C −1.08 ◦C (−67%)

3.1.4. Satellite Image Data

Using satellite images is the current state-of-the-art for farm-scale crop yield prediction
with no intrusive and labour-intensive monitoring, as described in [8,9,22]. Therefore, it is
also a significant focus of this research study. Building a dataset of multispectral satellite
images for farm-scale crop yield predictions relies on the availability of high-resolution
satellite images combined with precise geographical information about farms [22]. There-
fore, the Copernicus Sentinel-2 satellite mission is the source of all images used in this
research study. The Sentinel-2 mission is developed by, and operated by, the European
Space Agency. It comprises two polar-orbiting satellites (S2A and S2B) that provide high-
resolution images of the earth every five days at the equator and more frequent at higher
latitudes (https://sentinel.esa.int/web/sentinel/missions/Sentinel-2). Images from these
satellites were accessed through Sentinel Hub, a subscription-based cloud API for satellite
imagery (https://www.sentinel-hub.com/). The Sentinel-2 satellites carry a multispectral
instrument that captures optical images in 13 spectral bands, including visible light (red,
green, and blue channels), NIR, and SWIR.

Using the geographical shape files described earlier in this section, each farm’s shape
is converted into a point at the geometry’s centroid, which is then used to build a 2 × 2 km
bounding box. With 2 × 2 km bounding boxes, roughly 65% of all farms in the dataset
are >90% found covered. This size provides good coverage of farms in the dataset while
not too large, leading to a larger image size or reduced resolution (in meters per pixel).
In preparation for the experiments, a dataset of 509,910 unique Sentinel-2 images was
pre-processed. The resolution of the images is 100 × 100 pixels, meaning a single-pixel
roughly represents an area of 20 × 20 square meters. The cloud API handles up-scaling
the 10 m resolution bands and down-scaling the 60 m resolution bands, using nearest
neighbour interpolation. All 12 channels were of equal size. Temporal changes for each
farm in the dataset are captured by having multiple images of the same farm throughout
the growing season. As a result, 30 images (from 1 March to 1 October of each year) are
downloaded per farm, with a mean temporal resolution of 7 days for which the best image
is queried, based on the least cloud coverage (selecting the least cloudy image for every

https://sentinel.esa.int/web/sentinel/missions/Sentinel-2
https://www.sentinel-hub.com/
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7 days is handled by the Sentinel Hub API). The result is an image time series for each
farm, with weekly images from approximately week 10 to 39 (see Figure 3).

Figure 3. Dataset sample showing a 30 week time series of a farm in natural colour. Images are
indexed 1–30, roughly equal to weeks 10–39.

3.1.5. Data Handling Using Image Masking

Image masking makes it possible to focus on portions of an image that is of interest.
Masks can be applied so that it either highlights certain parts or removes irrelevant parts
from the image [57]. In this research study, provided we know where the cultivated fields
are located, masks can be used on the satellite images to remove everything not registered
as a cultivated field or as extra information to highlight where the fields are located [58].

1. Generating masks: the image masks are generated in three steps:

• Intersect the bounding box and the cultivated fields for each farm, leaving only
the coordinates for cultivated fields inside the satellite images.

• Convert the geographic map coordinates of longitude and latitude to correspond-
ing pixel locations of the satellite images. Given that the images are 100 × 100,
the bounding boxes represent the borders of these images (top left 0,0 and bot-
tom right 100,100). Convert each field point within the bounding box to pixel
coordinates based on relative position within the bounding box.

• Generate a matrix of zeros and ones based on where the cultivated fields are
located, resulting in a 100 × 100 matrix.

2. Applying masks: we implemented two methods of applying masks to the images;
applied or added as a channel. In the first method, i.e., applied mask, the mask is
multiplied by each image channel. The result is an image where only the cultivated
fields remain, and all other pixel values are zero. In the second method, i.e., added a
mask, the mask is added to the image as a separate channel. The mask channel will
add some information to the image so that it can highlight which parts of the image
are cultivated fields.

3.1.6. Time Spans of Satellite and Weather Data

There are two time series in these dataset: satellite images and weather data. In
Norway, the growing season for grain usually starts mid-April, and harvesting is usually
done in August. However, it can also occur from July until late September, depending on
seasonal variations. Between 1 March and 1 October is downloaded for both satellite and
weather data to encapsulate the entire growing season within the dataset.

In conclusion, the dataset for the upcoming experiments through all the sources
mentioned above is utilised. It contains the following features per farm per year for the last
three complete production years (2017–2019) (to clarify, the primary key for each sample is
the farm-year combination. This gives us three samples for a single farm that has produced
grain for all three years): daily min, mean, and max temperatures; daily total precipitation;
latitude; elevation; weekly twelve-band satellite images; field mask; crop yields of the four
previous years; harvested area; crop type; and relative crop yields.
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3.2. Data Preprocessing
3.2.1. Normalisation

As we can observe from the previous section, we acquired data from various public
resources, which must be normalised before training. Most features are normalised to fit
a range between 0–1 better, using the linear scaling shown in Equation (2). The upper
and lower values are the minimum and maximum features for many features, resulting
in a min–max normalisation. For other features, such as the weather features, a fixed
normalisation range is applied to keep the normalisation consistent across the entire time
series and measurement aggregations (the temperatures for each day are aggregated by
min, mean, and max). Table 2 shows the upper and lower normalisation values used in
Equation (2) for all features that are not min–max normalised. The Sentinel-2 images have
pixel values between 0 and 1 from the source and are therefore not normalised before use.

normalised =
value − lower
upper − lower

(2)

Equation (2) shows how features are normalised. Lower and upper values are either
specified in Table 2 or they are set to a feature’s minimum and maximum values. For lower
and upper equal to the minimum and maximum values, this is called min–max normalisation.

Table 2. The normalisation constants (lower and upper) used to scale feature values where min–max
normalisation was not used.

Feature Lower Upper

Crop yield (kg/1000 m2) 0 1000
Temperature (◦C) −30 30

Precipitation (mm) 0 10
Historical yield (kg) 0 10,000

3.2.2. Implementing Data Augmentation to Reduce Overfitting

The models proposed in this study are deep learning-based, which can be considerably
data-hungry. The dataset involved spans three years (2017, 2018, and 2019) and comprises
509,910 unique images, whereas one sample contains 30 images, resulting in 16,997 samples
in total. Overfitting could be observed in the proposed models that train on raw satellite
images. Therefore, we extensively used data augmentation techniques on the images
to increase the overall dataset size and combat overfitting. We implement three main
data augmentation techniques: image cropping, image rotation, and random pixel noise.
Because the memory requirements of the complete dataset are too large to fit in GPU
memory or even RAM, images are continuously read from storage. Because both rotation
and noise are performed with some randomness, a complete cycle of the augmented
dataset is never the same. No data augmentation was performed on the validation samples.
However, for models that take cropped images, only the centre crop was used for validation.

• Cropping: the cropping augmentation is a method to extend the dataset. Initially, the
images are 100 × 100 pixels, and by cropping these to 90 × 90 pixels, we extend the
dataset by a factor of five, with minimal loss of information. Each training sample is
cropped five times, such that the resulting dataset has five entries for the same farm.
The crops are done top-left, top-right, centre, bottom-left, and bottom-right.

• Rotation: another standard method of increasing the number of training samples is
to apply image rotation, which forces the models to learn features not purely based
on the location of certain specific patterns in an image. We extensively apply image
rotation to all image samples by selecting a random rotation angle for each image. The
rotation angle is also different for images in the same time series, which produces a
unique image time series every time. Image dimensions are kept unchanged, meaning
that any corners rotated out of the image are discarded. Black pixels are used to pad
any empty corners of the image.
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• Pixel noise: to increase the variability of images, we introduce some augmentation
through the noise, using a simple salt-and-pepper method. Applying salt-and-pepper
noise is a process of changing a fraction of the pixels in the image to their minimum or
maximum values (0 or 1) [59]. The vast majority of the image remains unchanged. In
contrast, approximately 1% of the pixels (chosen at random) were altered to either 0
or 1. The images in the dataset are multispectral (i.e., containing 12 channels). A pixel
was chosen to be altered, the value of all the channels was updated at the same pixel.

3.2.3. Identifying Crop Yield Prediction Targets

The proposed models presented in this section have a single output: the predicted
crop yield per 1000 m2. However, the target yield is slightly different between some models,
requiring some clarification. As the dataset contains how much a farmer has delivered
for each crop type, as well as how large areas have been harvested for each type, we can
calculate a target yield for each crop type separately, as shown in Equation (3). Another
approach is to use the sum of all crops delivered and the area harvested for each farm,
resulting in the total yield per farm as shown in Equation (4). The two methods both
allow models to be trained to predict farm-scale crop yield. However, they also produce
slightly different distributions, which means that predictions of one type are not directly
comparable to the other.

y =
Grains delivered (kg)

Area harvested (1000 m2)
(3)

Equation (3) illustrates how the ground truth was calculated for each sample for
models that take crop type as input.

ytotal =
Sum of all grains delivered (kg)
Total area harvested (1000 m2)

(4)

Equation (4) illustrates how the ground truth is calculated for each sample of the
Single Image CNN. The Single Image CNN (see Section 3.4.1) is the only model using the
total yield per farm, while all other models are trained on the crop-specific yield targets. As
some farmers deliver multiple crop types each year, some samples are duplicated for each
calculated crop yield target. The models are given the crop type as input to differentiate
between them. By providing the same image or weather input but with different crop type
inputs, the aim is to force the models to learn yield characteristics for each crop type. In the
next subsections, we explain the baseline approach and newly proposed approaches for
this study.

3.3. Prediction Model Using Weather Data

As mentioned earlier in this section, weather data directly include information for two
of the four main factors of plant growth: precipitation and temperature [14,56]. Training a
deep neural network on the weather data allows us to verify the utilisation and relevancy
of these data.

Baseline Approach: The Weather DNN Model

A deep neural network from the preliminary experiment serves as a baseline for our
other models [53]. The model is a feed-forward neural network consisting of an input layer,
three densely connected layers with Tanh activation of 512, 128, and 64 units, respectively,
and one output layer at the end. After the two hidden layers, there are 10% and 25%
dropouts, as that seems to give the best generalisation. The model has 883 input features,
856 (96.9%) of which are weather features. The remainder is historical, positional and other
relevant features such as the cultivated area and crop type. The readers can access the
detailed explanation of this experiment in [53].
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3.4. Prediction Models Using Satellite Images

Satellite images are remotely sensed data collected by earth-observing satellites. These
images are available globally, cost effective, and include detailed high-resolution obser-
vations of the earth. The multispectral satellite images contain detailed crop growth and
plant health information, traditionally extracted using handcrafted vegetation indices. By
training on per-farm satellite images, models can automatically extract important, relevant
features for crop yield. The models discussed in the upcoming subsections use raw satellite
images to extract relevant features and make crop yield predictions.

3.4.1. Initial Experiment 1: The Single Image CNN Model

The initial model using satellite images was a simple CNN. This model aims to prove
the concept of this study and indicates whether satellite images of farms in Norway contain
some information that can be used with deep learning to predict grain yield. To keep the
model as simple as possible, it takes one multispectral image as input and makes yield
predictions based on this. The ground truth is calculated by summing all-grain deliveries
and dividing this by the total area harvested for each farm, resulting in a grain yield target
specified in kg/1000 m2, and can be seen in Equation (4).

The model input layer is by default 100× 100× 12, meaning images of 100× 100 pixels
and 12 channels deep, see Figure 4. In specific experiments, such as adding mask as a
channel and cropping the images, the input layer is adjusted slightly to accommodate
images of size 90 × 90 or 13 instead of 12 channels. As can be seen in Figure 4, the CNN
layers are made out of three pairs of 2D convolutional layers and 2D max-pooling layers.
Each pair has an increasing number of 3 × 3 convolutional filters with ReLU activation
applied to the input (16, 32, and 64, respectively) and a max-pooling of size 2 × 2 reduces
the output dimensions at each step. Next, the final max-pooling output is flattened before
being fed into a dense layer of 32 units with a single dense layer at the end.

Figure 4. Initial experiment 1: single image CNN model architecture.

3.4.2. Initial Experiment 2: A Multi-Temporal CNN–RNN Model

As examined by Jiang et al., the developments of crop phenology play an essential
role in the eventually harvested yield [17]. Grain crops are typically planted either during
autumn or in the spring, and the growth progress from seedlings to mature harvestable
crops is not constant or fixed through time [19]. By training a model on multi-temporal
images from the growing seasons, the aim was to achieve higher accuracy by analysing the
changes that occur over time. The proposed model is a convolutional and recurrent neural
network that takes an image time-series as input and outputs the predicted yield/1000 m2.
The model uses a similar CNN architecture to the single image CNN model described
earlier for each image. The CNN output is then fed into a GRU encoder network together
with a one-hot encoding of the crop type and a normalised field area, which is duplicated
for each time step.

The architecture of the CNN used for each time step has the same convolutional and
max-pooling layers as the single image CNN, see Figure 5. A single 64 unit fully connected
output layer replaces the two dense layers, effectively reducing each image to a 64 element
vector. The same CNN weights are reused for each time step, meaning that the network
size is independent of sequence length. The CNN output is concatenated with crop type
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and area and fed into a GRU encoder with 128 units. The GRU encoder output is fed
through a single fully connected layer with ReLU activation, and the outcome is a single
neuron with no activation function (linear).

Figure 5. Initial experiment 2: multi-temporal CNN–RNN model architecture.

3.5. Prediction Models Using Combined Satellite Images and Weather Data

Between the Weather DNN and multi-temporal CNN–RNN, all the previously de-
scribed data are used as feature inputs. However, the models train and predict individually,
so the models cannot learn any patterns that only appear when both satellite and weather
data are combined. For this reason, one LSTM and two hybrid models were created
and explained.

3.5.1. Initial Experiment: LSTM Model Using Handcrafted Features

Following the work of Johnson and Bendetti [14,15], the model evaluates the use of
vegetation indices and weather data to predict yield on a farm scale. As mentioned earlier
in this section, we utilised and synchronise 7-day interval Sentinel-2 time series data with
weather features, i.e., temperature and precipitation, such that the time window matches
with the Sentinel-2 data. We calculated min, max, and mean values for temperature features,
resulting in three temperature features per interval. The precipitation is summed for each
group, resulting in one precipitation feature for the total precipitation per interval. Image
masks are applied to each image so that only cultivated crops remain. We also calculated
the vegetation indices as described earlier in this paper [14,15]. Each vegetation index is
calculated for all remaining pixels, and the mean value represents the actual vegetation
index. The specific vegetation indices include NDVI, WDRVI, NDWI, and NDMI (See
Table 3 for details), resulting in four vegetation indices per interval.

We implemented a basic LSTM based architecture using handcrafted features, see
Figure 6. The LSTM encodes the time-series-based data across the growing season. Next, the
encoded growing season data are concatenated with the additional farm-related properties
in dense layers. The final output is the predicted yield in kg/1000 m2. The LSTM consists
of 30 cells (time steps), where each of these cells contains 32 units. After the LSTM layer,
there is a dropout layer of 25%, a dense layer of 32 units, and another dropout layer of 10%.
Next, the farm-related property input layers are concatenated into the network before a
32-unit dense layer and a final single neuron output. The LSTM units use the activation
function Tanh, and all dense layers use ReLU.
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Table 3. Handcrafted features used as input. The bands (B) are Sentinel-2 specific.

Name Abbr. Formula Description

Normalised Difference
Vegetation Index

NDVI B8 − B4
B8 + B4

Indicator of green leaf area, giving a
measurement of healthy green
vegetation in any given pixel.
First used by Rouse et al. [11]

Wide Dynamic Range
Vegetation Index

WDRVI α ∗ B8 − B4
α ∗ B8 + B4

Modification of the NDVI with an
extra weighting coefficient parameter.
Increased sensitivity when areas with
moderate to high biomass are
investigated [60].

Normalised Difference
Water Index

NDWI B3 − B8
B3 + B8

A measurement that is sensitive to
changes in water content of
vegetation [61].

Normalised Difference
Moisture Index

NDMI B8 − B11
B8 + B11

Indicator of the water content
of vegetation.
Effectively similar to that of NDWI,
but calculated using other aspects
of the spectrum [61].

Figure 6. Initial experiment: architecture of LSTM model Using handcrafted features.

3.5.2. Novel Approach 1: Pre-Trained Hybrid Model

The pre-trained hybrid model (see Figure 7) combines the weather DNN and multi-
temporal CNN–RNN by concatenating the outputs of the second to last layers and feeding
it into a deep neural network consisting of three fully connected layers. The first two layers
of the combined network use ReLU activation and have 64 neurons each, followed by
10% dropouts, and the last layer of the combined network is a single neuron that outputs
the predicted crop yield. The weather DNN and multi-temporal CNN–RNN are trained
separately, first the multi-temporal CNN–RNN, followed by the Weather DNN. Layers that
include the second to last layers of the pre-trained models are locked so that their weights
remain unchanged. Finally, the complete hybrid model is trained, combining the value of
both sub-networks.

The dataset was prepared so that the training/validation split would remain constant
through all stages to avoid leaking validation data into training data between the three
stages. Because the weather data have significantly more samples that increase error when
excluded, custom separate dataset generators provide each stage with all relevant features
and samples while keeping the training/validation split the same for all three.
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Figure 7. Novel approach 1: architecture of Pre-Trained Hybrid model.

3.5.3. Novel Approach 2: Hybrid CNN Model

Although the pre-trained hybrid model combines all available features and data for
each farm to make predictions, the method makes the model slightly cumbersome to
train. The architecture is inefficient because some of the learning in the two individual
models is discarded when the last layers are skipped in the combined model. The second
proposed hybrid model, shown in Figure 8, is trained in a single stage. The model has fewer
trainable weights than the first and combines satellite images and weather data in 7-day
time steps. That allows the model to process a single sequence using both data sources.
The model shares much of the architecture with the multi-temporal CNN–RNN model and
incorporates weather data through a one-dimensional convolution, allowing both satellite
images and weather data to be encoded in 7-day time steps. The model then combines the
output from the encoded satellite images and the 7-day weather data by concatenating
both vectors for each time step. The concatenated vectors are then fed into a GRU encoder,
which encodes the entire sequence into a 128 length vector. A fully connected layer with
ReLU activation and a single output neuron predicts the crop yield per 1000 m2.

Both weather and satellite data are captured from 1 March to 1 October for each sample.
However, satellite images have a temporal resolution of 7 days, while the weather data
have a higher temporal resolution of 1 day. To combine these two data sources, we apply
a one-dimensional convolutional layer, with a size and stride of 7, on the weather inputs.
The size and stride used in the one-dimensional convolution mean that the weather time
series is reduced to 30 vectors, effectively encoded as 7-day intervals. The one-dimensional
convolutional layer has 64 filters. Seven days of weather data are encoded as a vector of
length 64, the same size and temporal resolution as the CNN outputs from the satellite
images sequence.

For the trained models with satellite image time series, the size of each training
sample (without cropping) is at least 100 × 100 × 12 × 30 = 3,600,000 parameters when not
counting additional inputs to the models. We suspect a large number of parameters for
each training sample is the reason the models are prone to overfitting [62]. A minimum
of 5 h of training time per epoch with the augmented dataset would be expected using
the available hardware. During this time, the model might have already started to overfit
the training samples. It is impossible to know exactly when the model performed best
without testing on validation samples more frequently. Validation is typically done at the
end of each epoch. Because data augmentations increase the dataset size and, thus, the
number of samples in an epoch, the time between validations also increases. We solve this
by artificially reducing the size of each epoch by taking a random subset of the samples
instead of the whole set. This leads to more frequent validation runs, which allows us to
better monitor how well the model is learning. Figure 9 illustrates how stochastic epoch
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sampling provides higher resolution on the monitored loss values. In all our experiments,
training is stopped when validation loss has not improved for a set number of epochs, and
the model weights are restored from the epoch with the best validation loss. The stochastic
epoch sampling ensures we can restore the model weights from the best point in time while
also preventing models from training unnecessarily long.

Figure 8. Novel approach 2: architecture of Hybrid CNN model.

Figure 9. Illustration of stochastic epoch sampling.

4. Results

This section includes preliminary experiments conducted to evaluate the use of multi-
spectral imagery to predict yield, give indications of the effectiveness of data augmentation
methods mentioned in the previous section, and test the use of image masking. In addition,
we show the performance and comparisons of baseline and novel approaches discussed in
the earlier section. We scale the model up to predict on a per commune basis so that a com-
parison can be made between the proposed approaches and the work of Sharma et al. [8],
discussed in Section 1.2.3 earlier in this paper.

4.1. Preliminary Experiments on Multispectral Images

The experiments use the single image CNN, which is built to be a simple CNN-based
model so that the impact of the different experiments becomes clear. As explained in
Section 3.4.1, this model did not differentiate between crop types and was trained to predict
total crop yield per 1000 m2 for each farm. This means the Mean Absolute Error (MAE)
cannot be directly compared to that of the other models in the study.
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4.1.1. Evaluating the Use of Multispectral Imagery for Crop Yield Prediction

The first experiment conducted with the multispectral images checks whether a
CNN can predict the yield with better accuracy than if one just predicted the average.
By calculating the ytotal (all grains delivered in kg divided by total area harvested) per
farm, the mean yield per 1000 m2 across the training dataset results in 381.2 kg/1000 m2.
When using the mean yield per 1000 m2 as the prediction on the validation data, the MAE
is 134.3 kg/1000 m2. Anything lower than this means that the model has found some
relevant features from the multispectral images. The single image CNN is trained using
one image per year for each farm, which results in a validation loss of 96.4 kg/1000 m2

MAE. This indicates that the model can learn relevant features from the multispectral
images, validating the use and further exploring satellite images.

4.1.2. Optimal Week to Predict Crop Yield

The continued development and stages of crop growth play an essential role in the
harvested yield, which could mean that selecting different weeks as input for the single
image CNN will increase or decrease the performance. The model is trained separately for
each chosen period of a week to determine the most relevant information for each year,
i.e., 1 March to 1 October. There are measurable variations in the performance across the
growing season. The period from week 26 to 29 seems to be when the model performs the
best, which corresponds to roughly 25 June to 22 July. Interestingly, this finding is similar
to what Basnyat et al. found to be the optimal time to use remote sensing for crop grain
yield on the Canadian prairies, which was between 10 and 30 July [63]. Based on these
findings, week 26 is chosen for all single-image based experiments going forward.

4.1.3. Effects of Data Augmentation

The model described earlier showed signs of overfitting on the initial runs; hence, we
added data augmentation to reduce overfitting and increase the overall performance. The
data augmentation methods used are cropping, rotating, and adding noise (more details are
in Section 3.2.2). The datasets are split into training and validation sets before augmenting
the training data. When cropping, the validation images also have to be cropped to match
the model requirements of 90 × 90 images, and the centred 90 × 90 crop is applied. For
these specific experiments, the rotations are 90°, 180°, and 270°. Each of the augmentation
methods is tested separately. There are improvements both regarding less overfitting,
and lower loss overall. By evaluating the best-achieved loss, as shown in Table 4, we see
that the salt-and-pepper brings a modest improvement of 3.3%, while the improvements
from cropping and rotating are both at about 7.1%. In addition, when combining rotating,
cropping and salt-and-pepper, the validation loss further improves to 10.1% overall. These
positive results of augmenting the satellite images suggest the models would improve as
more years of data become available.

Table 4. Effects of the augmentations. The validation loss is the mean of three separate runs.

Augmentation Validation Loss (Mean)
Improvement over
Original (Percent)

Original (No augmentation) 89.8
Salt-and-pepper noise 86.8 3.34%

Rotating 83.4 7.13%
Cropping 83.3 7.24%

4.1.4. Effects of Image Masking

By quantifying the effects of image masking, we can answer the second hypothesis,
i.e., whether accurate field boundaries can significantly increase accuracy. In this context,
field boundaries and satellite images can be applied using pixel masks. In theory, the
masks should remove or highlight the cultivated crops and enable the models to focus on
crop-specific features. This experiment tests the use of image masks and the two proposed
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methods of applying these, as explained in detail in Section 3.1.5. Figure 10 shows the
results of both masking techniques compares to the original with no mask. Both applied
and, as a channel, seems to aid the model and improves the validation loss achieved.
Surprisingly, masks as a channel perform the best by quite a margin. This could be because
adding masks as a channel primarily adds information to the image in a separate channel,
suggesting that the environment around and close to the cultivated fields is also relevant.

Figure 10. The effects of masking techniques on MAE.

4.2. Comparison of Crop Yield Prediction Models

We evaluate the proposed models by comparing the achieved mean absolute error
in Table 5, which shows that the two best performing models, i.e., the two hybrid models,
incorporate both weather data and satellite images. The single image CNN model is left
out of this comparison, as the prediction targets for this model were total yield per 1000 m2.
All other models predict crop yield per 1000 m2 for each crop type individually, which
belongs to different distributions and is difficult to compare directly.

Table 5. Best mean absolute error achieved for each model.

Model Mean Absolute Error (kg/1000 m2)

Weather DNN 83.04
Multi-temporal CNN–RNN 80.52

Handcrafted features in LSTM 82.29
Hybrid 1: pre-trained hybrid 77.53

Hybrid 2: hybrid CNN 76.27

4.2.1. Baseline Approach: The Weather DNN Model

The baseline model, the weather DNN model, achieves a mean absolute error of
83.04 kg/1000 m2 (see Table 5) using daily interpolated temperature and precipitation val-
ues as described in Section 3.1.3. The interpolated weather data results in an improvement
of around 10 kg/1000 m2 compared to previous results using only measurements from the
nearest weather station [53]. The weather DNN results represent the benchmark for which
we test our other models on the first and third hypotheses: whether satellite images can
predict yield accurately and if satellite images combined with weather data increase the
accuracy further. The multi-temporal CNN–RNN validates the first hypothesis, and the
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two hybrid models show that combining satellite images and weather data are also benefi-
cial. The second hypothesis, concerning accurate field boundaries, are tested by running
the best performing model, the hybrid CNN, both with and without masks, showing that
masking of fields improves accuracy (see Table 6). Further results and insights from the
other models are presented and discussed in the following subsections.

Table 6. Hybrid CNN results with and without masks.

Mask Type Mean Absolute Error (kg/1000 m2)

No mask 86.69
Mask as channel 76.57

Mask applied 76.27

4.2.2. Initial Experiment 1: Multi-Temporal CNN–RNN

The multi-temporal CNN–RNN model utilises the satellite image dataset to the fullest
by processing all the 30 images for each sample to yield a prediction. The model achieves
a mean absolute error of just above 80 kg/1000 m2 (see Table 5), an improvement from
the Weather DNN. However, compared with the weather DNN, the multi-temporal CNN–
RNN is not given a farm’s previous grain deliveries or positional data; the model is trained
using only multispectral satellite images and the crop type and area encoding. Figure 11
shows the training and validation loss for the multi-temporal CNN–RNN model. The
training was performed using images with a pixel mask added as a separate channel, given
the best results in the single image CNN experiments.

Figure 11. Training and validation loss for the multi-temporal CNN–RNN model.

While a multispectral satellite image contains more information than a temperature
and precipitation measurement, a significant drawback is cloudy images, which can some-
times constitute a large portion of the images in the 30 image time-series samples. The
model still predicts the crop yield more accurately than the weather DNN, suggesting
that it can successfully extract valuable information from the good quality images while
ignoring the noise generated by cloudy images. This is perhaps due to the GRU-encoders
ability to control how much each input should contribute to the encoding at each time step
with the update gate (GRU explained in Section 2).

4.2.3. Initial Experiment 2: Handcrafted Features in LSTM

By condensing the relevant sequential time series data into sequences of vectors suited
for an LSTM, the LSTM trained on handcrafted features achieves a mean absolute error
of 82.29 kg/1000 m2. The model is tested with three sets of sequential inputs: weather,
vegetation indices, and a combination of weather and vegetation indices. Surprisingly,
weather alone only results in an MAE of 93.63 kg/1000 m2, while vegetation indices see an
improved MAE of 83.01 kg/1000 m2. With both weather and vegetation indices, the MAE
improves to 82.29 kg/1000 m2. See Figure 12 for a comparison of the training.
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Figure 12. Training and validation loss for the LSTM model.

The relatively poor MAE results of weather features alone can indicate that weather
features condensed into four measurements per week remove necessary granularity. Over-
all, the MAE achieved with this model is a modest improvement over the Weather DNNs
results. One contributing factor to this result can be that although we have information on
which fields the farmers cultivate each year, we cannot differentiate the type of crops in the
fields. By not making vegetation indices for just the relevant types of crops, they may be
affected by fields of grass, potatoes, and vegetables.

4.3. Novel Approach 1: Pre-Trained Hybrid Model

The LSTM model with handcrafted features shows that combining vegetation indices
derived from satellite data with weather data only improves predictions marginally. On the
contrary, the pre-trained hybrid model shows that combining the full weather DNN and the
multi-temporal CNN–RNN, a definite improvement is achieved compared to each model’s
results individually. Both the Weather DNN and multi-temporal CNN–RNN are trained
individually before training the hybrid, which reduces the number of epochs needed
to train the hybrid, shown in Figure 13. The lowest achieved loss is 77.53 kg/1000 m2,
6.6% lower than the Weather DNN and 5.3% lower than the multi-temporal CNN–RNNs
individual results.

Figure 13. Training and validation loss for the pre-trained hybrid model.

The pre-training of the two combined models may explain the shorter training time
for the pre-trained hybrid. However, it may also indicate that the hybrid model cannot
find any valuable complex patterns between weather and satellite data, perhaps due to
its architecture.

4.4. Novel Approach 2: hybrid CNN Model

The hybrid CNN is the best performing model. It manages so with fewer parameters
and features than the pre-trained hybrid, which contains additional features, such as a
farmer’s previous deliveries (historical yield). We attribute the hybrid CNNs improvement
to its more natural architecture that combines weather and image data into a single sequence
encoding. Compared to the multi-temporal CNN–RNN, which only looks at satellite
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images, the addition of weather data may allow the model to estimate plant growth where
cloudy images would usually blind the model.

As the best performing model, we also test the model both with and without masking.
As with the single image CNN experiment, we find that masking of the image provides
significant improvements compared with no mask (see Table 6 and Figure 14). We identified
that accurate field boundaries are beneficial for accurate crop yield predictions on a farm
scale. However, in contrast to the single image experiment with masking results, the hybrid
CNN model performs almost equally with both masks as a channel and masks applied.
Although we have no conclusive answer why, one reason may be that the model starts
overfitting earlier than the Single Image CNN and thus never reaches its full potential.

Figure 14. Training and validation loss for the hybrid CNN.

As an additional analysis of the model’s accuracy, we present a quantile–quantile
plot (Q–Q plot) in Figure 15 which compares the prediction output distribution with the
actual distribution. The Q–Q plot shows the model learns an excellent approximation of
the actual distribution of crop yields from the validation set. However, very low and very
high yields seem to be more challenging to predict.

Figure 15. Hybrid CNN prediction quantiles versus real quantiles.

To visualise and better understand the model’s predictions, we discretise predictions
by grouping them into bins, then plotted as a heat map showing the cross-tabulation be-
tween prediction output and actual yield values. Figure 16 shows the discretised prediction
outputs in equal-width bins, which shows that the model predicts well for the most com-
mon values. The figure may also explain why the model has difficulty predicting very high
and very low yields due to fewer samples to train on the model. A more balanced view
of the prediction outputs is shown in Figure 17 where predictions are grouped into bins
created from percentiles instead of a fixed width. The percentile bins show that predictions
are centred roughly around the actual values on the diagonal, even for values in the top
and bottom 10%.
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Figure 16. Discretised prediction output from the hybrid CNN. Predictions are binned into ten bins.
The axes’ labels mark the upper bound of each bin.

Figure 17. Discretised prediction output from the hybrid CNN in percentile bins. Predictions are
binned into ten percentile bins (10, 20, . . . , 100) derived from the actual distribution. The axes’ labels
mark the upper bound of each percentile bin.

4.5. Early Predictions

In Hypothesis 4, we propose that satellite and weather time series data can be used
to predict crop yields before harvest. To test how much the early and middle periods
of the growing season effect crop yield, we reuse the best performing model, the hybrid
CNN with masks applied, to predict crop yields without the whole data time series. The
single image experiments have already shown that satellite images from week 26 appear
to contain the most relevant information out of all the weeks, implying that data after
week 26 might not be as essential to crop yield. We can compare early predictions versus
predictions on the whole time series by training the hybrid CNN on shorter time series.
Table 7 show the mean absolute errors achieved when limiting the amount of data to 12
and 17 weeks of data, roughly equal to mid-May and late-June predictions, respectively.
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Table 7. The mean absolute error achieved at different times with early predictions. The error
increases by 7.66% for late-June predictions and 20.89% for mid-May predictions, compared to
predictions made using the whole season.

Input Description Mean Absolute Error Change

Weeks 10–39 Full season 76.27 kg/1000 m2 –
Weeks 10–26 Late-June 82.11 kg/1000 m2 +7.66%
Weeks 10–21 Mid-May 92.20 kg/1000 m2 +20.89%

As expected, the error increases when predicting earlier in the growing season. The
late-June predictions, which include all weeks up to and including week 26, have a mod-
erate increase in error that is still lower than predictions made by other models in the
full season. Figures 18 and 19 show the predictions in percentile bins for late-June and
mid-May, respectively. Mid-May predictions show a clear reduction in accuracy compared
to both late-June and full-season predictions (see Figure 17), as the model struggles to
differentiate between low and medium yields.

Figure 18. Early Predictions: Late-June.

Figure 19. Early Predictions: Mid-May.
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4.6. Predictions as Regional Analytics

To the best of our knowledge, no prior work predicts real-world farm-scale crop yields
on a large scale, making it difficult to compare our results with the current state-of-the-
art [22] crop yield predictions. Sharma et al. [8] predict wheat yield at a tehsil scale, a small
administrative unit in India and achieve an RMSE of between 4.8 and 33 kg/1000 m2 when
trained in different states in India. To compare our results, we aggregate predictions made
on a farm scale up to the lowest administrative unit, the Norwegian commune, by assuming
a mean farm-scale prediction per year for each commune. As some communes have very
few samples, we take the 100 communes with the highest number of samples in our dataset
to analyse (the number of samples in the top 100 communes ranges from 32 to 152, with
a mean of 60). With this approach, our best performing model achieves a nationwide
commune-scale crop yield prediction with an MAE of 23.35 kg/1000 m2 and an RMSE of
30.81 kg/1000 m2. This indicates that its accuracy is in the range of the predictions made
by Sharma et al. on a tehsil scale in India (as there are too many uncontrolled variables
between these projects, this comparison only provides a rough idea of the performance
level of two models that were not meant to predict the same thing). Figure 20 shows the
relationship between predicted and actual commune-scale crop yield, made by aggregating
farm-scale yields.

Figure 20. Relationship between actual and predicted crop yields on a commune-scale.

5. Discussion

Evaluating the initial experiments, the single image CNN can find a correlation be-
tween the multispectral satellite images and the yield of the farms. Further, the data
augmentation methods of rotating, cropping, and adding noise to the images seem ad-
equate, indicating that the model’s accuracy could improve given additional data. The
application of image masks also provided positive results, showing that highlighting or
keeping only the farms’ cultivated fields in the images enables the model to focus on the
relevant portions of the image.

The best performing model is the hybrid CNN, which utilises both weather data
and raw multispectral satellite images as its input and improves 8% over the baseline
Weather DNN. Seemingly by the findings of You et al. [9] and Sharma et al. [8], using raw
multispectral images, outperforms the model using handcrafted vegetation indices. The
hybrid CNN can also make early, in-season predictions, though the error increases when
data decreases. To make the results of the proposed hybrid CNN comparable to earlier
works, we average the model’s per-farm predictions to predict on a per-commune basis.
We see that the per-commune predictions of the hybrid CNN are comparable to the latest
state-of-the-art in crop yield predictions.

6. Conclusions and Future Work

In conclusion, this study explores using satellite data for crop yield prediction, review-
ing traditional and new methods of extracting relevant information from satellite imagery.
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A new dataset with real-world per-farm samples, created by combining many data sources,
enables deep learning for farm-scale crop yield prediction. Multiple models are proposed
to test different hypotheses and optimise prediction accuracy. The most accurate model
is a deep convolutional, recurrent, and hybrid model. It combines multispectral satellite
images and weather data to predict crop yields. The model is a first of its kind in predicting
farm-scale crop yields to the best of our knowledge. In addition, the aggregated farm-scale
predictions to a commune scale are presented, and the proposed model achieved compara-
ble results to the current state-of-the-art crop yield predictions. The hypotheses defined
for this research study are tested and explained, along with a brief conclusion for each,
as follows.

Hypothesis 1. Satellite images of farms and their surroundings can be used to accurately predict
farm-scale crop yields.

Satellite images were used to predict farm-scale crop yields, and the results show that
models using satellite images improves the prediction accuracy over the baseline model
using weather data.

Hypothesis 2. Accurate field boundaries along with satellite images increase crop yield accu-
racy significantly.

We show that accurate field boundaries, represented using pixel masks and satellite
images, significantly improve prediction accuracy using the best performing model. The
best performing model saw a 14% reduction of mean absolute error with the pixel masks,
from 86.69 kg/1000 m2 without to 76.27 kg/1000 m2 with a mask.

Hypothesis 3. Prediction accuracy can be further increased by combining satellite images and
meteorological data.

Prediction accuracy was consistently better with models that incorporate both weather
data and satellite images, suggesting that both contain some information that the other
does not.

Hypothesis 4. It is possible to predict farm-scale crop yield earlier in the growing season with
some reduced accuracy.

By training the best hybrid model using data from earlier in the season, we show that
late-June predictions can be made with a moderate increase in mean error (+7.66%). In
contrast, mid-May predictions are significantly less accurate with an almost 21% error increase.

Given that this is a novel application of neural networks in a domain where data are
limited and noisy, many untested methods and data sources could improve prediction
accuracy or achieve similar results more efficiently. For future work, we suggest further
exploration of the following:

• Improving generalisation: while our models show that accurate farm-scale crop
yield predictions are possible with deep learning, the majority of models start to
exhibit overfitting when training, even with the data augmenting methods used. This
suggests that even higher accuracy might be possible given more data or using other
known methods for reducing overfitting and increasing generalisation, such as batch
normalisation.

• Remote sensed temperature: land surface temperatures derived from satellite sensors
have successfully been used in US county-level predictions [14]. They provide tem-
perature values that should be closer to the actual temperature at the farm compared
to interpolations between sensors that are typically many kilometres away from the
farm. Such values could replace temperature interpolation or be used to improve
weather interpolation further.
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• NIBIO field data: apply field data gathered by NIBIO to the models. Adding soil
quality and water storage capacities could add meaningful information about crop
yield potential in individual fields.

• Additional sources for satellite images: this study used Sentinel-2 as the source for
the satellite images. It could be positive to introduce additional sources for satellite
images to complement the Sentinel-2 dataset. Additional sources for satellite images
could increase the frequency of the satellite images throughout the growing season
and give higher resolution multispectral images. Some specific satellites of interest
could be Landsat 8, WorldView-3, and PlantScope.
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